
Modular and Verified Automatic Program Repair

Francesco Logozzo Thomas Ball
Microsoft Research, Redmond
{ logozzo, tball} @microsoft.com

Abstract
We study the problem of suggesting code repairs at design
time, based on the warnings issued by modular program ver-
ifiers. We introduce the concept of a verified repair, a change
to a program’s source that removes bad execution traces
while increasing the number of good traces, where the bad/-
good traces form a partition of all the traces of a program.
Repairs are property-specific. We demonstrate our frame-
work in the context of warnings produced by the modular
cccheck (a.k.a. Clousot) abstract interpreter, and generate
repairs for missing contracts, incorrect locals and objects ini-
tialization, wrong conditionals, buffer overruns, arithmetic
overflow and incorrect floating point comparisons. We re-
port our experience with automatically generating repairs for
the .NET framework libraries, generating verified repairs for
over 80% of the warnings generated by cccheck.

Categories and Subject Descriptors D. Software [D.1
Programming Techniques]: D.1.0 General, D.2.1 Require-
ments/Specifications, D.2.2 Design Tools and Technique,
D.2.4 Software/Program Verification D.2.5 Testing and De-
bugging D.2.6 Programming Environments

General Terms Design, Documentation, Experimentation,
Human Factors, Languages, Reliability, Verification.

Keywords Abstract interpretation, Design by contract, Pro-
gram repair, Program transformation, Refactoring, Static
analysis.

1. Introduction
Programs have bugs. Sound static analyzers, such as auto-
matic program verifiers, can catch bugs but usually leave the
problem of repairing the program to the developer. During
active development, reports of possible bugs may be of lit-
tle interest to programmers. On the other hand, if a program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

verifier can suggest code repairs, it can potentially help the
programmer write correct code.

We focus on the problem of suggesting code repairs start-
ing from the warning issued by a modular program verifier.
A modular verifier uses contracts (i.e., preconditions, post-
conditions, and object invariants) to decompose the verifica-
tion problem from the level of a whole program to the level
of individual methods. Developer-supplied contracts are es-
sential not only for scalability but also for documenting in-
tent as well as localizing the cause of failures [25].

The first step in addressing the problem is to focus atten-
tion on the bugs that matter to developers. In our case, we
consider contract violations and runtime errors. A tool like
cccheck [12], the CodeContracts static checker, can spot
those errors at design time. Ideally, cccheck should not only
report the warnings, but also provide a (set of) possible fixes,
that are then presented to the programmer to choose among
or reject.

The second step in addressing the problem is to define
what a code repair is. Previous work on automatic program
repair by Perkins et al. [27] defines a repair to be a code
transformation such that the repaired program passes a given
set of test cases (including the one exposing the bug). This
definition is not well-suited to the context of verification
and active program development as it requires running the
repaired program, which may not always be possible, and it
is only as good as the given regression test suite.

Because of these limitations and our desire to statically
reason about program defects and repairs, we propose a
different definition for repair. A verified repair reduces the
number of bad executions in the program, while preserving,
or increasing, the number of good runs. A bad run is one
that violates a given specification (assertion, precondition,
run-time guard, etc.). A good run is one that meets all spec-
ifications of the original program. These two sets of traces
form a partition of all the traces of a program.

Using abstract interpretation, we design a general frame-
work in which code repairs can be expressed. We define
several abstractions of trace semantics in order to permit a
wide variety of program repairs. One abstraction restricts
what is observable about program state to the program points
containing assertions, which is necessary since we expect
program repairs to change the control flow of programs. A

void P(int[] a)

{

for (var i = 0; i < a.Length; i++)

a[i - 1] = 110;

}

void P’(int[] a)

{

Contract.Requires(a != null);

for (var i = 1; i < a.Length; i++)

a[i - 1] = 110;

}

Figure 1. Cccheck detects the possible null-dereference of a and a definite buffer underflow in P. It suggests the precondition
a != null and initializing i to 1. The resulting correct program is P’.

Boolean abstraction further restricts the observations to the
Boolean values of assert expressions, which permits changes
to program variables appearing in the program and the as-
sertion expression itself. Based on this semantic foundation,
one can design different algorithms for code repairs. In gen-
eral there is no unique recipe for designing verified code re-
pairs, in the same way as in abstract interpretation there is
no unique way of designing abstract domains.

We relate the problem of designing code repairs to pro-
gram verification/analysis as follows. There are three com-
ponents in program analysis: the program, the semantic
knowledge about program behavior, and the property to be
verified. In program analysis, the problem is to refine the
semantic knowledge so to derive that the properties hold for
the program (verification) or do not hold (bug finding). In
code repairs, the problem is to refine the program using the
semantic knowledge so that it satisfies the properties of in-
terest. In cccheck, or similar tools, the semantic knowledge
is given by the abstract state, belonging to some abstract do-
main, which was computed by the analysis. The next natural
step is to exploit the abstract state to derive the semantic
code fix. Therefore, code repairs are domain-dependent. We
envision code repairs to be standard part of the design of
static analyses, abstract domains and verification systems in
general.

Main contributions We define the notions of verified
repairs in terms of abstractions of trace semantics. We
present sound algorithms for suggesting program repairs
to: contracts (preconditions, postconditions, assumptions,
pure methods), initialization (wrong constants, buffer size,
object fields), guards (negation, strengthening, weakening),
buffer overflows, floating point comparisons, and overflow-
ing expressions. While we use cccheck as our verifier, the
proposed repairs can be easily adapted and implemented in
most any static analyzer.

It is worth noting that our formalization of verified repairs
is with respect to the specifications of the original program.
As we will see, some repairs are verified by construction. For
others, we need to apply the repair and check the repaired
program to ensure it does not violate other assertions, i.e.,
we want to avoid the situation where repairing an assertion
causes the failure of another assertion downstream. The fact
that all repairs are local to a method means that verifying

a repair only requires local analysis and can be applied
to incomplete programs. In general, for a given warning,
several distinct repairs are possible. Repairs can be ranked
according to some metric of interest, e.g., complexity, size
of the change, etc. We show that the local analysis is very
fast – in the order of 150ms per method – and that the
repair inference is just a tiny portion of that time. We can
infer thousands of repairs in large C# libraries and we can
propose a repair for more than 80% of the warnings issued
by the analyzer. We are confindent that our code repairs can
be used in an interactive IDE.

Plan The remainder of the paper is organized as follows.
Section 2 illustrates the kind of repairs we are able to pro-
duce automatically. Section 3 presents a trace-based seman-
tics of programs. Section 4 defines abstractions over traces
and formalizes two kinds of verified repairs. Section 5 ex-
tends those abstractions when a static analyzer is used. Sec-
tion 6 describes the cccheck verifier, the types of errors it
can find, and the specific repairs enabled by cccheck. Sec-
tion 7 discusses our experience with automatically repairing
very large C# programs, Section 8 reviews related work and
Section 9 concludes the paper.

2. Examples of Program Repairs
Repair by Contract Introduction. It is often the case that
the code of a method is correct only when executed under
certain conditions. In the example of Fig. 1, when the param-
eter a is null, there will definitely be a failure due to a null
dereference of the parameter. In this case, the Cccheck tool
suggests the precondition a != null using a Requires

contract [6].
In the example of Fig. 2, when length is negative, the ar-

ray allocation will always fail. In this case, there are two pos-
sible repairs: (i) add an explicit assumption 0 <= length;
or (ii) add the postcondition to GetALength stating it will al-
ways return a non-negative value. Cccheck suggests both to
the programmer and lets her choose which one to apply. The
first repair is useful when GetALength is a third-party or ex-
ternal code, as it makes the programmer assumption explicit
and prevents Cccheck from generating a warning. The sec-
ond repair documents the behavior of GetALength, clearly
stating the contract clients of the method can rely upon.

int[] ContractRepairs(int index)

{

var length = GetALength(); // (1)

var arr = new int[length];

arr[index] = 9876;

return arr;

}

Figure 2. Cccheck spots several possible errors in the code
(allocation of an array of negative size, buffer overruns). See
the paper text for a description the proposed repairs.

string GetString(string key)

{

var str = GetString(key, null);

if (str == null)

{

var args = new object[1];

args[1] = key; // (*)

throw new ApplicationException(args);

}

return str;

}

Figure 3. A (simplified) code snippet from
CustomMarshalers.dll. Cccheck detects the buffer
overrun at (*), and suggests the allocation of a larger buffer
at the line above or changing the index to 0.

In this example, both a buffer underflow and overflow
are possible. In these cases, Cccheck proposes the pre-
condition 0 <= index and the assumption Assume(index

< length), making explicit the relationship between the
return value of GetALength and the parameter index.

Repair of Initialization and Off-By-One Errors. Another
class of errors arises from the improper initialization of vari-
ables (especially loop induction variables) or use of con-
stants just outside a safe zone. In the for loop of Fig. 1,
Cccheck detects a buffer underflow and localizes the cause
to be in the initialization of i. Cccheck infers that: (i) the
constraint 0 < i should hold on loop entry; and (ii) any pos-
itive initial value for i removes the buffer undeflow. The ini-
tialization i = 1 is the one that enables most good runs, and
it is therefore the one suggested to the user. In the example
of Fig. 3, Cccheck detects a buffer underflow and suggests
two potential repairs: allocate a buffer of length at least 2;
use 0 to index the array (to avoid the buffer overflow, with-
out introducing an underflow).

Repairing Guards of Conditional Statements. Let us con-
sider the code snippet in Fig. 4, taken from one of the .NET
framework libraries. At program point (*): (i) c != null

should hold, otherwise the program will crash with a null-
pointer exception; (ii) cccheck determines that c is null

for all the executions reaching that point (a definite error).

void ValidateOwnerDrawRegions(

ComboBox c, Rectangle updateRegionBox)

{

if (c == null)

{

var r = new Rectangle(0, 0, c.Width); // (*)

// use r and c

}

}

Figure 4. A (simplified) snippet from a bug found in
System.Windows.Forms.dll. cccheck proposes the re-
pair c != null as a precondition or as a replacement for
the guard of the if-then statement.

IMethodCallMessage ReadArray(

object[] callA, object handlerObject)

{

if (callA == null) return null;

var num = 0;

if (NonDet())) num++;

if (callA.Length < num)

throw new SerializationException();

// here callA.Length >= num

this.args = (object[])callA[num++];

// ...

}

Figure 5. A (simplified) snippet from a bug found
mscorlib.dll. Cccheck proposes to change the guard to
callA.Length <= num

Cccheck suggests three repairs: the necessary precondition
c != null; flipping the guard from c == null to c !=

null; removing the branch altogether. Note that neither re-
pair removes any good trace present in the original program,
but does remove bad traces. Also, there is no best repair. We
do not rank repairs: we simply report them at the program
point where they should be applied.

In Fig. 5, cccheck suggests to strengthen the if-guard to
the condition callA.Length <= num, as a buffer overflow
may happen otherwise (a Serialization exception is not
considered an error).

Repairing Erroneous Floating Point Comparisons. Float-
ing point comparisons may produce unexpected results [23].
The .NET semantics enforces the runtime to use: (i) for
stack values, the most precise floating point representation
available from the hardware; (ii) for heap values, the rep-
resentation exactly matching the nominal type. In the code
of Fig. 6, the parameter d0 may be a very small, non-zero
double represented by 80 bits on x86. The test succeeds, but
the next assignment causes the truncation of the value of d0
to a 64-bit quantity, that may be zero, violating the object

class FloatingPoint

{

double d;

[ContractInvariantMethod]

void ObjectInvariant()

{

Contract.Invariant(this.d != 0.0);

}

public void Set(double d0)

{

// here d0 may have extended double precision

if (d0 != 0.0)

this.d = d0; // d0 can be truncated to 0.0

}

}

Figure 6. A (simplified) snippet from a bug found
mscorlib.dll. The store field causes the truncation of d0
which may break the invariant, despite the guard. Cccheck
proposes repairing the guard by adding the truncation to d0.

int BinarySearch(int[] array, int value)

{

Contract.Requires(array != null);

int inf = 0, sup = array.Length - 1;

while (inf <= sup)

{

var index = (inf + sup) /2 ; // (*)

var mid = array[index];

if (value == mid) return index;

if (mid < value) inf = index + 1;

else sup = index - 1;

}

return -1;

}

Figure 7. Cccheck detects and automatically proposes a re-
pair for overflow in the computation of the variable mid, us-
ing the loop invariants automatically inferred by the abstract
interpreter.

invariant. Cccheck identifies the problem and suggests re-
pairing the guard to (double)d0 != 0.0, i.e., forcing the
comparison of the 64-bit truncation of d0 to zero.

Repairing Overflowing Expressions. Verified repairs are
very helpful for dealing with unintended arithmetic over-
flows. Consider the classical binary search example of Fig. 7:
The expression at (*) may overflow, setting index to a
negative value, causing a buffer underflow in the next line.
Cccheck suggests repairing the expression to inf + (sup

- inf) / 2, which: (i) allows more good runs (inputs that
previously caused the overflow now are ok); (ii) is based

void ThreadSafeCopy(char* sourcePtr, char[] dest,

int destIndex, int count)

{

if (count > 0)

if ((destIndex > dest.Length)

|| ((count + destIndex) > dest.Length))

throw new ArgumentOutOfRangeException();

{ // ... }

}

Figure 8. A code snippet from a bug in mscorlib.dll.
Cccheckdetects that count + destIndex may overflow
and suggests repairing the expression to the non-overflowing
count > dest.Length - destIndex.

on the loop invariant automatically discovered by cccheck:
0 ≤ inf ≤ sup < array.Length.

In the example of Fig. 8, count can be a very large
positive value, causing count + destIndex to overflow.
Cccheck suggests repairing the expression to count >

dest.Length - destIndex.

3. Trace Semantics
We formalize the notion of a verified program repair via
a trace semantics. As we are only interested in repairs of
violations of safety properties, we only consider finite traces.

Let P be a program. P(pc) denotes the statement at pro-
gram point pc, and P[pc 7→ S] denotes the program that is
the same as P everywhere except pc, where it contains the
statement S. If S is a compound statement, a remapping of
S’s program points may be needed. We keep the remapping
implicit to simplify the notation. We let E denote the set of
pure Boolean expressions.

Let Σ be a set of states, and τP ∈ ℘(Σ × Σ) be a non-
deterministic transition relation. For a state s ∈ Σ, s(C)
denotes the basic command associated with the state, e.g.,
an assignment, an assumption, or an assertion. The set of
blocking states, i.e., states with no successors, is B = {s ∈
Σ | ∀s′. ¬τP(s, s′)}. The set of erroneous state, i.e., states
violating some assertion e, is E = {s ∈ Σ | s(C) =
assert e ∧ s 6|= e} ⊆ B.

Traces are sequences of states. Concatenation is denoted
by juxtaposition and extended to sets of traces. ~Σn is the set
of non-empty finite traces ~s = ~s0 . . . ~sn−1 of length |~s| =

n ≥ 0 including the empty trace ~ε of length |~ε| , 0. ~Σ+ ,⋃
n>1

~Σn is the set of non-empty finite traces and ~Σ∗ =
~Σ+ ∪ {~ε}. The set of finite bad traces, i.e., traces containing
an error is ~E = {~s ∈ ~Σ+ | ∃i ∈ [0, |~s|). si ∈ E}. The bad
(resp. good) traces of T ⊆ ~Σ∗ are B(T) , T ∩ ~E (resp.
C(T) , T ∩ (~Σ∗ \ ~E)). The function µ ∈ ℘(Σ∗) → ℘(Σ∗)
filters the maximal traces out of a set of traces. Given a set
of traces T , µ(T) is the largest set satisfying the properties:
µ(T) ⊆ T and ∀τ ∈ µ(T). 6 ∃τ ′ ∈ T.∃τ ′′.τ ′′ 6= ~ε ∧ τ ′ =
ττ ′′.

The maximal execution traces or runs are prefix traces
generated by applying the transition relation from the initial
states until a fixpoint is reached (partial execution traces)
followed by a projection on the maximal traces:

~τ+P (S) = µ(lfpλT. S ∪ {σ0 . . . σnσn+1 | (1)
σ0 . . . σn ∈ T ∧ τ(σn, σn+1)}).

The bad (resp. good) finite complete runs, or simply bad
(resp. good) runs of P are BP , B(~τ+P) (resp. GP , G(~τ+P)).

The definitions above (and in the following) can be ex-
tended as in [3] to take into account infinite runs, but we
avoid doing it here to keep the presentation as simple as pos-
sible.

4. Verified Repairs
Hereafter, we assume that P is the program containing a bug
and P’ the repaired version. Intuitively, P’ should have more
good runs and fewer bad runs than P. Because a repair may
change the program’s control flow, introducing new states,
and possibly new assertions, the concrete traces of P and
P’ may appear very different. Thus, the simple inclusions
GP’ ⊇ GP and BP’ ⊆ BP may be too strict and hold only for
trivial repairs.

Instead, we compare the semantics of P and P’ at a higher
level of abstraction. First, we remove all states but those con-
taining assertion statements (the assertion trace semantics).
Then, we remove all new assertions introduced in P’. Ab-
stract interpretation [4] provides the right framework to for-
malize this.

Basic Elements of Abstract Interpretation. We first recall
some basic facts and notations about abstract interpretation.
A Galois connection 〈L, 6〉 −−→←−−α

γ
〈L, v〉 consists of posets

〈L, 6〉, 〈L, v〉 and maps α ∈ L → L, γ ∈ L → L such
that ∀x ∈ L, y ∈ L : α(x) v y ⇐⇒ x 6 γ(y). In a
Galois connection, the abstraction α preserves existing least
upper bounds (lubs) hence is monotonically increasing so,
by duality, the concretization γ preserves existing greatest
lower bounds (glbs) and is monotonically increasing. The
composition of Galois connections is a Galois connection.

Assertion Trace Semantics. The assertion abstraction αA

removes all states but those referring to assertions. The ab-
straction α1

A ∈ ~Σ∗ → ~Σ∗ on a single trace:

α1
A(~s) =


~ε ~s = ~ε

sα1
A(~s′) ~s = s~s′ ∧ s(C) = assert e

α1
A(~s′) ~s = s~s′ ∧ s(C) 6= assert e

can be lifted to a set of traces αA ∈ ℘(~Σ∗) → ℘(~Σ∗):
αA(T) =

⋃
~s∈T α

1
A(~s). The function αA, is a complete ∪-

morphism. Thus, it exists a unique concretization γA such
that 〈℘(~Σ∗), ⊆〉 −−−→←−−−αA

γA 〈℘(~Σ∗), ⊆〉 [4]. The assertion trace

semantics of P is αA(~τ
+
P).

In general, a repair may introduce new assertions (that
may or may not hold). As the goal of a repair is to address
failing assertions of the original program, we remove from
the assertion semantics of P’ all the new assertions and the
new variables before comparing the behaviors of P and P’.

Let δP,P’ denote a repair that transforms program P to
program P’ and let A(δP,P’) be all the new assertions intro-
duced by the repair in P’. Let πδP,P’ ∈ Σ → Σ denote the
state projection over all the common variables of P and P’.
The function α1

δP,P’
∈ ~Σ∗ → ~Σ∗ removes all the new asser-

tions and new variables from a trace:

α1
δP,P’(~s) =


~ε ~s = ~ε

πδP,P’(s)α
1
δP,P’

(~s′) ~s = s~s′ ∧ s(C) 6∈ A(δP,P’)

α1
δP,P’

(~s′) ~s = s~s′ ∧ s(C) ∈ A(δP,P’)

and its lifting to sets αδP,P’ ∈ ℘(~Σ∗) → ℘(~Σ∗), defined
as αδP,P’(T) =

⋃
~s∈T α

1
δP,P’

(~s), is a complete ∪-morphism,
so that it exists a concretization function γδP,P’ such that

〈℘(~Σ∗), ⊆〉 −−−−−→←−−−−−
αδP,P’

γδP,P’
〈℘(~Σ∗), ⊆〉.

Verified Repairs. We are now ready to formally define
the concepts of a verified repair and a repaired program
improving another program.

DEFINITION 1 (Verified repair, improvement). If αA(GP) ⊆
αδP,P’ ◦ αA(GP’) and αA(BP) ⊃ αδP,P’ ◦ αA(BP’), then we
say that δP,P’ is a verified repair for P and that P’ is an
improvement of P.

The above definition denies the identity (i.e., program P

itself) as a trivial improvement, since the number of bad
traces should strictly decrease. It allows the removal of an
always failing assertion as a repair. If an assertion fails
in some executions and passes in others, then its removal
is disallowed (as the subset inclusion on good runs will
fail). For a given program P, there may be several distinct
improvements P’1, P’2 . . . (e.g., Fig. 2 or Fig. 4). One can
define an additional scoring function to rank P’1, P’2
The definition of verified repair naturally induces a partial
order on programs (and hence on improvements): a program
Q improves R, written R v Q if δR,Q is a verified repair for R.
We only compare the “same” assertions over two versions of
the program, so P’ may introduce new bugs, which requires
a new code fix, etc. The code fixing process can be iterated to
a fixpoint. In general, the least fixpoint may not exist (more
hypotheses are needed).

The definition above requires not only all the assertions
to be the same, but also that the variables have the same
concrete values. We can relax this by introducing a further
abstraction α1

t ∈ ~Σ→ ℘(Σa), Σa , ε∪{true, false}×E,
which abstracts from a state everything but the assertion and
its truth value. Furthermore α1

t forgets the execution order –

it only focuses on the truth value of the assertions:

α1
t (~s) =


∅ ~s = ~ε

{〈b, e〉} ∪ α1
t (~s
′) ~s = s~s′ ∧ s(C) = assert e

∧ b = s |= e

α1
t (~s
′) ~s = s~s′ ∧ s(C) 6= assert e

The lifting to sets of traces αt ∈ ℘(~Σ∗) → ℘(Σa), defined
as αt(T) =

⋃
~s∈T α

1
t (~s), is a complete ∪-morphism, so

that it exists a concretization function γt such that 〈℘(~Σ∗),

⊆〉 −−−→←−−−αt
γt 〈℘(Σa), ⊆〉.

DEFINITION 2 (Verified assertion repair, assertion improvement).
If αt ◦ αA(GP) ⊆ αt ◦ αδP,P’ ◦ αA(GP’) and αt ◦ αA(BP) ⊃
αt ◦ αδP,P’ ◦ αA(BP’), then we say that δP,P’ is a verified as-
sertion repair for P and that P’ is an assertion improvement
for P.

Thus, an assertion improvement P’ focuses on the as-
sertion behavior, guaranteeing that: (i) the repair decreases
the number of assertions violated; (ii) no regression is intro-
duced. A verified assertion repair is a weaker concept than
verified repair, as it allows the addition of new traces that
change the behavior of the program while not breaking the
old assertions. We say that a program Q a−improves R, writ-
ten R va Q if δR,Q is verified assertion repair for R.

Here we are interested in repairing failing assertions.
However, one can think of modifying the Definition 2 to
focus on other behaviors to fix, e.g., memory allocation,
resources usage, or performance.

5. Program Repairs from a Static Analyzer
When the state space Σ is finite, the fixpoint equation (1) can
be exactly computed and the abstractions and the definitions
in Section 4 can be applied as they are. The state space can
be made finite either by requiring the programmer to provide
loop invariants (as in deductive verification [15]) or by fixing
ahead of time a finite set of predicates to be used (as in
predicate abstraction [2]).

In practice, state space finiteness is too strong a require-
ment. We want to avoid it, unlike [14, 30]. For instance, un-
der the finiteness hypotheses we cannot automatically pro-
vide a repair for the overflowing expression in Fig. 7. The
repair is based on the knowledge of the loop invariant 0 ≤
inf ≤ sup< array.Length (to prove that sup−inf does
not underflow). In general to infer such an invariant the ab-
stract domain should at least include the abstract domain of
intervals [4], which is of infinite width and height.

An abstract interpretation-based static analyzer, like cccheck,
does not make the finite states hypothesis. It computes an
over-approximation of the trace semantics of P 1:

~τ+P ⊆ γ(cccheck(P)). (2)

1 The concretization function γ maps cccheck abstract domains into con-
crete execution traces. In general there is no best abstraction α.

int NotDecidable(int x)

{

string s = null;

if(P(x))

s = "Hello world";

return s.Length;

}

Figure 9. An example showing the undecidability of code
repairs. The predicate P is true for each x, but it cannot be
decided.

Our goal is to exploit the information gathered by a
cccheck-like tool to automatically suggest verified repairs
for incomplete programs. We let

BP , B(γ(cccheck(P)))

(resp. GP , G(γ(cccheck(P)))) denote the inferred bad
runs (resp. good runs) of P. Definition 1 and Definition 2
can immediately be extended to use BP and GP instead of
BP and GP. Because of over-approximation, it may be the
case that more bad traces are inferred than the ones in the
program’s concrete semantics. In practice, this means that
sometimes cccheck cannot detect that an assertion is always
satisfied in the concrete, and it suggests a repair for it, to
shut off the warning. Nevertheless, this is not a problem for
us, for three main reasons. First, verified code repairs are
supposed to be used as design-time suggestions in the IDE:
the programmer has the last word on whether or not to apply
a code repair. Second, the code repair generated from a false
warning helps the programmer understanding the nature of
the alarm. Third, by construction, verified repairs improve
the program in the sense of Definition 1 or Definition 2.
If the repair is such that P v P′, then it introduces in
P’ only checks that at worst are redundant with those that
were already present in P. Otherwise, if the repair satisfies
P va P′, the repair is guaranteed to not violate assertions
that were (proven) definitely valid in P.

EXAMPLE 1. Let us consider the example in Fig. 9. The
predicate P is such that ∀x.P(x) = true, but it cannot be
decided. Such a predicate exists because of Gödel’s incom-
pleteness theorems. Therefore, the s dereference cannot be
proven, and two code fixes can be suggested, satisfying re-
spectively Definition 1 and Definition 2: (i) the (trivial)
addition of the assumption s != null just before the re-
turn statement, adding a redundant check at runtime; (ii) the
initialization s = "". Both repairs will stop cccheck from
reporting the warning.

6. Program Repairs in Practice
Actual verified repairs are property-specific. They exploit
the inferred semantic information and the specification (in
the form of contracts or runtime errors) to automatically pro-

duce a program repair. We infer program repairs by leverag-
ing: (i) a backwards must analysis to propose new contracts,
initializations, and guards; (ii) a forward may analysis to pro-
pose off-by-one, floating point comparisons, and arithmetic
overflows code repairs.

6.1 Clousot
We extended cccheck, an abstract interpretation-based
static analyzer for .NET [12], to generate verified repairs.
Cccheck has four main phases: (i) assertion gathering; (ii)
fact inference; (iii) proving; (iv) report warnings and sug-
gest repairs. In the first phase, Cccheck gathers the program
assertions, either provided by the programmer, e.g., as con-
tracts, or by language semantics, e.g., division by zero, null
pointer, etc. Then, it uses abstract interpretation to infer facts
about the program.

Cccheck includes abstract domains for heap abstrac-
tion [10], nullness checking [11], scalable numerical analy-
sis [18, 22], universally and existentially quantified proper-
ties [5], and floating point comparisons. [23] Cccheck uses
the inferred facts to discharge the gathered assertions.

Cccheck’s decision procedure has four possible out-
comes: (i) true, the assertion holds for all executions reach-
ing it, if any; (ii) false, every execution reaching the asser-
tion, if any, will cause it to fail (e.g., Fig. 4); (iii) bottom,
no execution will ever reach the assertion; (iv) top, we do
not know, as the assertion may be violated sometimes or the
analysis was too imprecise. If the outcome is top or false,
Cccheck tries to find a verified repair before reporting the
warning/error to the user. If a verified repair is found (in gen-
eral there may be more than one repair for a warning) then:
(i) it is reported to the user via a graphical interface; and
(ii) it is used by the warning scoring algorithm to produce
a ranking of warning (e.g., a warning with a verified repair
gets a higher score than a warning without a verified repair).

The above outcomes give an easy algorithm to check
whether P va P’: check (for the matching asserts) if
cccheck reports fewer top and false for P’ than P with-
out reducing the number of the true results. Correctness
follows by the analyzer soundness property (2). In practice
re-analysis is not a big problem: on average a method is
analyzed in 156ms.

6.2 Repairs Inferred by Backwards Analysis
The precondition inference of [6] is a goal-directed back-
ward analysis Bpc(e), starting from a failing assertion e. For
each program point pc, if Bpc(e) does not hold at pc, then
e will necessarily fail later in the program. The expression
Bpc(e) is a necessary condition for e at pc. We omit here the
details of B, leaving it as a parameter. Different choices are
possible, enabling a fine tuning of the precision/cost ratio. In
general, B is an under-approximation of the semantics, com-

puting fixpoints when loops are encountered 2. The advan-
tage of using a necessary condition is that we are guaranteed
not to remove any good trace. We use the analysis B to sug-
gest repairs, by matching Bpc(e) and the statement P(pc) as
follows.

Repair by Contract. Contracts (preconditions, postcondi-
tions, object invariants, assertions and assumptions) are used
for code documentation and by the static checker to perform
the assume/guarantee reasoning. The backward analysis can
be used to suggest contracts.

Definition 1 generalizes the precondition inference prob-
lem of [6]. As a consequence, the inference of necessary
preconditions is a form of verified repair. A candidate neces-
sary precondition is Bentry(e). If Bentry(e) meets the visibil-
ity and inheritance constraints of the enclosing method [20],
then it can be suggested as precondition. Otherwise it is sug-
gested as an assumption or a candidate object invariant. In
both cases P v Bentry(e); P follows from the fact that B only
produces necessary conditions (hence cutting bad runs).

It may be the case that the backwards analysis stops at
pc 6= entry, i.e., before reaching the entry point of the
method. For instance, this happens when variable in the
goal expression is the return value from a method. We can
still suggest a repair, either in the form of an Assume or as
a candidate postcondition for the callee. No good trace is
removed: P v P[pc 7→ (P(pc); Assume(Bpc(e)))].

EXAMPLE 2. For the array store in Fig. 2, Cccheck collects
the two assertions 0 ≤ index and index < arr.Length.
The inferred facts are not sufficient to prove that the as-
sertions will not fail, so Cccheck propagates the assertions
backwards. For the first assertion, Bentry(0 ≤ index) =
0 ≤ index is suggested as precondition (index is a param-
eter). The precondition is necessary, because if index < 0

then a buffer underflow definitely will occur. The precondi-
tion is not sufficient, as it does not guarantee that the array
indexing is in bounds.

For the second assertion, Bentry(index < arr.Length) =
true, but B(1)(index < arr.Length) = index <
length must hold between the return value of GetALength
and the method parameter, otherwise the program will nec-
essarily fail. Therefore, Cccheck suggests to make the
assumption explicit using the repair Contract.Assume

(index < length). For the array creation, the safety con-
dition 0 ≤ length cannot be proven either, and the cause
is traced back to the value returned by GetALength. Two
repairs are possible: either an assumption (to document it)
or a postcondition for GetALength.

Initialization. The necessary condition analysis B(e) can
be used to infer repairs for initialization and guards. Let k
be a compile-time constant and i=k the statement at the pro-

2 Please note that B is not Dijkstra’s wp predicate transformer. The weakest
precondition requires the program to be correct on all the possible paths, no
matter which non-deterministic choice is made.

gram point pc. If Bpc(e) = i=k′, with k′ 6= k, then we have
detected an erroneous initialization. We can suggest the re-
pair i=k′: P’ , P[pc 7→ (i = k′)]. More generally, if the
necessary condition is i�k′, with � a relational operator, then
i should be initialized to a value satisfying i�k′3. However,
the initialization repair may: (i) change the behavior of the
program; (ii) cause assertions not in δP,P’ to fail in P’. There-
fore, to verify the repair before suggesting it to the user, we
analyze P’ in background to check that no additional asser-
tion failure is introduced by the repair, so that P va P’. In
general there are many k

′
satisfying i � k′ and P va P’.

We leverage the constraint solver in (the numerical abstract
domains of) cccheck to provide a satisfiable assignment. In
most of the cases we get the most general k

′
.

EXAMPLE 3. In Fig. 1, Cccheck infers the necessary con-
dition 1 ≤ i, finds the initialization i = 0, and suggests
repairing it with i = 1. Similarly, in Fig. 3, Cccheck prop-
agates the constraint 1 < args.Length, finds the array cre-
ation setting args.Length = 1, and suggests the repair of
a larger allocation new object[2].

Repairing Guards. We can use B(e) to check whether a
guard is too weak or even contradictory. If at a program
point pc, P(pc) = Assume g, i.e., g is the guard at program
point pc 4, and Bpc(e) = !g, then we can suggest to use !g
instead of g, after checking that no new assertion failure is
introduced. Similarly, if g , a <= b and Bpc(e) = a < b,
we can suggest a guard strengthening (after an additional run
of cccheck). Therefore P va P[pc 7→ Assume(Bpc(e))].

EXAMPLE 4. In the example of Fig. 4, the safety condi-
tion c != null contradicts the if-statement guard c ==

null. Hence it is proposed as a verified repair: all the as-
sertions after (*) are unreached in P, and the else branch
is empty. A new run of Cccheck is therefore not necessary.
Please note that false may also be proposed as a guard, i.e.
the branch of the conditional can be removed altogether.

In the example of Fig. 5, the assertion num < callA.Length

is stronger than the (implicit else-)condition callA.Length

>= num, and hence proposed as a repair 5.

Ensuring correct object initialization. When e is an asser-
tion in a public method m and Bentry(e) involves only private
fields of this object, then Bentry(e) is a necessary invariant
on the object fields. In particular, if Bentry(e) contains only
readonly fields 6 then it should hold after the invocation of
any of the constructors. Otherwise, suppose the constructor
c does not establish Bentry(e). Then the sequence of calls c,

3 Note that k does not satisfy i�k′, otherwise cccheck should have proven
it before.
4 As common, we assume that conditional and loop guards are represented
by Assume statements, and control flow modelled by gotos.
5 In an early stage of Cccheck pipeline, all such assumptions are made
explicit.
6 A readonly field can only be assigned inside constructors.

public class MyClass

{

private readonly SomeObj s;

public MyClass(SomeObj s)

{

Contract.Requires(s != null);

this.s = s;

}

public MyClass()

{

}

public int Foo()

{

return this.s.f;

}

// ...

}

Figure 10. An example of object initialization repair. The
repair can either initialize this.s to a non-null value in
MyClass() or add an object invariant to avoid the null
dereference of s in Foo.

m will cause the assertion e to fail. We can repair it in two
ways. The first way is to repair the constructor c so to es-
tablish Bentry(e). This alternative corresponds to assuming
Bentry(e) to be (part of) the object invariant, and repairing
the constructor to meet the invariant. We should check that
the repair does not violate some other assertion (to ensure
that P va P’). The second way is to deny the invocation
of m when the object is created via c. This corresponds to the
object invariant bc||Bentry(e). The Boolean flag bc captures
whether the class was initialized via the constructor c. The
object invariant removes only bad runs so that: P v P’.

EXAMPLE 5. Let us consider the class in Fig. 10, abstracting
a common pattern in system code. When Foo is invoked
this.s != null should hold necessarily. Otherwise the
client code:

x = new MyClass();

x.Foo();

causes a null dereference exception. To rule out bad execu-
tions we can either modify the implementation of MyClass
or we can add a contract to specify the correct usage pattern.

The field this.s is private, so it cannot be made a pre-
condition of Foo: it is a condition on the object fields that
should be established on object creation. The first construc-
tor, MyClass(SomeObj), satisfies it. The second construc-
tor, MyClass(), does not. Adding the assignment this.s
= new SomeObj() to MyClass() removes the problem. An

alternative is to add the object invariant

Contract.Invariant(this.b || this.s != null);

where the readonly private Boolean field is assigned this.b
= true in MyClass().

Method purity. Suppose that the necessary conditionBpc(e)
mentions an object on the heap o, e.g., o.f != null. If
the instruction at pc is a method call and no information is
provided on m then Cccheck assumes the worst for o, and
the object gets havoced. As a consequence, the propagation
of B(e) stops at pc. A repair is to mark the method m as
[Pure], i.e., its execution as no visible side-effects. The pu-
rity marker has no effect on the concrete semantics, but it
largely improves the precision of static analyzers: P v P’.

6.3 Repairs Inferred From the Abstract Domains
Off-by one. The semantic facts inferred at a given program
point can be used to suggest repairs. In particular, one can
use the information inferred by the numerical abstract do-
main(s) to suggest repairs for off-by-one errors. If cccheck
cannot prove an assertion a < b at program point pc but it
can prove a <= b, then it can suggest using a-1 instead of
a, provided it does not introduce any new warning. In this
case, P va P[pc 7→ P(pc)[a 7→ a-1]].

EXAMPLE 6. In the example of Fig. 3, cccheck trivially
finds that 1 <= args.Length = 1, and as 0 < 1, it sug-
gests 0 as new array index. In the example of Fig. 5, it can
prove that num <= callA.Length. However, it does not
suggest replacing num with num-1 as this may introduce a
new bug in the program (a buffer underflow at the same line).

Floating point comparison. The .NET type system allows
two kinds of floating point numbers Float32 (32 bits) and
Float64 (64 bits). The .NET specification requires that
floats in locals (stack locations, parameters, return values)
should be implemented by the underlying virtual machine
with the highest precision available from the hardware (e.g.,
80 bits registers in x86 architectures). On the other hand,
heap locations (fields, array elements, statics) should always
match the precision of their nominal type. As a consequence,
when a local float is stored into a heap location its value is
truncated. The comparison of values of different bit sizes
may lead to very unexpected results.

For an expression a�b at pc, with � relational operator, if
cccheck deduces that one of the operands has an extended
precision, while the other has nominal precision, it suggests
the repair t, containing the truncation of the extended preci-
sion value to its nominal type. Therefore, P v P[pc 7→ t].

EXAMPLE 7. In Fig. 6, cccheck infers the parameter d0 (of
extended precision) is compared against a constant (of 64
bits), and it suggests adding the cast (double)d0 to force
the truncation and guarantee that the comparison operator
checks floating point values of the same bit size. In P’ the
object invariant is hence satisfied.

Arithmetic Overflows. We introduce a new algorithm to re-
pair arithmetic overflows that leverages the decision proce-
dure and the numerical facts inferred by Cccheck abstract
domains. We consider expressions in the language:

e ::= a | a � a
a ::= k | v | a + a | a - a | a / k

� ::= < | <= | > | >= | == | !=
k ::= −2p−1 | ...− 1 | 0 | 1 | ...2p−1 − 1

The rewriting rules are in Fig. 11. They immediately induce
a non-deterministic memoization-based algorithm. The al-
gorithm starts with an expression a which may cause an
overflow for some input, and rewrites it to an expression
a’ which is provably non-overflowing. The algorithm an-
notates each subexpression with a tag: ? means that we do
not know if the expression may overflow; ! means that the
expression is provably not-overflowing (for the values in
the concretization of the current abstract state). If it suc-
ceeds, the algorithm guarantees that a’: (i) evaluates to the
same value as a when they are both interpreted over Z;
and, (ii) no overflow happens when evaluated on Zp, where
p ∈ {8, 16, 32, 64 . . . } is the given integer precision.

The algorithm is incomplete by design, for performance
reasons. It is an abstract interpretation of the trivial algo-
rithm which enumerates all the equivalent expressions and
then checks for non-overflowing. Next we detail the rules. A
constant, a variable, and the comparison of non-overflowing
expressions do not overflow. We can remove the uncertainty
on an binary arithmetic expression if the underlying ab-
stract state guarantees that the operation does not overflow.
Moving the right operand of a subtraction to the right of
a comparison operator removes a possible overflow. In the
case of an addition, one should pay attention that -a does
not overflow (i.e., a may be MinInt). Division by a con-
stant overflows if k = 0 or if MinInt is divided by −1.
Half-sum can be written in two ways (note that the rule
(a+b)/2→ a/2 + b/2 is incorrect when a, b are odd quan-
tities). We can trade an addition for a subtraction, or a sub-
traction for an addition if we are guaranteed that the new
expression does not overflow. Finally, we allow shuffling ex-
pressions by moving them on the same side of a relational
operator, and we introduce strict inequalities to remove over-
flows (the dual rule for >= is not shown in the figure). Let P’
be such that all the overflowing expressions are replaced by
the result of the algorithm above. Then P va P’.

EXAMPLE 8. In the binary search example (Fig. 7), Cccheck
proves that all but one arithmetic expressions are not-
overflowing. It infers the loop invariant 0 ≤ inf ≤ sup <
array.Length. As a consequence, at (*), it can apply the
rule for the half-sum (the difference of two non-negative
values can never overflow), and it suggest the correct ex-
pression. Similarly, in Fig. 8, cccheck captures the possible
overflow in the addition, and it suggests using a subtraction
instead.

k? → k! v? → v! (a!1 � a!2)? → (a!1 � a!2)!

ok(a1opa2) op ∈ {+,−}
(a!1opa

!
2)? → (a!1opa

!
2)! ((a!1 − a!2)? � 0)? → (a!1 � a!2)!

ok(-a2)

((a!1 + a!2)? � 0)? → (a!1 � -a!2)!
k 6= 0 ∧ (a 6= MinInt ∨ k 6= −1)

(a!/k!)? → (a!/k!)!

((a! + b!)?/2!)? → ((a! + ((b! − a!)?/2!)!)!)! ((a! + b!)?/2!)? → ((b! + ((a! − b!)?/2!)!)!)!

ok(c− b)

((a! + b!)? � c!)? → (a! � (c! − b!)!)!
ok(c− a)

((a! + b!)? � c!)? → (b! � (c! − a!)!)!

ok(a-c)

((a! + b!)? − c!)? → ((a! − c!)! + b!)?
ok(b-c)

((a! + b!)? − c!)? → (a! + (b! − c!)!)?

ok(a+b)

((a! − c!)! + b!)? → ((a! + b!)! − c!)?
ok(a+b)

(a! + (b! − c!)?)? → ((a! + b!)! − c!)?

((a! + b!)? � c?)? → (((a! + b!)? − c?)? � 0)? ((a! + 1!)?<=b!)? → (a!<b!)!

Figure 11. The rules used by the overflowing expression repair algorithm. The function ok(a) uses the inferred facts to check
whether the expression a (or one of its subcomponents) does not overflow.

Overall Asserts
Library Methods Time Asserts Validated Warnings Repairs Time with Repairs %
system.Windows.forms 23,338 62:00 154,863 137,513 17,350 25,501 1:27 14,617 84.2
mscorlib 22,304 38:24 113,982 103,596 10,386 16,291 0:59 7,180 69.1
system 15,187 26:55 99,907 90,824 9,083 15,618 0:47 6,477 71.3
system.data.entity 13,884 51:31 95,092 81,223 13,869 28,648 1:21 12,906 93.0
system.core 5,953 32:02 34,156 30,456 3,700 9,591 0:27 2,862 77.3
custommarshaler 215 0:11 474 433 41 31 0:00 35 85.3
Total 80,881 3:31:03 498,474 444,045 54,429 95,680 4:51 44,077 80.9

Figure 12. The experimental results of verified repairs on the core .NET libraries. We report the number of methods, the
overall analysis time, the number of assertions, validated assertions, warnings, the number of repairs, the time it took to infer
them, the number of assertions with at least one repair and the percentage of warnings with at least one repair. Time is in
minutes.

7. Experience
Shipped Libraries We generated verified repairs for the
shipped core libraries of the .NET framework (they are not
yet annotated with contracts). We run Cccheck with the de-
fault checks (nonnull, bounds, arithmetic) and the precondi-
tion, postcondition and object invariant inference on. Infer-
ence propagates preconditions and object invariants to the
caller, where they become new assertions. The more refined
the inference algorithm, the more complex the inferred pre-
conditions [6].

The empirical results are in Fig. 12. For each assem-
bly, we report the total number of analyzed methods and
the overall analysis time. We also report the number of as-
sertions, validated assertions (true, bottom), and warnings
(false, top). The total number of repairs is obtained after
simplification and includes all of the repairs enumerated

in Sec. 6. We use a simple simplification procedure to elim-
inate redundant repairs. In general, the simplification proce-
dure takes as input a set of repairs R and returns a set of
repairs R′ such that: (i) the repairs in R and R′ are equiv-
alent; and (ii) #R < #R′. For instance, if x > 0 and x >

1 are inferred as repairs, we retain only the latter. The time
includes the time to infer the repairs and simplify them. We
also report the number of warnings for which we discovered
at least one repair (in general several repairs are possible for
the same warning) and the percentage over the total number
of warnings.

Our first observation is that we can infer thousands of
repairs in large libraries in a short time – the time to generate
code repairs is only a tiny fraction of the overall run of
Cccheck. We can propose a repair for a warning in almost
81% of the cases (overall). If the programmer decides to
apply one of the repairs, the precision of the analyzer (the

Figure 13. The code repairs in the IDE.

percentage of all asserts that cccheck validates) rises by
almost 10% (from 89% to almost 99%). We cannot apply
repairs automatically, as in general there is more than one
repair possible for a given warning.

Automatic application of repairs is out-of-the scope of
our work: we want to provide the programmer with vari-
ous semantically justified choices and let her decide how
to repair the code. Repairs provide a witness for the warn-
ings, and we use them to rank the warnings. We manually
inspected some of the repairs generated by Cccheck and dis-
covered new bugs in shipped and very well-tested libraries.
Some of those bugs are illustrated by the examples in Sec. 2.

IDE integration The goal of verified repairs is to use them
interactively. We integrated Cccheck in Visual Studio, via
the Microsoft Roslyn CTP [26]. An example of the user ex-
perience is in Fig. 13. Roslyn exposes the C# (and VB) com-
piler(s) as a service. Plugins register to Roslyn as code is-
sues and code action providers. Cccheck runs in background
while the programmer is writing the program. Cccheck re-
ports the assertion violations as code issues. For those asser-
tions it can infer a code repair, Cccheck, reports it as a code
action. The code action is shown in a preview window. The
user choses to apply the code action or not.

Verified code repairs are realistic only if we can prove
that the running time of the analysis + the generation of the
fixes is small enough to be used in a real time programming
environment. On average Cccheck analyzes 6+ methods per
second and it infers 7.5 repairs per second (Fig. 12). The
benchmarks above were run without any form of caching.
However, to further improve the performances, Cccheck
has a built-in cache mechanism which let the analysis run
only on the methods that have been modified since the last
analysis. In the past, we measured the effects of the cache
mechanism to at least a 10× speed-up.

Overall, we are very positive that the approach can be
applied during active development: code repairs + Cccheck

with cache are efficient enough to be used in the IDE.

8. Related Work
Automatic program repair is an active research subject in
the testing community [28]. Starting from a program P ex-
posing a bug, the goal is to derive P’ such that the bug is
repaired and no regression is introduced. The repair is ob-
tained by pseudo-invariant inference [27], by genetic algo-
rithms [19, 35], by a smart exploration of the space of re-
pairs [1], or by instantiating some templates [34]. Our ap-
proach is different in that we do not use a known failing test

to infer the repair (we start from a warning issued by the
analyzer), we do not need to run the program to apply our
technique, the repair is inferred from the semantics of the
program and it is verified. In particular, the repairs we gen-
erate are property-specific, so our technique is not subject
to the “randomness” in the proposed repairs of the afore-
mentioned techniques. Pex [32] uses symbolic execution to
remove inputs that inevitably lead to an error. Our fixes are
more general (e.g., we can fix overflowing expressions) and
they soundly cope with loops – symbolic execution engines
do not infer loop invariants. Starc [9] mixes dynamic and
static analysis to repair data structures. We do tackle the
problem of repairing data structures, but an interesting future
research direction is to extend the definitions of Section 4 in
that sense. Samini et al. [31] also combines dynamic and
static analysis, but to repair PHP programs.

Eclipse [13] has a fix-it feature for repairing syntactically
wrong programs. Whalen et al. [36] have a vision of an in-
tegrated test environment. Our vision is instead that of a se-
mantic integrated environment [21], where a static analyzer
runs in background, reports the errors, proposes the semanti-
cally justified repairs, and helps common programming tasks
such as refactoring [7], searching, code reviewing etc..

In the static analysis and verification community, recent
work focused on the repairing of Boolean programs [14, 16,
30]. We are not constrained to Boolean programs (we handle
arbitrary C# programs), we handle infinite state spaces, and
we have a very precise yet universal notion of what a code
repair is. We were able to generate repairs for the running
examples of the above papers, with the exception of the con-
current examples of [16] – Cccheck does not analyze paral-
lel programs. Surprisingly enough, for the running example
of [14] we inferred a different repair (the initialization x =

1).
Other authors focused on repairing programs for specific

properties. Martel [24] tackles the problem of repairing float-
ing point arithmetic expressions. The goal of [24] is to infer
(a good-enough approximation of) the most precise expres-
sion over machine floats equivalent to a given one. His work
is a code repair as according to our Definition 2. The main
differences with the algorithm in Fig. 11 is that we focus on
ints, so we are only interested in a non-overflowing expres-
sion (there may be many in general), we perform online local
rewriting instead of estimating the cost for the whole expres-
sion, we use all the numerical information inferred by the
numerical abstract domains, not only the numerical ranges.

Vechev et al [33] present algorithms to introduce syn-
chronization to remove bad interleavings. In spirit, their ap-
proach is very similar to ours, as they use abstract inter-
pretation to verify a program, and when they fail they gave
themselves the freedom to modify the program also when it
cannot be proven in the abstract that it is wrong (it may be
correct in the concrete). Apart from the handling of concur-
rency, the main difference is that we do not aim at applying

the fixes automatically, we give some semantic guarantees
on the repairs (they should not remove good runs and should
increase the number of validated assertions), and we do not
aim for minimality.

A related research field is the localization and the ex-
planation of bugs and warnings. Jose and Majumdar [17]
present an algorithm to find the cause of a failing test. Their
approach is different from ours in many ways. First, their
algorithm requires the knowledge of a complete (failing)
program execution – we use static analysis instead. Sec-
ond, their error localization algorithm is based on finite tech-
niques (bounded model checking, SAT, loops are handled by
unrolling) so it is unlikely to cope with infinite state spaces
as we do. Third, their scope is to find the origin of the bug,
whereas we aim at proposing a repair for a possible error
in the program. Rival [29] proposes a set of techniques to
find the origin of alarms in an industrial strength static an-
alyzer. Our verified repairs can be also used to explain the
origin of the warnings of the static analyzer. Dillig, Dil-
lig and Aiken [8] use abduction to infer the information a
static analyzer is missing to carry on the correctness proof
(or to prove the program is incorrect). The information is
presented to the user who should validate or refuse it. We do
not use abduction and we interact with the user by suggest-
ing code changes, instead of logical formulas. To see how
our technique compares to abduction, we converted the C
benchmarks of [8] into C#. We skipped those relying on C-
specific patterns, e.g., string and pointer manipulation. We
applied cccheck on the converted benchmarks. For most of
them, cccheck not even shows a suggestion, as it was able to
prove the correctness without additional help. For all the oth-
ers, e.g., the one with real errors, cccheck suggested mean-
ingfull assumptions and repairs. Overall, we did not experi-
ence any advantage of the abduction technique of [8] over
ours.

9. Conclusions
We envision a future in which IDEs not only report seman-
tic errors at design time but also suggest code repairs for
them [21]. This paper is a first step in that direction. We in-
troduced a new analysis for automatic, modular and verifi-
able program repair. We used abstract interpretation to for-
malize the concepts of a verified repair (which removes bad
runs while possibly increasing good runs), and the weaker
notion of verified assertion repair. We presented a set of ver-
ified repairs, implemented in our static analyzer for .NET.
The repairs are extracted from the semantic information
computed by the abstract interpreter.

Experience shows that the repairs: (i) are generated fast
enough that they could be computed during active devel-
opment; (ii) cover almost 4/5 of the warnings raised; and
(iii) are precise enough to find new bugs for very well tested
shipped libraries.

Acknowledgments
We thank Andrew Bagel, Patrick and Radhia Cousot, Manuel
Fändrich, Matthieu Martel, Nikolai Tillman for the discus-
sions. We are also gratefull to Mike Barnett who made the
Roslyn integration possible.

References
[1] S. Chandra, E. Torlak, S. Barman, and R. Bodı́k. Angelic

debugging. In ICSE, 2011.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV,
2000.

[3] P. Cousot. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. Theor. Comput.
Sci., 277(1-2), 2002.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In ACM POPL, 1977.

[5] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmen-
tation functor for fully automatic and scalable array content
analysis. In POPL, 2011.

[6] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference
from intermittent assertions and application to contracts on
collections. In VMCAI, 2011.

[7] P. Cousot, R. Cousot, F. Logozzo, and M. Barnett. An abstract
interpretation framework for refactoring with application to
extract methods with contracts. In OOPSLA, 2012.

[8] I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis
using abductive inference. In PLDI, 2012.

[9] B. Elkarablieh, S. Khurshid, D. Vu, and K. S. McKinley.
Starc: static analysis for efficient repair of complex data. In
OOPSLA, 2007.

[10] M. Fähndrich. Static verification for Code Contracts. In SAS,
2010.

[11] M. Fähndrich and K. R. M. Leino. Declaring and checking
non-null types in an object-oriented language. In ACM OOP-
SLA, 2003.

[12] M. Fähndrich and F. Logozzo. Static contract checking with
abstract interpretation. In FoVeOOS, 2010.

[13] Eclipse Foundation. Eclipse. http://eclipse.org, 2011.

[14] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean
programs with an application to c. In CAV, 2006.

[15] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10), 1969.

[16] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair
as a game. In CAV, 2005.

[17] M. Jose and R. Majumdar. Cause clue clauses: error localiza-
tion using maximum satisfiability. In PLDI, 2011.

[18] V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable
approach to infer linear inequalities. In VMCAI, 2009.

[19] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In ICSE, 2012.

[20] B. Liskov and J. M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6), 1994.

[21] F. Logozzo, M. Barnett, P. Cousot, R. Cousot, and M.
Fähndrich. A semantic integrated development environment.
In OOPSLA Companion, 2012.

[22] F. Logozzo and M. Fähndrich. Pentagons: a weakly relational
abstract domain for the efficient validation of array accesses.
In SAC, 2008.

[23] F. Logozzo and M. Fähndrich. Checking compatibility of bit
sizes in floating point comparison operations. In 3rd work-
shop on Numerical and Symbolic Abstract Domains, ENTCS,
2011.

[24] M. Martel. Program transformation for numerical precision.
In PEPM, 2009.

[25] B. Meyer. Applying ”Design by Contract”. IEEE Computer,
25(10):40–51, 1992.

[26] Microsoft. Roslyn CTP.
http://msdn.microsoft.com/en-us/roslyn, 2011.

[27] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J.
Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Ri-
nard. Automatically patching errors in deployed software. In
ACM SOSP, 2009.

[28] M. Pezzè, M. C. Rinard, W. Weimer, and A. Zeller. Self-
repairing programs (Dagstuhl seminar 11062). Dagstuhl Re-
ports, 1(2):16–29, 2011.

[29] X. Rival. Understanding the origin of alarms in astrée. In SAS,
2005.

[30] R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic
generation of local repairs for boolean programs. In FMCAD,
2008.

[31] H. Samimi, M. Schäfer, S. Artzi, T. D. Millstein, F. Tip, and
L. J. Hendren. Automated repair of html generation errors
in php applications using string constraint solving. In ICSE,
2012.

[32] N. Tillmann and J. de Halleux. Pex-white box test generation
for .net. In TAP, 2008.

[33] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided
synthesis of synchronization. In POPL, 2010.

[34] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller. Automated fixing of programs with contracts.
In ISSTA, pages 61–72, 2010.

[35] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Au-
tomatically finding patches using genetic programming. In
ICSE, 2009.

[36] M. W. Whalen, P. Godefroid, L. Mariani, A. Polini, N. Till-
mann, and W. Visser. Fite: future integrated testing environ-
ment. In FoSER, 2010.

