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ABSTRACT

Head-related transfer functions (HRTFs) represent the acoustic
transfer function from a sound source at a given location to the
ear drums of a human. They are typically measured from discrete
source positions at a constant distance. Spherical harmonics decom-
positions have been shown to provide a flexible representation of
HRTFs. Practical constraints often prevent the retrieval of measure-
ment data from certain directions, a circumstance that complicates
the decomposition of the measured data into spherical harmonics. A
least-squares fit of coefficients is a potential approach to determin-
ing the coefficients of incomplete data. However, a straightforward
non-regularized fit tends to give unrealistic estimates forthe region
were no measurement data is available. Recently, a regularized
least-squares fit was proposed, which yields well-behaved results for
the unknown region at the expense of reducing the accuracy ofthe
data representation in the known region. In this paper, we propose
using a lower-order non-regularized least-squares fit to achieve a
well-behaved estimation of the unknown data. This data thenallows
for a high-order non-regularized least-squares fit over theentire
sphere. We compare the properties of all three approaches applied to
modeling the magnitudes of the HRTFs measured from a manikin.
The proposed approach reduces the normalized mean-square er-
ror by approximately 7 dB in the known region and 11 dB in the
unknown region compared to the regularized fit.

Index Terms— head-related transfer functions, spherical har-
monics, interpolation, extrapolation, regularization

1. INTRODUCTION

Head-related transfer functions (HRTFs) represent the transfer func-
tion from a given sound source position to the ear drums of a human
[1]. They can be measured either from a specific grid of discrete
positions or along a set of continuous trajectories [2], alltypically
located on the surface of a notional sphere centered around the mid-
point between the ears of a person in an anechoic environment. This
paper assumes a discrete grid although the results are directly appli-
cable to continuous trajectories as well.

A direct practical application of HRTFs is the creation of vir-
tual acoustic environments. In this case, the input signal of a sound
source is filtered with the HRTF corresponding to a given desired
source position. When the resulting ear signals are presented to a lis-
tener – typically using headphones – the sensation of a soundsource
in the desired position is evoked.

Modeling magnitude and phase individually may be assumed
to be the most favorable approach [3]. Note though that we consider
exclusively the magnitudes of HRTFs in this paper. For convenience,

we use the term HRTFs in the remainder even if we refer to the
magnitudes only.

Spherical harmonics have been shown to constitute a powerful
and flexible basis for the representation of HRTFs since 1) the co-
efficients are discrete and can therefore be stored conveniently, and
2) the HRTFs for any arbitrary location on the sphere can be re-
trieved from the coefficients [4]. A frequently faced inconvenience
is the fact that practical constraints can prevent the measurement of
HRTFs on certain portions of the sphere, typically underneath the
subject. The estimation of such unknown data is occasionally termed
extrapolation although it is rather an interpolation over missing data.

The coefficients of the spherical harmonics expansion of a given
function on a sphere can be derived analytically via an integral over
the surface of the notional sphere provided that the data is known
anywhere [5]. In the case of either discrete sampling or continuous
measurements it is possible to probe an enclosing surface sothat
the coefficients can only be obtained up to a given expansion order,
which restricts the representable amount of detail of the HRTFs. The
transformation integral can still be evaluated discretelyin this case
assuming that the energy of the data above the highest obtainable
order is so low that spatial aliasing can be neglected [6].

As mentioned above, it is often not possible to measure loca-
tions underneath the subject so that the data is unknown along some
portion of the sphere. The transformation integral cannot be used
to obtain the corresponding coefficients since the data along the un-
known portion is inherently set to zero. Instead a least-squares fit
can be applied, which yields a set of coefficients that best describe
the known data in a least-squares sense. Unfortunately, reconstruct-
ing the data along the unknown region from the resulting coefficients
leads to unrealistically high amplitudes, potentially dueto measure-
ment noise as well as spatial aliasing. It has been proposed to employ
a regularized fit to overcome this blow-up of the data [8]. Thedraw-
back is that the regularization can affect the known data. Inthis pa-
per, we propose a lower-order extrapolation of the measurement data
into the unknown region that then supports a non-regularized least-
squares fit over the entire sphere. This way we can avoid affecting
the representation of the known data while retrieving a well-behaved
representation of the HRTF data over the entire sphere.

An iterative approach for the estimation of unknown HRTF data
has been presented in [9]. This approach also leads to a blow-up of
the data in the presence of measurement noise.

2. MATHEMATICAL PRELIMINARIES

A function H(β, α, ω) that is square integrable on the surface of a
sphere that is centered around the coordinate origin can be repre-
sented by the coefficients̆Hm

n (ω) of a series of spherical harmonics



Y m
n (β, α) as [5]

H(β, α, ω) =

∞
∑

n=0

n
∑

m=−n

H̆m
n (ω)Y m

n (β, α) . (1)

In the present case, we may apply the Helmholtz reciprocity princi-
ple and assume that we observe the sound pressure of a sound source
in the ear of the subject on the surface of a sphere [8].

The surface spherical harmonicsY m
n (β, α) are a complete and

orthonormal set and may be defined as

Y
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,

(2)
wherePm

n (·) denotesmth-order the associated Legendre function
of n-th degree,α denotes the azimuth andβ the colatitude.

Eq. (1) converges above a certain threshold so that it can be ap-
proximated by [5]

H(β, α, ω) ≈
N
∑

n=0

n
∑

m=−n

H̆m
n (ω)Y m

n (β, α) . (3)

The coefficientsH̆m
n (ω) can be obtained via

H̆m
n (ω) =

∫

S2

H(Ω, ω)Y −m
n (Ω) dA(Ω) , (4)

wheredA(Ω) is an infinitessimal surface element on the unit sphere
S2 andΩ a given point on the sphere defined by(β, α).

3. REGULARIZED LEAST-SQUARES FIT

As discussed in Sec. 1, (4) cannot be used to determine the coeffi-
cientsHm

n (ω) becauseH(Ω, ω) is usually unknown in some portion
of the sphere. An alternative approach is formulating the problem as
a system of linear equations for which a least-squares solution can
be obtained [8]:

YH̆ = H , (5)

whereY is anL× (N +1)2 matrix of basis functionsY m
n (β, α) up

to a given orderN as
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(6)
L denotes the number of measurement points.H̆ is a(N + 1)2 × 1
vector of coefficients as
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andH is aL × 1 vector of observationsH(Ωl, ω)∀1 ≤ l ≤ L.
Eq. (5) can be solved of each frequency bin and for each ear as

H̆ = Y
†
H , (8)

whereY
† denotes the pseudo inverse ofY. In this paper, we

compute the Moore-Penrose pseudo inverse, which yields theleast-
squares solution to (5) [10].

Regularization can be applied in order to give preference to
a particular solution to (5) with given properties [10]. We apply
Tikhonov regularization as a representative approach. It has been
reported in [8] that the results for different regularization methods
are similar in the present context.

While the least-squares solution minimizes the energy of the
residual as

argmin
H̆

‖YH̆−H‖2 , (9)

where‖ · ‖2 denotes theℓ2 vector norm, Tikhonov regularization
minimizes

argmin
H̆

(

‖YH̆−H‖2 + λ‖DH̆‖2
)

, (10)

where the scalarλ is the regularization parameter that has to be cho-
sen suitably andD is a diagonal regularization matrix. We useD as
proposed in [11] with its diagonal elementsdl,l being

dl,l = 1 + n(n+ 1) , (11)

wheren denotes the degree of the corresponding basis functionY m
n .

ChoosingD according to (11) penalizes high-degree harmonics
more than low-degree ones in order to increase smoothness ofthe
result. The explicit solution to (10) is [10]

H̆ = (YT
Y + λD)−1

Y
T
H . (12)

4. NON-REGULARIZED LEAST-SQUARES FIT USING
LOWER ORDER EXTRAPOLATION

In order to avoid an increase of the modeling error in the known
region due to regularization and avoid a blow up in the unknown
region, we propose a three-stage approach:

1. Perform a non-regularized low-order least-squares fit accord-
ing to (8). We have empirically determinedN = 3 as a useful
choice. The problem is well-behaved.

2. Use the obtained coefficients to obtain HRTF estimates at a
sufficient number of support points in the unknown region.
We chose to virtually complement the measurement grid.

3. Perform a non-regularized least-squares fit according to(8)
over the entire sphere using the measured data in the known
region and the lower-order estimation in the unknown region.
The problem is then well-behaved.

The properties of the presented approach are discussed in Sec. 5
based on sample measurement data.

5. RESULTS

The measurement grid considered in the following is depicted in
Fig. 1(a). The physical setup consists of a semicircular arcof radius
1 m equipped with 16 loudspeakers placed equiangularly at intervals
of 11.25◦. The pivot points of the arc as well as the interaural axis of
the subject lie on they-axis with the midpoint between the ears in the
coordinate center. The arc can rotate to 25 different anglesin steps of
11.25◦ between 135◦ colatitude in the frontal hemisphere and 135◦

colatitude in the rear hemisphere, which results in25 · 16 = 400
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(a) Incomplete measurement grid
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(b) The great circle of 360 evenly spaced sampling
points that are illustrated in Fig. 2.

Fig. 1. Geometric setup; The HATS was placed in the coordinate
center and ’looked’ along the positivex-axis.

measurement points for each ear of the B&K Head and Torso Sim-
ulator (HATS). This measurement grid is referred to asincomplete.
The ground truth of the data in the unknown region was obtained
by mounting the HATS upside down in the rig. The resulting mea-
surement grid covering the entire sphere is referred to ascomplete
in the remainder. Note that human HRTFs can deviate significantly
from the HATS’s HRTFs especially for positions underneath since
the HATS does not have a lower body. The obtained data is never-
theless assumed to be qualitatively similar to human HRTFs.

The measurement grid allows for a maximumN of 15. Rep-
resenting the physical information contained in the HRTFs requires
dozens of orders and hence thousands of measurement points [7].
The model will therefore suffer from spatial aliasing [6]. It not clear,
however, which orderN is required to provide a representation that
is perceptually indistinguishable from the true data. Informal listen-
ing by the authors of this paper suggests that a 15th-order recon-
struction can indeed not be distinguished from the originalHRTF.

Note that HRTF data is three-dimensional (frequency, azimuth,
colatitude), which makes it inconvenient to illustrate. Wewill there-
fore not illustrate the data over the entire sphere but alonga given
great circle, which is depicted in Fig. 1(b). The propertiesof the

data along this great circle are representative for the entire sphere.
Fig. 2(a) depicts HRTFs reconstructed via (3) from spherical

harmonics coefficients that were obtained from a non-regularized
least-squares fit according to (5) on data measured on the complete
grid at32 · 16 = 512 locations. This data is considered the ground
truth in the remainder.

Evaluating (5) based on the known data from the setup shown
in Fig. 1(a) for the maximum applicable orderN results in a badly-
conditioned problem. The result is typically still useful in the
densely-sampled region but blows up in the unsampled regionwhen
the slightest amount of noise is present [8]. This is illustrated in
Fig. 2(b). Regularization can avoid the blow up (Fig. 2(c)) at the
expense of increasing the error at the known data points. Here, we
apply Tikhonov regularization according to (10) withλ =1e-2.

For reference, Fig. 4 illustrates the match between pure mea-
sured data for a sample direction (blue line) and the resultsof the
regularized fit (green line). The deviation is in the order of±0.5 dB
below 4000 Hz and slightly larger at higher frequencies.

We use

Ψ = 10 log
10

‖Ĥ−H‖22
‖H‖2

2

(13)

as a global error measure, wherêH refers to the modeled data,H
refers to the ground truth. Tab. 1 listsΨ for the different considered
methods for the known and unknown region separately.

In order to illustrate the deviation of the data reconstructed from
the incomplete measurements to the ground truth, Fig. 3 depicts the
ratio ∆(βl, αl) of the modeled datâH(βl, αl) under consideration
and the ground truthH(βl, αl) on a logarithmic scale as

∆(βl, αl) = 20 log
10

Ĥ(βl, αl)

H(βl, αl)
. (14)

(βl, αl) denotes the direction of interest. Fig. 3(a) illustrates
∆(βl, αl) for the reconstruction via the regularized fit.

Fig. 2(d) depicts the result of the proposed non-regularized least-
squares approach based on the data from Fig. 2(a). The match be-
tween the measured and modeled data is depicted in Fig. 4 for a
sample direction, the deviation∆(βl, αl) from the ground truth is
shown in Fig. 3(b), and the errorΨ is listed in Tab. 1.

The apparent benefits over the regularized approach as described
in Sec. 3 are:

• The amount of detail of the estimated data in the unknown
region is only moderate. Comparing all results for the in-
complete data to the ground truth in Fig. 2(a) suggests that
a reliable estimate of the unknown data is not possible. The
error will usually be significant. Recall Tab. 1 for numbers.A
lower-order estimation from the non-regularized coefficients
fit assures that no prominent spikes and dips occur in the un-
known region, a circumstance that is favorable in perceptual
terms. Note that peaks are especially prominent with respect
to perception [12]. It can therefore be assured that no harm-
ful data is created. This is not assured by the regularized fit,
which does not restrict the order as consequently so that the
amount of detail of the data estimates is higher.

• The negative impact on the known data is marginal. Theo-
retically, the sharp transition from higher-order data to lower-
order data at the boundary of the known region requires a
very high-order if not infinite-order expansion. An additional
small amount of spatial aliasing is consequently added. The
non-regularized least-squares fit smoothes this transition by
limiting the resulting expansion to orderN by the cost of an
error increase in the known region by approx. 2 dB (Tab. 1).



(a) Non-regularized fit on complete data (b) Non-regularized fit on incomplete data

(c) Regularized fit on incomplete data (d) Proposed approach applied to incomplete data

Fig. 2. HRTF magnitudes in dB along the great circle shown in Fig. 1(b) reconstructed from different types of least-squares fit.Position
index 0 represents the corresponding direction in the frontal horizontal plane and positive indices represent the upper hemisphere, negative
indices represent the lower hemisphere. The left half of theplot thus represents the frontal hemisphere; the right halfrepresents the rear one.
The area between the black vertical lines represents unknown data.

simple non-reg. fit regularized fit proposed approach

known region -20.67 dB -11.41 dB -18.60 dB

unknown region 132.08 dB 8.93 dB -2.56 dB

Table 1. ErrorΨ as defined in (13)

6. FURTHER OBSERVATIONS

As mentioned in Sec. 3, the complete measurement grid theoretically
allows for retrieving data forN = 15. The least-squares fit will
deliver a solution also forN > 15. The non-regularized fit – be it on
the incomplete data or on the full-sphere data – will make sure that
the data at the measurement locations is well represented. However,
the reconstructed data tends to blow up between the measurement
points and the model is therefore not useful in general. A regularized
fit avoids the blow-up but represents the measurement data less well.
Additionally, the estimation of the unknown data gets more and more

spiky the higherN . As mentioned above, this circumstance may be
considered unfavorable from a perceptual point of view.

The tendency of blowing up between support points is also ap-
parent in Fig. 2(b) where the modeled data shows high amplitudes
even outside the unknown region. The measurement points them-
selves are properly modeled.

7. CONCLUSIONS

We have presented a three-stage approach for non-regularized least-
squares fitting of spherical harmonics coefficients on incomplete



(a) Regularized fit on incomplete data

(b) Proposed approach applied to incomplete data

Fig. 3. Deviation∆(βl, αl) of the data reconstructed from the in-
complete measurements to the ground truth as defined in (14).
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Fig. 4. Comparison of measured and modeled HRTF magnitudes on
a logarithmic scale for a representative sample direction.

HRTF magnitude data. The three stages are: 1) Perform a lower-
order least-squares fit, 2) calculate a sufficient number of support
points in the unknown region from the lower-order data, and 3)
perform a higher-order least-squares fit on the full-spheredata set.

Unlike with previously published methods, the negative impact of
the presented approach on the modeled data in the known region
is minimal while obtaining a well-behaved model for the unknown
region.

This investigation suggests that it is not possible to reconstruct
the unknown data from the known one. However, the data that the
presented approach estimates for the unknown region is at least not
harmful. This is a consequence of the fact that the created data is
of low order and its amount of detail is limited so that no promi-
nent peaks or dips arise. There are indications that such smoothly
varying data is perceptually preferable. Previous approaches do not
guarantee such smoothness.
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