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Abstract. We describe our submission to the Brain Tumor Segmenta-
tion Challenge (BraTS) at MICCAI 2012, which is based on our method
for tissue-specific segmentation of high-grade brain tumors [3].

The main idea is to cast the segmentation as a classification task, and
use the discriminative power of context information. We realize this idea
by equipping a classification forest (CF) with spatially non-local features
to represent the data, and by providing the CF with initial probability
estimates for the single tissue classes as additional input (along-side the
MRI channels). The initial probabilities are patient-specific, and com-
puted at test time based on a learned model of intensity. Through the
combination of the initial probabilities and the non-local features, our
approach is able to capture the context information for each data point.
Our method is fully automatic, with segmentation run times in the
range of 1-2 minutes per patient. We evaluate the submission by cross-
validation on the real and synthetic, high- and low-grade tumor BraTS
data sets.

1 Introduction

This BraT§S submission is based on our work presented in [3]. We approach the
segmentation of the tumor tissues as a classification problem, where each point
in the brain is assigned a certain tissue class. The basic building block of our
approach is a standard classification forest (CF), which is a discriminative multi-
class classification method. Classification forests allow us to describe brain points
to be classified by very high-dimensional features, which are able to capture
information about the spatial context. These features are based on the multi-
channel intensities and are spatially non-local. Furthermore, we augment the
input data to the classification forest with initial tissue probabilities, which are
estimated as posterior probabilities resulting from a generative intensity-based
model, parametrized by Guassian Mixture models (GMM). Together with the
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Fig. 1: Schematic Method Overview: Based on the input data (A), we first
roughly estimate the initial probabilities for the single tissues (B), based on
the local intensity information alone. In a second step, we combine the initial
probabilities (B) with the input data from (A), resulting in a higher-dimensional
multi-channel input for the classification forest. The forest computes the segmen-
tation (C) by a simultaneous multi-label classification, based on non-local and
context-sensitive features.

context-sensitive features, the initial probabilities as additional input increase

the amount of context information and thus improve the classification results.
In this paper, we focus on describing our BraT§S submission. For more details

on motivation for our approach and relation to previous work, please see [3].

2 Method: Context-sensitive Classification Forests

An overview of our approach is given in Figure 1. We use a standard classi-
fication forest [1], based on spatially non-local features, and combine it with
initial probability estimates for the individual tissue classes. The initial tissue
probabilities are based on local intensity information alone. They are estimated
with a parametric GMM-based model, as described in Section 2.1. The initial
probabilities are then used as additional input channels for the forest, together
with the MR image data I.

In Section 2.2 we give a brief description of classification forests. The types
of the context-sensitive features are described in Section 2.3.

We classify three classes C = {B, T,E} for background (B), tumor (T), and
edema (E). The MR input data is denoted by I = (It1¢, IT1, IT2, IFLAIR)-

2.1 Estimating Initial Tissue Probabilities

As the first step of our approach, we estimate the initial class probabilities for a
given patient based on the intensity representation in the MRI input data.

The initial probabilities are computed as posterior probabilities based on the
likelihoods obtained by training a set of GMMs on the training data. For each
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class ¢ € C, we train a single GMM, which captures the likelihood pyk(i|c) of the
multi-dimensional intensity i € R* for the class c. With the trained likelihood
Pk, for a given test patient data set I, the GMM-based posterior probability
pS™(c|p) for the class c is estimated for each point p € R? by

GMM _ plik(I(p) |C) p(C)
pelp) = >, Pik(I(P)]e;) ple) @

with p(c) denoting the prior probability for the class ¢, computed as a normalized
empirical histogram. We can now use the posterior probabilities directly as input
for the classification forests, in addition to the multi-channel MR data I. So
now, with pS*™(p):=p“*™(c|p), our data for one patient consists of the following

channels

GMM GMM GMM GMM
C = (Iri-gad, IT1, IT2, IFLAIR, PAC s PNC S PE DB ) - (2)

For simplicity, we will denote single channels by C}.

2.2 Classification Forests

We employ a classification forest (CF) to determine a class c€C for a given spa-
tial input point p € {2 from a spatial domain (2 of the patient. Our classification
forest operates on the representation of a spatial point p by a corresponding
feature vector z(p,C), which is based on spatially non-local information from
the channels C'. CFs are ensembles of (binary) classification trees, indexed and
referred to by ¢t € [1,T]. As a supervised method, CFs operate in two stages:
training and testing.

During training, each tree ¢ learns a weak class predictor p;(c|z(p,C)). The
input training data set is {(z(p, C®),c*)(p)) : p € N}, that is, the feature
representations of all spatial points p € 2% in all training patient data sets k,
and the corresponding manual labels ¢(*) (p).

To simplify notation, we will refer to a data point at p by its feature repre-
sentation x. The set of all data points shall be X.

In a classification tree, each node 7 contains a set of training examples X;,
and a class predictor pi(c|z), which is the probability corresponding to the frac-
tion of points with class ¢ in X; (normalized empirical histogram). Starting with
the complete training data set X at the root, the training is performed by suc-
cessively splitting the training examples at every node based on their feature
representation, and assigning the partitions X, and Xy to the left and right
child node. At each node, a number of splits along randomly chosen dimensions
of the feature space is considered, and the one maximizing the Information Gain
is applied (i.e., an axis-aligned hyperplane is used in the split function). Tree
growing is stopped at a certain tree depth D.

At testing, a data point x to be classified is pushed through each tree ¢, by
applying the learned split functions. Upon arriving at a leaf node [, the leaf prob-
ability is used as the tree probability, i.e. p;(c|z) =p.(c|z). The overall probability
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is computed as the average of tree probabilities, i.e. p(c|z) = % Zthl pt(clx). The
actual class estimate ¢ is chosen as the class with the highest probability, i.e.
¢ = argmax,. p(c|x).

For more details on classification forests, see for example [1].

2.3 Context-sensitive Feature Types

We employ three features types, which are intensity-based and parametrized.
Features of these types describe a point to be labeled based on its non-local
neighborhood, such that they are context-sensitive. The first two of these fea-
ture types are quite generic, while the third one is designed with the intuition
of detecting structure changes. We denote the parametrized feature types by

t e . . . . .
T ams- Fach combination of type and parameter settings generates one dimen-
type;

sion in the feature space, that is x; = Zparais,. Theoretically, the number of
possible combinations of type and parameter settings is infinite, and even with
exhaustive discrete sampling it remains substantial. In practice, a certain pre-
defined number d’ of combinations of feature types and parameter settings is
randomly drawn for training. In our experiments, we use d’ = 2000.

We use the following notation: Again, p is a spatial point, to be assigned a
class, and Cj is an input channel. R} (p) denotes an p-centered and axis aligned
3D cuboid region in C; with edge lengths 1= (I,,1,,1,), and u € R? is an offset
vector.

— Feature Type 1: measures the intensity difference between p in a channel
C}, and an offset point p + u in a channel C,

I;}Jz,u (p7 C) = le (p) - Cj2 (p + 11) . (3)

— Feature Type 2: measures the difference between intensity means of a
cuboid around p in Cj,, and around an offset point p 4+ u in C},

28 (P, C) = (R} (p)) — p(RE (P +u)) . (4)

— Feature Type 3: captures the intensity range along a 3D line between
p and p+u in one channel. This type is designed with the intuition that
structure changes can yield a large intensity change, e.g. NC being dark and
AC bright in T1-gad.

24(p, €) = max(Cy(p + M) —min(C,(p+ M) with A€[0.1] . (5)

In the experiments, the types and parameters are drawn uniformly. The
offsets u; originate from the range [0,20]mm, and the cuboid lengths I; from
[0, 40]mm.



Context-sensitive Classification Forests for Segmentation of Brain Tumors 5

High-grade (real) Low-grade (real) High-grade (synth) Low-grade (synth)

Edema Tumor Edema Tumor Edema Tumor Edema Tumor

mean 0.70 0.71 0.44 0.62 0.65 0.90 0.55 0.71
std. dev. 0.09 0.24 0.18 0.27 0.27 0.05 0.23 0.20
median 0.70 0.78 0.44 0.74 0.76 0.92 0.65 0.78

Table 1: Evaluation summary. The Dice scores are computed by the online eval-
uation tool provided by the organizers of the BraTS challenge.

3 Evaluation

We evaluate our approach on the real and synthetic data from the BraT§S chal-
lenge. Both real and synthetic examples contain separate high-grade (HG) and
low-grade (LG) data sets. This results in 4 data sets (Real-HG, Real-LG, Synth-
HG, Synth-LG). For each of these data sets, we perform the evaluation inde-
pendently, i.e., we use only the data from one data set for the training and the
testing for this data set.

In terms of sizes, Real-HG contains 20 patients, Synth-LLG has 10 patients,
and the two synthetic data sets contain 25 patients each. For the real data sets,
we test our approach on each patient by leave-one-out cross-validation, meaning
that for each patient, the training is performed on all other images from the
data set, excluding the tested image itself. For the synthetic images, we perform
a leave-5-out cross-validation.

Pre-processing. We apply bias-field normalization by the ITK N3 implementa-
tion from [2]. Then, we align the mean intensities of the images within each
channel by a global multiplicative factor. For speed reasons, we run the eval-
uation on a down-sampled version of the input images, with isotropic spatial
resolution of 2mm. The computed segmentations are up-sampled back to 1mm
for the evaluation.

Settings. In all tests, we employ forests with T'=40 trees of depth D =20.

Runtime. Our segmentation method is fully automatic, with segmentation run
times in the range of 1-2 minutes per patient. The training of one tree takes
approximately 20 minutes on a single desktop PC.

Results. We evaluated our segmentations by the BraTS online evaluation tool,
and we summarize the results for the Dice score in Table 1.

Overall, the results indicate a higher segmentation quality for the high-grade
tumors than for the low-grade cases, and a better performance on the synthetic
data than the real data set.
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Fig.2: Per patient evaluation for the four BraTS data sets (Real-HG, Real-
LG, Synth-HG, Synth-LG). We show the results for edema (blue) and tumor
tissue (red) per patient, and indicate the respective median results with the
horizontal lines. We report the following measures: Dice, Specificity, Precision,
Recall(=Sensitivity), Mean Surface Distance (SD), and Maximal SD.

Further FEvaluation. Furthermore, we reproduce most of the BraTS measures
(except Kappa) by our own evaluation in Figure 2. It can be seen in Figure
2, that the Specificity is not a very discriminative measure in this application.
Therefore, we rather evaluate Precision, which is similar in nature, but does
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not take the background class into account (TN), and is thus more sensitive to
€ITOrs.

In order to obtain a better understanding of the data and the performance
of our method we perform three further measurements.

1. In Figure 3, we measure the volumes of the brain, and the edema and tumor
tissues for the individual patients. This is done in order to be able to evaluate
how target volumes influence the segmentation quality.

2. In Figure 4, we report the results for the basic types of classification out-
comes, i.e. true positives (TP), false positives (FP), and false negatives (FN).
It is interesting to note the correlation of the TP values with the tissue vol-
umes (cf. Fig. 3). Also, it seems that for edema, the error of our method
consists of more FP estimates (wrongly labeled as edema) than FN estimates
(wrongly not labeled as edema), i.e. it performs an over-segmentation.

3. In Figure 5, we report additional measures, which might have an application-
specific relevance. We compute the overall Error, i.e. the volume of all mis-
classified points FN 4+ FP, and the corresponding relative version, which
relates the error to the target volume T, i.e. (FN + FP)/T. Also, we com-
pute the absolute and the relative Volume Error |T — (TP + FP)|, and
|T — (TP 4+ FP)|/T, which indicate the potential performance for volumetric
measurements. The volume error is less sensitive than the error measure,
since it does not require an overlap of segmentations but only that the esti-
mated volume is correct (volume error can be expressed as |[FN — FP|).
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Fig. 3: Volume statistics of the BraTS data sets. We compute the brain volumes
(top row), and the volumes of the edema (blue) and tumor (red) tissues per

patient.
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Fig.4: We report the values of true positives (TP), false positives (FP), and
false negatives (FN), for edema (blue), and tumor (red) tissues. To make the
values comparable, we report them as percentage of the patient brain volume
(V). Again, horizontal lines represent median values. It is interesting to note the
correlation of the TP values with the tissue volumes (cf. Fig. 3). Also, it seems
that for edema, the error of our method consists of more FP estimates (wrongly
labeled as edema) than FN estimates (wrongly not labeled as edema), i.e. it
performs an over-segmentation.
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Fig.5: We further evaluate additional measures which might have application-
specific relevance. Again, we have blue=edema, red=tumor, and horizontal
line=median. In the two top rows, we compute the Error, i.e. the volume of all
misclassified points FN + FP, and the relative version, which relates the error to
the target volume T, i.e. (FN+FP)/T. In the bottom two rows, we compute the
absolute and the relative Volume Error |T — (TP +FP)|, and |T— (TP+FP)|/T.



