
1

KINECTED BROWSER
Version 1.0.0.6 – November, 2012 – release notes rev. B

For the latest version of this document, see http://go.microsoft.com/fwlink/?LinkId=272161.

INTRODUCTION

Kinected Browser allows Web page authors to create immersive interactive experiences inside the browser. The

platform provides high and low level access to the Kinect device to enable a variety of designs.

The goal of Kinected Browser is to provide a platform for experimentation with Natural User Interface in the

browser. This package is experimental quality and should not be used for production applications.

Features

1. Scriptable high level DOM events for joint activity such as leftHandOver, rightKneeMove, etc.

2. Access to full skeleton tracking

3. Support for multiple and custom methods for mapping physical space into the browser

4. Access to the depth stream with built in methods for drawing to HTML5 Canvas

SYSTEM REQUIREMENTS

Kinected Browser works on PCs running Microsoft Windows 7 and 8, x86 and x64 platforms, using Internet

Explorer 9 and 10. On x64 platforms, only x86 Internet Explorer is supported. For Windows 8, the browser must be

in Desktop mode as the full-screen experience does not support ActiveX controls. Users must have a Kinect for

Windows (K4W) device connected to their PC and the Kinect drivers version 1.6 or higher installed.

GETTING STARTED

Follow the steps below to get started developing with the toolkit.

1. Download and run the installer to copy the component and samples onto your computer and register the

ActiveX object.

2. In the directory you chose, locate the sample file TestPage.html and open it with Internet Explorer.

3. Your Internet Explorer security settings may cause the “gold bar” below to appear. If it does, click Allow

blocked content to continue.

4. After a few moments, you should see be able to see the depth image and skeleton displayed in the large

boxes. You may need to step away from your Kinect as the demo does not have near or seated modes

enabled by default.

http://go.microsoft.com/fwlink/?LinkId=272161
http://www.rarnonalumber.com/en-us/kinectforwindows/
http://www.rarnonalumber.com/en-us/kinectforwindows/
http://go.microsoft.com/fwlink/?LinkId=255273
http://go.microsoft.com/fwlink/?LinkId=271616

2

ARCHITECTURE

Internet ExplorerOS
ActiveX control

JavaScript

library

Author’s

JavaScript

COM objects

DOM

events

Kinect for

Windows

driver

Raw

data

Figure 1. High level architectural diagram

Kinected Browser consists of two main components: an ActiveX control that acts as an intermediary between the

K4W hardware and Internet Explorer, and a JavaScript library that processes events from the K4W hardware into

JavaScript-friendly data and events. We hope that by providing most of the logic in the JavaScript layer, developers

can alter the code and experiment with ways to make their Web applications even more amazing.

The ActiveX control is registered by the installer. The JavaScript library, NUIScript.js, is installed into the same

location as the DLL.

KINECTED BROWSER API

INITIALIZATION

To use the Kinect in a Web page, include two script tags, one referencing jQuery, and one referencing NUIScript.js,

found in the installation directory:

<script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery- 

1.8.1.min.js"></script>

<script type="text/javascript" src="NUIScript.js"></script>

In your custom script, use the Kinect class to work with the Kinect device. Before the system can respond to any

events, it must be initialized. The initialization process adds an object tag that instantiates the ActiveX control to

the document and calls the Kinect SDK’s initialization routines. To initialize, call the init method on the Kinect

class. Method init takes an optional dictionary of options described below:

Kinect.init([options])

options (optional) Dictionary of properties that configure Kinect-browser interaction.

 You may specify any of the following key/value pairs. Keys and values are case sensitive.

Key Default Description
skeletonCanvas undefined HTML Canvas Element. Specifies the canvas to which the

system draws skeletons.
depthCanvas undefined HTML Canvas Element. Specifies the canvas to which the

system draws depth data.
drawSkeleton false Boolean. When skeletonCanvas is set and

drawSkeleton is true, the system draws the skeletons to
the specified canvas.

drawDepth false Boolean. When depthCanvas is set and drawDepth is

3

 true, the system draws the depth image to the specified
canvas.

mapper "viewport" String. Either "egocentric" or "viewport".

The viewport mapper maps the Kinect’s camera to the
viewport of the browser through a constant linear
transformation. The result is that skeleton coordinates
on one side of the physical space will map to screen
pixels on the corresponding portion of the browser
viewport.

The egocentric mapper maps all points it believes to be
reachable by the first skeleton it finds. The linear
transformation dynamically adjusts to the estimated
reach of the player. The goal is to allow all pixels in the
viewport to be reachable by the player. This is useful to
allow players to reach any pixel without them having to
move their feet (a lateral translation).

depth true Allow reading the depth image from the device

color false (reserved for future use) Allow reading the color image
from the device

skeletons true Track skeleton positions in the frame

audio false Enable sound source localization
nearmode false Track skeletons in “near mode”

seated false Track skeletons in seated position

SHUTTING DOWN

The ActiveX control of Kinected Browser creates a few threads and maintains some state. Developers should shut

down the Kinected Browser system when the page unloads, cleaning up threads and uninitializing the Kinect SDK.

The Kinect.shutdown method performs this cleanup. Using jQuery, one can easily bind to the beforeunload event

and call Kinect.shutdown().

$(document).on("beforeunload", Kinect.shutdown);

Please note that it may take several seconds to shut down the system.

SKELETON DOM EVENTS

Kinected Browser events on DOM elements by dispatching through jQuery’s event dispatch system. To have your

JavaScript respond to Kinect events, you must do two steps:

1. Add the kinect_enable CSS class to any element that should receive over/out events. This class is

required to reduce the set of elements that the system tracks when computing over/out event signaling.

2. Subscribe to the event using jQuery’s on() method :

$(selector).on("eventName.kinect", handler);

Currently, the package supports joint over, joint out, and joint move events. For each joint, the following three

event names are defined: jointOver, jointOut, and jointMove. These function just like the existing mouseOver,

http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx
http://api.jquery.com/category/events/

4

mouseOut, and mouseMove events in modern browsers. Use the figure and table below and to determine the

correct event names to subscribe.

In some cases, developers may wish to show interface elements that indicate where joints are. For example, two

DIV elements can be absolutely positioned to show where the left and right hands are with respect to the page

(this is done in the sample TestPage.html code). However, these elements should not receive events themselves.

Tag such elements with the CSS class kinect_ignore.

K4W SDK Constant Kinected Browser
event prefix

HIP_CENTER centerHip

SPINE spine

SHOULDER_CENTER centerShoulder

HEAD head

SHOULDER_LEFT leftShoulder

ELBOW_LEFT leftElbow

WRIST_LEFT leftWrist

HAND_LEFT leftHand

SHOULDER_RIGHT rightShoulder

ELBOW_RIGHT rightElbow

WRIST_RIGHT rightWrist

HAND_RIGHT rightHand

HIP_LEFT leftHip

KNEE_LEFT leftKnee

ANKLE_LEFT leftAnkle

FOOT_LEFT leftFoot

HIP_RIGHT rightHip

KNEE_RIGHT rightKnee

ANKLE_RIGHT rightAnkle

FOOT_RIGHT rightFoot

In addition to the individual joints, the system supports mapping multiple joints to a single virtual joint. This makes

it simpler for developers to subscribe to events about a joint on either side of the body. For example, the leftHand

and rightHand family of events also trigger a hand family of events; that is, leftHandOver and rightHandOver both

trigger the handOver event if either hand moves over the target element and neither hand is currently over the

target. This avoids firing the event twice.

DRAWING SKELETONS

For debugging, it can be helpful to see the locations of the tracked skeletons. The drawSkeleton and

skeletonCanvas options passed to Kinect.init() combine to enable drawing skeletons to the canvas on each

new frame. The diagram below shows a skeleton drawn to a canvas. In addition to the skeleton, the system draws

two bounding boxes: one which bounds the skeleton itself and one which shows the “reachable” bounding box –

given the length of the arms and position of the player, this shows where a player is likely able to reach.

5

EVENT PROPERTIES

Event handlers receive a single object with properties about the event.

offsetX (int) X-coordinate of relative position within the element

offsetY (int) Y-coordinate of relative position within the element

clientX (int) X-coordinate in the browser’s viewport

clientY (int) Y-coordinate in the browser’s viewport

depth (int) Distance in millimeters from the Kinect device to the joint

srcElement (Object) Original element that triggered the event

timeStamp (Date) time of the event

player_id (int) player ID

DEPTH DATA

Kinected Browser supports access to the depth stream of the

Kinect hardware. Developers can choose to use the depth image

in two different ways. The system can draw the frames to an

HTML5 Canvas specified by the developer by specifying the the

drawDepthCanvas flag and depthCanvas property when

initializing. This procedure is more efficient than calling the

getDepthData method as the depth data is drawn to the canvas

directly using native code. Pixels are drawn in a unique color per

player whose brightness corresponds to the depth. Background

depth pixels are drawn in grayscale.

For direct access to the data, use the getDepthData method. Using the depth stream will cause additional CPU

load. Since copying over 153Kb of data multiple times per second across the native code-JavaScript boundary is

costly, accessing the depth stream through JavaScript will be slow. Currently the system supplies the image bytes

as elements in a VBArray, which wraps the underlying COM SAFEARRAY pointer (access to the SAFEARRAY type is

Skeleton ID

Bounding box (grey box)

Reachable bounding box (pink box)

http://msdn.microsoft.com/en-us/library/y39d47w8.aspx

6

not directly supported in Internet Explorer). In the future, we plan to add support for refilling a single typed array,

now supported by Internet Explorer 10, as a substantial performance improvement.

Kinect.getDepthData()

Returns: VBArray object containing depth data. Call the getItem method on the returned VBArray instance to get

the depth data for each pixel. The depth in millimeters is the left 13 bits of each value; the player id is the right

three bits of each value. That is, for the depth at pixel (28, 105):

var ddata = Kinect.getDepthData();

var px = ddata.getItem(105 * 320 + 28);

var depth = px >>> 3;

var player = px & 7;

CAMERA ANGLE

You can control the tilt angle of the camera subject to restrictions of the underlying Kinect SDK. That is, the tilt

angle cannot be changed too many times in a short time period, and the angle is restricted to a range of -27 to 27

degrees off of horizontal.

To get the camera angle, call:

Kinect.GetTiltAngle();

To set the camera angle, call:

Kinect.SetTiltAngle(deg);

Where deg is the absolute angle in degrees. Negative values tilt the sensor below the horizontal plane of its base;

positive values tilt above.

NOTE: Currently you cannot call this method immediately after calling Kinect.init. Instead, you should create a

callback that executes more than 250ms after calling Kinect.init. This can be accomplished using setTimeout().

SOUND SOURCE LOCALIZATION

Kinected Browser supports the sound source localization of the Kinect device. To activate this function, pass the

pair "audio": true to the options when calling Kinect.init. The included sample code SoundSourceLoc.html

has a working example.

The source angle and confidence are available by polling the following methods. Refer to the C++ documentation

for notes on precision, accuracy, and range information.

Kinect.Audio.GetSourceAngle()

Returns: the angle (in degrees) from which the device believes the sound emanates. The angle is relative to the z-

axis, which is perpendicular to the Kinect sensor.

Kinect.Audio.GetSourceConfidence()

Returns: the confidence from 0.0 to 1.0; higher is better.

http://msdn.microsoft.com/en-us/library/ie/br212485%28v=vs.94%29.aspx
http://msdn.microsoft.com/en-us/library/jj663765.aspx

7

SAMPLES

The toolkit includes two samples:

TestPage.html, a simple test page that displays the skeleton tracking, depth canvas, and has a DIV element that

responds to handOver and handOut events.

SouncdSourceLoc.html demonstrates how to use sound source localization.

FURTHER INFORMATION

Stay up to date with the latest developments at http://go.microsoft.com/fwlink/?LinkId=271616.

This work was originally published at the 2012 ACM Interactive Tabletop and Surface conference: Liebling, D.J., and

Morris, M.R. Kinected Browser: Depth Camera Interaction for the Web. Proceedings of the 2012 ACM Conference

on Interactive Tabletops and Surfaces. November, 2012.

We welcome your comments! Please send your feedback to kbfb@microsoft.com.

KNOWN ISSUES

1. Kinected Browser can only run in one tab and one process at a time. The Kinect for Windows SDK limits

control of the device to a single process.

2. Including jQuery from a local path (on the local computer) instead of a remote URL can cause the ActiveX

control to not initialize properly.

3. Certain audio devices may cause issues which block echo cancellation and sound source localization from

functioning.

4. Polygonal imagemap areas are not currently supported. Developers can modify the code in NUIScript.js to

add support for polygons by using a standard polygonal hit testing routine.

5. The depth canvas is only drawn when skeleton tracking is enabled and at least one skeleton is tracked.

Developers can modify the code in NUIScript.js to call the drawDepthCanvas method manually.

6. In seated mode, skeletons drawn to the canvas show an extraneous line from the SHOULDER_CENTER

joint to (0, 0).

Please feel free to send bug reports to kbfb@microsoft.com.

LICENSE

This software is licensed under the terms of the Microsoft Research License Agreement (“MSR-LA”) described in

the LICENSE.rtf file installed with this package.

Copyright © 2011-2012 Microsoft Corporation. All rights reserved.

http://go.microsoft.com/fwlink/?LinkId=271616
http://research.microsoft.com/apps/pubs/?id=172689
mailto:kbfb@microsoft.com
mailto:kbfb@microsoft.com

8

INDEX

Camera Angle, 6
depth

data, 5
drawing, 2, 5

init method, 2
initialization, 2
kinect_enable, 3
kinect_ignore, 4
Shutting down, 3
skeletons

DOM events, 3
drawing, 2, 4

Sound source localization, 6
TestPage.html, 1, 4

	Introduction
	System requirements
	Getting started
	architecture
	Kinected Browser API
	initialization
	Shutting down
	skeleton dom events
	Drawing skeletons

	event properties
	depth DATA
	Camera Angle
	Sound Source Localization

	Samples
	Further information
	Known Issues
	license
	Index

