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ABSTRACT we use the term HRTFs in the remainder even if we refer to the
magnitudes only.

Head-related transfer functions (HRTFs) represent theustito Spherical harmonics have been shown to constitute a powerfu
transfer function from a sound source at a given locationht® t an flexible basis for the representation of HRTFs since d)ctit

ear drums of a human. They are typically measured from discre efficients are discrete and can therefore be stored comtgpiand

source positions at a constant distance. Spherical haosidecom-  2) the HRTFs for any arbitrary location on the sphere can be re

positions have been shown to provide a flexible representatf
HRTFs. Practical constraints often prevent the retriefah@asure-
ment data from certain directions, a circumstance that tioatps
the decomposition of the measured data into spherical hdosioA
least-squares fit of coefficients is a potential approacheterchin-
ing the coefficients of incomplete data. However, a stréaghard
non-regularized fit tends to give unrealistic estimategterregion
were no measurement data is available. Recently,
least-squares fit was proposed, which yields well-behasgdlts for

the unknown region at the expense of reducing the accurattyeof

data representation in the known region. In this paper, weqse
using a lower-order non-regularized least-squares fit tiese a
well-behaved estimation of the unknown data. This data #fiews
for a high-order non-regularized least-squares fit over éhéire
sphere. We compare the properties of all three approacipiséfo

modeling the magnitudes of the HRTFs measured from a manikin
The proposed approach reduces the normalized mean-sguare fon
ror by approximately 7 dB in the known region and 11 dB in the

unknown region compared to the regularized fit.

trieved from the coefficients [4]. A frequently faced incemience
is the fact that practical constraints can prevent the nreasent of
HRTFs on certain portions of the sphere, typically undeiméiae
subject. The estimation of such unknown data is occasipteined
extrapolation although it is rather an interpolation ovéssimg data.
The coefficients of the spherical harmonics expansion ofergi
function on a sphere can be derived analytically via an nalegyver

a regeir o gyrface of the notional sphere provided that the datadsvk

anywhere [5]. In the case of either discrete sampling orinaotis
measurements it is possible to probe an enclosing surfatkaso
the coefficients can only be obtained up to a given expansidero
which restricts the representable amount of detail of th&FR The
transformation integral can still be evaluated discretelthis case
assuming that the energy of the data above the highest abtain
order is so low that spatial aliasing can be neglected [6].

s underneath the subject so that the data is unknowig almme
portion of the sphere. The transformation integral canmot$ged
to obtain the corresponding coefficients since the dategaioa un-

Index Terms— head-related transfer functions, spherical har-known portion is inherently set to zero. Instead a leastsegifit

monics, interpolation, extrapolation, regularization

1. INTRODUCTION

Head-related transfer functions (HRTFs) represent thestea func-
tion from a given sound source position to the ear drums ofnagmu

[1]. They can be measured either from a specific grid of discre

positions or along a set of continuous trajectories [2]ygdically
located on the surface of a notional sphere centered artwenuit-
point between the ears of a person in an anechoic environmbis
paper assumes a discrete grid although the results arélylmppli-
cable to continuous trajectories as well.

A direct practical application of HRTFs is the creation of-vi
tual acoustic environments. In this case, the input sighalspund
source is filtered with the HRTF corresponding to a given reelsi
source position. When the resulting ear signals are pres¢ot lis-
tener — typically using headphones — the sensation of a ssnurde
in the desired position is evoked.

can be applied, which yields a set of coefficients that bestrilee
the known data in a least-squares sense. Unfortunatebnseact-
ing the data along the unknown region from the resultingfaaents
leads to unrealistically high amplitudes, potentially doeneasure-
ment noise as well as spatial aliasing. It has been proposadploy
a regularized fit to overcome this blow-up of the data [8]. @hew-
back is that the regularization can affect the known datahigpa-
per, we propose a lower-order extrapolation of the measemédata
into the unknown region that then supports a non-reguldrieast-
squares fit over the entire sphere. This way we can avoidtaffec
the representation of the known data while retrieving a‘ehaved
representation of the HRTF data over the entire sphere.

An iterative approach for the estimation of unknown HRTFRadat
has been presented in [9]. This approach also leads to aupovi-
the data in the presence of measurement noise.

2. MATHEMATICAL PRELIMINARIES

Modeling magnitude and phase individually may be assumed\ function (3, o, w) that is square integrable on the surface of a

to be the most favorable approach [3]. Note though that weiden
exclusively the magnitudes of HRTFs in this paper. For coiemce,

sphere that is centered around the coordinate origin camefre-r
sented by the coefficientq],' (w) of a series of spherical harmonics

As mentioned above, it is often not possible to measure loca-



Y, (B, «) as [5]
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In the present case, we may apply the Helmholtz reciprocitycp
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where YT denotes the pseudo inverse Wf. In this paper, we
compute the Moore-Penrose pseudo inverse, which yieldedst-
squares solution to (5) [10].

Regularization can be applied in order to give preference to
a particular solution to (5) with given properties [10]. Wepdy
Tikhonov regularization as a representative approach.asgttheen

ple and assume that we observe the sound pressure of a sawoe so reported in [8] that the results for different regularipatimethods

in the ear of the subject on the surface of a sphere [8].

The surface spherical harmonitg™ (3, «) are a complete and

orthonormal set and may be defined as

Y(8,0) = (—1)’"\/ @nt1)fn—ml)

plm (cos B)e™ |
2

(n+ [m])!

where P} (-) denotesmth-order the associated Legendre function

of n-th degreeq denotes the azimuth arftithe colatitude.

Eq. (1) converges above a certain threshold so that it cap-be a

proximated by [5]

H(B, o, w) &
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The coefficientsH{?* (w) can be obtained via

HM (W)= | HQ,w)Y,

S2

() dA(Q), 4)

are similar in the present context.
While the least-squares solution minimizes the energy ef th
residual as
argfninHY?v-t —H|2, 9)
H

where]|| - |2 denotes the, vector norm, Tikhonov regularization
minimizes

argmin (HY’# —Hl2 + )\||D7tt|\2) ; (10)
H

where the scalax is the regularization parameter that has to be cho-
sen suitably and is a diagonal regularization matrix. We uBeas
proposed in [11] with its diagonal elemernts; being
dig=1+ n(n + 1) , (12)
wheren denotes the degree of the corresponding basis funkfjbn
ChoosingD according to (11) penalizes high-degree harmonics
more than low-degree ones in order to increase smoothndse of

whered A(Q) is an infinitessimal surface element on the unit sphereesult. The explicit solution to (10) is [10]

S? and<) a given point on the sphere defined (#; «).

3. REGULARIZED LEAST-SQUARES FIT

As discussed in Sec. 1, (4) cannot be used to determine tff coe
cientsH;, (w) becausé4(Q2, w) is usually unknown in some portion

of the sphere. An alternative approach is formulating tloblam as
a system of linear equations for which a least-squaresisnlaain
be obtained [8]: 5

YH=H, (5)
whereY is anL x (N + 1)? matrix of basis function¥,™ (8, &) u
to a given orderV as

Yo () Y7 () YP(w) YR (1)
v YE)O('QQ) Y]{,VFQQ) 7
Yoo('QL) Yfl('QL) Y10(5'2L) Yz]vv('QL)

y (6)
L denotes the number of measurement poitfss a(N +1)% x 1
vector of coefficients as

[ HY(w) |
Hi ' (w)
N HY (w)
H= - , 7
Hh (w) )
| HY (w) |
and# is a L x 1 vector of observation${(Q;,w)vVl < I < L.

Eq. (5) can be solved of each frequency bin and for each ear as

H=Y"H, (8)

H=Y"Y+AD)'Y'H. (12)
4. NON-REGULARIZED LEAST-SQUARES FIT USING
LOWER ORDER EXTRAPOLATION

In order to avoid an increase of the modeling error in the kmow
region due to regularization and avoid a blow up in the unkmow
region, we propose a three-stage approach:

1. Perform a non-regularized low-order least-squares ¢ibrals
ing to (8). We have empirically determinéd = 3 as a useful
choice. The problem is well-behaved.

2. Use the obtained coefficients to obtain HRTF estimates at a
sufficient number of support points in the unknown region.
We chose to virtually complement the measurement grid.

3. Perform a non-regularized least-squares fit accordin@)to
over the entire sphere using the measured data in the known
region and the lower-order estimation in the unknown region
The problem is then well-behaved.

The properties of the presented approach are discussed.ib Se
based on sample measurement data.

5. RESULTS

The measurement grid considered in the following is degdidte
Fig. 1(a). The physical setup consists of a semicirculapéradius

1 m equipped with 16 loudspeakers placed equiangularlytervials

of 11.25 . The pivot points of the arc as well as the interaural axis of
the subject lie on thg-axis with the midpoint between the ears in the
coordinate center. The arc can rotate to 25 different anglgeps of
11.25 between 135 colatitude in the frontal hemisphere and 135
colatitude in the rear hemisphere, which result2in 16 = 400
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points that are illustrated in Fig. 2.

data along this great circle are representative for theeespihere.

Fig. 2(a) depicts HRTFs reconstructed via (3) from sphérica
harmonics coefficients that were obtained from a non-rezgd
least-squares fit according to (5) on data measured on thpletam
grid at32 - 16 = 512 locations. This data is considered the ground
truth in the remainder.

Evaluating (5) based on the known data from the setup shown
in Fig. 1(a) for the maximum applicable ord&r results in a badly-
conditioned problem. The result is typically still useful the
densely-sampled region but blows up in the unsampled regieam
the slightest amount of noise is present [8]. This is illatgd in
Fig. 2(b). Regularization can avoid the blow up (Fig. 2(d)}re
expense of increasing the error at the known data pointse, ke
apply Tikhonov regularization according to (10) with=1e-2.

For reference, Fig. 4 illustrates the match between pure mea
sured data for a sample direction (blue line) and the resdlthe
regularized fit (green line). The deviation is in the ordet6f5 dB
below 4000 Hz and slightly larger at higher frequencies.

We use )

[H — I3
I3

as a global error measure, whee refers to the modeled data{
refers to the ground truth. Tab. 1 lisisfor the different considered
methods for the known and unknown region separately.

In order to illustrate the deviation of the data reconstddtom
the incomplete measurements to the ground truth, Fig. Itethie
ratio A(8;, ;) of the modeled data{(/3;, ;) under consideration
and the ground trut{(5;, a;) on a logarithmic scale as

H(Br, )

H(ﬁla Oél) .
(81, 1) denotes the direction of interest. Fig. 3(a) illustrates
A(B1, au) for the reconstruction via the regularized fit.

Fig. 2(d) depicts the result of the proposed non-reguldrieast-
squares approach based on the data from Fig. 2(a). The match b

¥ = 10log,, (23)

A(Bi, ar) = 20log;, (14)

Fig. 1. Geometric setup; The HATS was placed in the coordinatéween the measured and modeled data is depicted in Fig. 4 for a

center and 'looked’ along the positiweaxis.

measurement points for each ear of the B&K Head and Torso Sim-

ulator (HATS). This measurement grid is referred tdraemplete.
The ground truth of the data in the unknown region was obthine
by mounting the HATS upside down in the rig. The resulting mea
surement grid covering the entire sphere is referred tcoaplete

in the remainder. Note that human HRTFs can deviate significa
from the HATS’s HRTFs especially for positions underneatites
the HATS does not have a lower body. The obtained data is neve
theless assumed to be qualitatively similar to human HRTFs.

The measurement grid allows for a maximuw¥hof 15. Rep-
resenting the physical information contained in the HRTétglires
dozens of orders and hence thousands of measurement pdints [
The model will therefore suffer from spatial aliasing [&]nbt clear,
however, which ordelV is required to provide a representation that
is perceptually indistinguishable from the true data. infal listen-
ing by the authors of this paper suggests that a 15th-ordenre
struction can indeed not be distinguished from the origiRT F.

Note that HRTF data is three-dimensional (frequency, attimu
colatitude), which makes it inconvenient to illustrate. Wi# there-
fore not illustrate the data over the entire sphere but abbgiyen
great circle, which is depicted in Fig. 1(b). The properiéghe

sample direction, the deviatioA (3, o) from the ground truth is
shown in Fig. 3(b), and the errdr is listed in Tab. 1.

The apparent benefits over the regularized approach astubcr
in Sec. 3 are:

e The amount of detail of the estimated data in the unknown
region is only moderate. Comparing all results for the in-
complete data to the ground truth in Fig. 2(a) suggests that
a reliable estimate of the unknown data is not possible. The
error will usually be significant. Recall Tab. 1 for numbehs.
lower-order estimation from the non-regularized coeffitse
fit assures that no prominent spikes and dips occur in the un-
known region, a circumstance that is favorable in percéptua
terms. Note that peaks are especially prominent with réspec
to perception [12]. It can therefore be assured that no harm-
ful data is created. This is not assured by the regularized fit
which does not restrict the order as consequently so that the
amount of detail of the data estimates is higher.

The negative impact on the known data is marginal. Theo-
retically, the sharp transition from higher-order dateotwér-
order data at the boundary of the known region requires a
very high-order if not infinite-order expansion. An additid
small amount of spatial aliasing is consequently added. The
non-regularized least-squares fit smoothes this transitjo
limiting the resulting expansion to ordéF by the cost of an
error increase in the known region by approx. 2 dB (Tab. 1).

r
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Fig. 2. HRTF magnitudes in dB along the great circle shown in Fi) 1éconstructed from different types of least-squaresHisition
index O represents the corresponding direction in the &ldmrizontal plane and positive indices represent the uppmisphere, negative
indices represent the lower hemisphere. The left half optbethus represents the frontal hemisphere; the rightrealfesents the rear one.
The area between the black vertical lines represents unkdata.

| simple non-reg. fit| regularized fit| proposed approach

known region -20.67 dB -11.41 dB -18.60 dB
unknown region 132.08 dB 8.93 dB -2.56 dB

Table 1. Error ¥ as defined in (13)

6. FURTHER OBSERVATIONS spiky the higherV. As mentioned above, this circumstance may be
considered unfavorable from a perceptual point of view.

. . - The tendency of blowing up between support points is also ap-
As mentioned n _Sec. 3, the complete measurement grid MW“. parent in Fig. 2(b) where the modeled data shows high andglgu
aIIo_ws for retr_levmg data forv = 15. The Ieast_-squa_res fit .W'" even outside the unknown region. The measurement points-the
deliver a solution also faN > 15. The non-regularized fit— be it on selves are properly modeled.
the incomplete data or on the full-sphere data — will make soat
the data at the measurement locations is well representaglevér,
the reconstructed data tends to blow up between the measnrem 7. CONCLUSIONS
points and the model is therefore not useful in general. Aleggzed
fit avoids the blow-up but represents the measurement detavell.  We have presented a three-stage approach for non-reguldeast-
Additionally, the estimation of the unknown data gets mam@more  squares fitting of spherical harmonics coefficients on irgete
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