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Abstract. We present a method for automatic segmentation of high-
grade gliomas and their subregions from multi-channel MR images. Be-
sides segmenting the gross tumor, we also differentiate between active
cells, necrotic core, and edema. Our discriminative approach is based
on decision forests using context-aware spatial features, and integrates
a generative model of tissue appearance, by using the probabilities ob-
tained by tissue-specific Gaussian mixture models as additional input
for the forest. Our method classifies the individual tissue types simulta-
neously, which has the potential to simplify the classification task. The
approach is computationally efficient and of low model complexity. The
validation is performed on a labeled database of 40 multi-channel MR
images, including DTI. We assess the effects of using DTI, and vary-
ing the amount of training data. Our segmentation results are highly
accurate, and compare favorably to the state of the art.

1 Introduction

In this paper, we present our work on tissue-specific segmentation of high-grade
gliomas in multi-channel MR images, with focus on grade IV glioblastoma tu-
mors. Such high-grade gliomas (HGG) grow rapidly, infiltrate the brain in an
irregular way, and often create extensive vasculature networks. HGGs contain a
necrotic core (NC), surrounded by a varyingly thick layer of active cells (AC).
Together, necrotic core and active cells form the gross tumor (GT). Usually, the
tumor itself is surrounded by a varying amount of edema (E). In consequence,
HGGs have extremely heterogeneous shape, appearance and location (cf. Figs.
1,2), which makes their automatic analysis challenging.

Our goal is to segment high-grade gliomas as well as the individual tissue com-
ponents automatically and reliably. This would 1) speed-up accurate delineation
of the tissue components, which is crucial for radiotherapy and surgery planning
and is currently performed manually in a labor intensive fashion, and 2) allow di-
rect volume measurements. Volume measurements are critical for the evaluation
of treatment [17], however seldom performed since manual tumor segmentation
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is often impractical in a routine clinical setting. Instead more straightforward
but less accurate measures are used, such as a pair of perpendicular tumor diam-
eters [17]. Distinguishing between volumes of individual tissue types, especially
active cells and necrotic core is an important step for assessment of treatment
response. For example, an effective drug might not change the gross tumor vol-
ume, while transforming active into necrotic cells. To detect this change, the
volumes of both these tissues must be monitored.

This paper proposes an efficient method for automatic segmentation of glio-
blastoma in multi-channel MR images. While most of the previous research fo-
cuses on segmentation of gross tumor, or tumor and edema, we perform a tissue-
specific segmentation of three relevant tissues types: active cells (AC), necrotic
core (NC), and edema (E). Our method is based on decision forests (DF) [3],
a discriminative model which we combine with a generative model of tissue ap-
pearance. We achieve this by using the probability estimates based on Gaussian
mixture models (GMM) as additional input for the forest. An important ad-
vantage of DFs is that they are inherently multi-label classifiers, which allows
us to classify the different tissues simultaneously. Such simultaneous separation
of classes has the potential to simplify the modeling of the distributions of the
individual classes. Through the use of context-sensitive features in the forest,
our approach yields a natural smoothness of the segmentation results without
explicit regularization. Our method has a low model complexity and reduces the
necessity for a large number of pre- and post-processing steps.

The accuracy of our method is evaluated quantitatively on a database of 40
high-grade glioma patients — to our knowledge, the largest annotated database
of this kind so far — and compares favorably to the results in the literature.

1.1 Related Work

In recent years several approaches for segmentation of brain tumors have been
proposed. The settings differ from one another in many respects, such as the type
of tumor being handled (e.g. low-grade [6], high-grade [4,13], pediatric tumors
[16]), the type of anomalous tissues being detected (e.g. GT [7,10,16]; GT and
E [4,6,12,15]; AC, NC, E [2,15]), input data, and the evaluation procedure.

A popular group of methods is based on the registration of patient images to
a probabilistic brain atlas [6,9, 10, 12]. The main idea is that — given an accurate
atlas and registration — the tumor can be detected as deviation of patient data
from the atlas. Since the presence of the tumor makes the registration challeng-
ing, some approaches use manual interaction [9], while others integrate tumor
growth models [6].

A large group of discriminative methods applies learning techniques to the
problem [2,4,7,13,15,16]. Our method belongs to this group. Mostly, a learning
method is combined with a regularization step, e.g. by modeling the boundary
[8,11], or by applying a variant of a random field spatial prior (MRF/CRF) [4,
7,16]. Works which classify multiple labels [2, 15] often use SVMs, which are in-
herently binary classifiers. In order to classify different tissues, they are applied
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Fig.1: Example of one of 40 patients in our high-grade glioma database, with
tissues labeled as active cells (red), necrotic core (green), and edema (yellow).

hierarchically [2], or in the one-versus-all manner [15]. For these approaches, sev-
eral classes have to be grouped together, a step which can make the distribution
inside the aggregate group more complex than the distribution of each individ-
ual class. For example, the intensity distribution of a tumor consisting of AC
and NC tissues, which have very different representations in the multi-channel
data, is likely to be more complex than the distributions of the single classes.
In our technique, we circumvent this potential problem by classifying all tissues
simultaneously, which allows us to only handle distributions of individual classes.

Finally, discriminative methods are sometimes seen as requiring heavy data
processing and mandatory spatial regularization [10]. In our discriminative ap-
proach, despite using only minimal amounts of pre-processing, we achieve high
accuracy results without post-hoc regularization.

2 The Labeled High-grade Glioma Database

We acquired a set of multi-channel 3D MR data for 40 patients suffering from
high-grade gliomas, with 38 cases of grade IV tumors (glioblastomas) and 2
grade IIT tumors (anaplastic oligodendrogliomas). The data is acquired prior to
treatment. For each patient we have the following 6 channels: T1 post gadolinium
(T1-gad), T1, T2 turbo spin echo (T2-tse), and FLAIR, and 2 channels from
diffusion tensor imaging (DTI-p and DTI-q). Fig. 1 gives an example for one
patient. All acquisitions were performed on a 3T Siemens TrioTim. We will refer
to the multi-channel data as Iyir. For all 40 patients, a manual segmentation of
the three classes of AC, NC, and E is obtained in 3D (see Figs. 1,2).

We try to keep the amount of data pre-processing at a minimum. We perform
skull stripping of MR channels [14], and for each patient we perform an affine
intra-patient registration of all channels to the T1-gad image. No inter-patient
registration is required. We also avoid a full bias-field correction, and only align
the mean intensities of the images within each channel by a global multiplicative
factor. All these steps are fully automatic.

3 Method: Decision Forests with Initial Probabilities

In our approach we use decision forests (DF)[3,5] as a discriminative multi-
class classification method, and combine them with a generative model of tissue
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appearance. This is achieved by using initial tissue probability estimates based
on trained GMMs as additional input channels for the forest, along with the
MR data Iyr. We classify four classes AC, NC, and E, and background (B),
and gross tumor remains defined as GT=ACUNC.

As the first step of our approach, we estimate the initial class probabilities
for a given patient as posterior probabilities based on the likelihoods obtained
by training a set of GMMSs on the training data. For each class ¢, we train a
single GMM, which captures the likelihood p(Iygr|c) of the multi-dimensional
intensity for this class. For a given patient data set Iyig, the GMM-based pos-
terior probability p$™™ for the class ¢ is estimated for each point z € R? by
™ (clr) = p(Iur(z)|c) pe / 3., P(Imr(2)|¢j) pe,, With p. denoting the prior
probability for the class ¢, based on its relative frequency. We can now use the
probabilities pS™™ (z)=p**™(c|z) directly as input for the decision forests, in ad-
dition to the multi-channel MR data. So now, our data for one patient is a set
of n. channels I=(T1-gad, T1, T2, FLAIR, DTI-q, DTI-p, pS¢&", pR&, o™, pp™).

For simplicity, we denote single channels by I;, and the data for a patient k
by I%). Please note that we can use the GMM-based probabilities for maximum
a posteriori classification by ¢ = arg max. p®*(c|z). We will use this for a base
line comparison in Sec. 4.

3.1 Decision Forests

We employ decision forests (DF) to determine a class ceC for a given spatial
input point €2, based on the representation of x by a feature vector f(x,T).
DF's are ensembles of (binary) decision trees, indexed by t€[1, n]. As a supervised
method, DF's operate in two stages: training and testing.

During training, each tree ¢ learns a weak class predictor p;(c|f(z,I)) for a
ng-dimensional feature representation f(xz, I)€R™ of a spatial point x from the
data set I. The input training data set is {(f(z, I®)), c®)(z)) : 22}, that is,
the feature representations of all spatial points z€2®*), in all training patient
data sets k, and the corresponding manual labels c¢(*)(z). We refer to all spatial
points in all training data sets by X=J, %) We will use z€X to identify single
training examples in most part, thus writing e.g. p;(c|x) for pi(c|f(z, I)).

In a decision tree, each node i contains a set of training examples X;, and a
class predictor pi(c|z), which is the probability corresponding to the fraction of
points with class ¢ in X;. Starting with X at the root, the training is performed by
successively splitting the training examples at every node based on their feature
representation, and assigning the partitions X1, and Xy to the left and right
child node. At each node, a number of splits along randomly chosen dimensions
of the feature space is considered, and the one maximizing the Information Gain
is applied. Tree growing is stopped at a certain tree depth d.

At testing, a point x to be classified is pushed through each tree t, by applying
the learned split functions. Upon arriving at a leaf node [, the leaf probability is
used as the tree probability, i.e. p(c|z)=pl(c|z). The overall probability is com-
puted as the average of tree probabilities, i.e. p(c|z)=2 31" | pi(c|z). The actual
class estimate ¢ is chosen as the most probable class, i.e. ¢ = arg max,. p(c|z).
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Fig. 2: Examples of results on 8 patients. Obtained by a forest with GMM, MR,
and DTT input, with training on 30 patients. The high accuracy of our results is
quantitatively confirmed in Figs. 3,4 (AC=red, NC=green, E=yellow).

3.2 Context-aware Feature Types

We employ three spatial and context-aware features types, which are intensity-
based and parametrized. Two of these feature types are generic [5], while the
third one is designed with the intuition of detecting structure changes. Every
instantiated feature with its unique parameters corresponds to one dimension of
the feature space used by decision trees.

We use the following notation: Again, z€(2 is a spatial point, to be assigned
a class, and [; is an input channel. N?(z) denotes an z-centered and axis aligned
3D cuboid in I; with edge lengths s=(sg, sy, s.), and vER? is an offset vector.
Feature Type 1: Intensity difference between x in a channel I, and an offset
point « 4+ v in a channel [;, (note that I; =I;, is allowed)

FH @ D)y gy = 1y () = Iy (x4 0) (1)

Feature Type 2: Difference between intensity means of a cuboid around x in
I;,, and around an offset point = 4 v in I},

P (@, D)y sy s = WG (@) = p(NG2 (2 +0) - (2)

Feature Type 3: Intensity range along a 3D line between z and z+v in one
channel. This type is designed with the intuition that structure changes can yield
a large intensity change, e.g. NC being dark and AC bright in T1-gad.

D), = IH)E\ELX(I]' (z 4+ )) — mAin(Ij(:L' +v)) with Ae€0,1]. (3)

4 Evaluation

We perform an extensive series of cross-validation experiments to evaluate our
method. For this, the 40 patients are randomly split into non-overlapping train-
ing and testing data sets. To investigate the influence of the size of the training
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Fig.3: Average mean and standard deviations of DICE scores, for experiments
on 10 random folds, with the training/testing data set sizes of 10/30, 20/20, and
30/10. From left to right, the approaches yield higher mean scores, with lower
std. devs. Our approach (rightmost) shows increased robustness to amount of
training data, resulting in more horizontal lines, indicating better generalization.

set and generalization properties of our method, we perform experiments with
following training/testing sizes: 10/30, 20/20, 30/10. For each of the three ratios,
we perform 10 tests, by randomly generating 10 different training/testing splits.

To demonstrate the influence of the single components of the method, we
also perform tests on Forests without GMMs, and compare to the results of
GMM only. Finally, we investigate the influence of using DTI, by performing all
experiments also with MR, input only. Overall, this results in 30 random training
sets, and 600 tests for each of the 6 approaches. The evaluation is performed with
all images sampled to isotropic spatial resolution of 2mm, and forests with n=40
trees of depth d=20. With these settings, the training of one tree takes between
10-25 min, and testing 2-3 min, depending on the size of training set and the
number of channels. The algorithm and feature design were done on a single
independent 20/20-fold, which was not used for evaluation.

Fig. 2 shows a visual example of the results, while the quantitative evalua-
tion and more details are given in Figs. 3,4. We observe an improvement of the
segmentation accuracy by the proposed method (Forest(GMM,MR,DTT)) com-
pared to the other tested configurations. The amount of training data influences
NC and E more than AC and GT. The effect of using DTI seems to be most
visible for smaller training data sets.

Comparison to Quantitative Results of Other Approaches is difficult for a
number of reasons, most prominently the different input data. To provide some
indicative context, we cite results of a recent work from [2]. There, the mean and
standard deviation for a leave-one-out cross-validation on 10 glioma patients,
based on multichannel MR are as follows: GT: 77+£9, AC: 64+13, NC: 45423,
E: 60£16. Our results compare favorably. For our 30/10-tests we get: GT: 90409,
AC: 8549, NC: 75+16, E: 80+18, and for the more challenging 10/30-tests (less
training data), we get GT: 8949, AC: 84+9, NC: 70419, E: 72+23.
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Fig. 4: Evaluation of 10 random fold experiments with varying amount of train-
ing data. Distribution of DICE scores is indicated along y-axis, by plotting the
histogram of the scores, grouped per test and tissue, with medians (+) and
means (X ). Our forest method clearly reduces the number of lower score outliers
compared to GMM. The outliers occur mostly for NC and E, and visual inspec-
tion confirms that the misclassification of NC and E is the most significant error
of our method. Increasing the amount of training data reduces the number of
outliers. DTT has most effect for less training data, and the GMM estimates.

Sensitivity to Variation of Parameters is tested by varying ne€[15,40] and
d€[12,20], for the ten 30/10-tests. We observe robustness to the selection of
these values, especially n. Details are given in the supplementary material [1].

5 Summary and Conclusion

We propose a method for automatic and tissue-specific segmentation of high-
grade gliomas. Our discriminative approach is based on decision forests using
context-aware features, integrates a generative model of tissue appearance, and
classifies different tissues simultaneously. Our method requires comparably little
pre-processing, and no explicit regularization, thus resulting in a low model com-
plexity. The approach is computationally efficient, reasonably robust to param-
eter settings, and achieves highly accurate segmentation results. The automatic
results are suitable for volume measurements, and can be used as high-quality
initial estimates for interactive treatment planning.
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