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Neighbourhood-based Approaches (NbA)

Perform analysis on a new image by using the information from “neighbours” images

Test Image Neighbourhood Training Images

Colours: Meta-information
* diagnostic labels (disease type, progress, stage)
e segmentations, amount of deformation

Perform analysis
on assumption
of image,being

“yellow” e population characteristics (age, gender, etc.)

Example Applications
1. Neighbourhood is defined through  atlas selection: [Aljabar 2009], [Sabuncu 2009]

pairwise distances on meta-information * |abel propagation: [Wolz 2010], [Coupe 2011]
2. No meta-information given for new image ¢ “manifold methods”: [Hamm 2010], [Gray 2011]

Properties of NbA

Neighbourhood Approximation Forests (NAF)
Learning the relationship between appearance and meta-information

A general method for learning features which:

1. Captures neighbourhood defined by arbitrary distances

[by using a distance-based objective during training stage]

2. Allows efficient k-NN estimation at test time
[by exploiting inherently efficient decision trees]

This automatic and objective-based feature learning
is in contrast to manual and heuristic feature design

Training: Learning Neighbourhood Structure

Learn Neighbourhood Structure based on application-specific distance

Image-based appearance features
e (Can be evaluated at test time, unlike meta-information-based distances
* High-dimensional feature space
Training: Determine the split function for each node based on features
— Generates tree structure, and
— Leaf-Statistics (Indices of images reaching leaf)
* Select feature space dimension, and threshold, to optimize the objective
Objective Function: Gain in compactness with respect to cluster size
—> Coupling of feature space and meta-information
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Example Application 1:
Age Regression from brain MRI scans
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Finding Neighbours is Difficult

No meta-information for test image, only appearance is available

1.Direct search for neighbours:
 Computationally expensive, e.g distance is amount of deformation
* Not feasible: distance requires unknown meta-information, e.g. disease stage, segmentation

2.Approximate neighbours using appearance-based features and efficient search
* Clustering: k-means [Sabuncu 2009], tree-based [Nister 2006], [Gray 2011]
* Hashing [Weiss 2008], [Strecha 2012]

Definition of descriptive features is highly non-trivial:
e Should be low dimensional
* Need to capture the underlying neighbourhood structure
 Commonly hand-crafted and/or based on heuristics, e.g. similarity measure in ROI

Neighbourhood Approximation Tree

Feature space partitioning with respect to distance-based objective
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Testing: Approximate Neighbours for Test Image

Count the number of co-appearance in leaf nodes of test and training images

Test Image

Forest: Ensemble of Decision Trees
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Example Application 2:
Choosing the closest images for non-linear registration
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Experiment Setup:
* 169 training images / 186 test images

e 1500 trees, depth 6
* Features: Intensity difference between two random locations

Assessing Approximation Quality:
e histogram over all 186 tests: ratio of sum of distances to real neighbours
and approximated neighbours predicted by NAF (value of one is perfect)
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e * two different cases: 1-NN (closest image) and 5-NN
S * ratios are compared with random selection of neighbours
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Runtime for one test image:
NAF takes maximum 10.2 seconds (C++ / Intel Xeon® 2.27 GHz)
(compared to 169 nonlinear registrations, with 1.9h on average)



