
Supporting Research Collaboration
through Bi-Level File Synchronization

Catherine C. Marshall, Ted Wobber, Venugopalan Ramasubramanian, Douglas B. Terry

Microsoft Research, Silicon Valley

{cathymar, wobber, rama, terry}@microsoft.com

ABSTRACT
In this paper, we describe the design and use of Cimetric, a file

synchronization application that supports scholarly collaboration.

The system design incorporates results of earlier studies that

suggest replicating content on a user’s personal devices may have

different characteristics than replicating content to share it with

collaborators. To realize this distinction, Cimetric performs bi-

level synchronization: it synchronizes local copies of a versioned

repository among collaborators’ computers, while it separately

synchronizes private working files between each user’s personal

devices. Through a year’s worth of in-house use of Cimetric in a

variety of configurations, we were able to investigate key file

synchronization issues, including the role of cloud storage given

the ability to sync between peers; the strengths and weaknesses of

a bi-level design; and which aspects of the synchronization

process to reveal to users.

Categories and Subject Descriptors
H5.3. [Information Systems]: Information interfaces and

presentation---Group and Organization Interfaces

General Terms
Human Factors, Design

Keywords
File synchronization, cloud storage, scholarly collaboration.

INTRODUCTION
In recent years, file synchronization services have been identified

as key to working across multiple devices [8, 14, 26, 27], to

collaborating with colleagues [9], and to keeping files safe by

replicating content in different locations [16]. Consumer-oriented

products such as Groove [10], Dropbox [9], Google Drive [12],

and Windows SkyDrive [35] acknowledge the varying roles of file

synchronization in heterogeneous computing environments in

which people access (and potentially edit) content on the device at

hand, taking advantage of the available level of network

connectivity.

Yet the very people who might benefit the most from file

synchronization technologies have been slow to adopt them.

According to a study by Dearman and Pierce [8]:

“Our findings suggest that people do not trust automatic file

synchronization, even though they employ automatic

synchronization for other types of information: music, email

messages, contact information, calendar data, and task lists.”

We were interested in exploring the adoption and use of file

synchronization technology by observing it in action. To do this,

we developed and fielded an application, Cimetric, that would

appeal to a local community by addressing a common activity,

research collaboration and paper-writing.

In particular, we sought to address an aspect of file

synchronization that has been identified in previous studies, the

distinction between sharing files with oneself and sharing files

with one’s collaborators [11, 17, 24]. While the same general

infrastructure can support both forms of sharing, the rhythm of

synchronization in each case is different: authors may want to

replicate incomplete drafts among their own devices while they

are working on them, and share them when the writing is in a

more intelligible state, ready for their collaborators’ attention.

They may also work with a different set of files than they share;

collaborators may rely on their own datasets, analysis tools, and

editors to address distinct parts of a complex task [17].

We used a topology-independent replication platform [25] as the

basis for implementing Cimetric. Because the platform allows files

to be synced between peers, we were able to explore the role of

cloud storage in a collaboration in which some coauthors are co-

located and others are distant, and some work is almost

synchronous, while other work is spread out over time. Would co-

located collaborators be able to take advantage of the efficiencies

of peer-to-peer synchronization? What kind of feedback would be

necessary for distant collaborators to know whether their local

files were up-to-date and who was currently working on them?

Would a design that distinguishes between syncing personal files

on one’s own computers and sharing files with colleagues better

support collaboration or would the added complexity of a bi-level

sync be a burden? Observations of Cimetric in use over time and

in support of real work helped us answer these questions.

This paper begins by discussing related work, including studies of

file sharing, products that are currently used by people engaged in

various sorts of scholarly collaboration, and previous work on

collaborative writing. We then describe Cimetric, the application

we developed to reflect our understanding of scholarly

collaboration and local needs. After these background elements

have been laid out, we describe our observations of Cimetric in

use over the course of a year for collaborative writing and other

related file sharing activities. Finally, we summarize what we have

learned and evaluate our efforts against our original aims.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

GROUP’12, October 27–31, 2012, Sanibel Island, Florida, USA.

Copyright 2012 ACM 978-1-4503-1486-2/12/10...$15.00.

RELATED WORK
There are three types of related work to consider: Studies of file

sharing; research prototypes and products that support file

synchronization; and studies of collaborative writing, particularly

those in performed academic environments. The first two types of

related work will be the most salient in identifying findings for our

work; the third type of related work feeds into our discussion of

Cimetric’s design.

Studies of file sharing
Although our work can take advantage of the lessons learned by

studies of general file sharing, for example, that awareness of the

activities of people who are not actively collaborating may be

useful to the group [21], or that there are different aspects of

activities collaborators need to be aware of [33], we are the most

focused on sharing that involves the co-creation of content in

versioned systems. To this end, Fitzpatrick et al. describe different

types of CVS events (for software developers and beyond) which

need to be brought to their group’s attention [11] and Yamauchi et

al. discuss the role of CVS repositories in successful

collaborations [36]. In general, however, we are much more

narrowly focused on synchronization events.

Voida et al. [30] discuss general practices related to sharing files,

identifying problems such as choice of sharing service and naming

recipients; most salient to our work is their discussion of

breakdowns, including several problems we anticipated such as

the continued need for out-of-band notification to highlight new or

changed content. This is a general problem for file syncing, and,

as we discuss, we experimented with a variety of ways of

surfacing changes, and documenting file location and provenance.

Although we are aware of the eventual need for introducing

security mechanisms [33], we are focused most closely on the

design and use of Cimetric’s synchronization machinery and the

feedback it offers users about its status.

File syncing systems and products
General synchronization research has been the province of the

systems community (e.g, [4, 25, 26]); until recently, the results of

this work have not played a role visible to users. Of particular

interest is Perspective, a decentralized storage system for home

use and fielded in homes [26]; one important difference, however,

is that Perspective is not designed to support evolving content.

Systems work in the HCI/CSCW community has long been

focused on shared online repositories (e.g. [5, 21]); needless to

say, by now there are many more research systems and products.

Instead of taking an approach that relies on a centralized server- or

cloud-based remote repository, we are focusing on a synced local

store to support sharing.

Because we are interested in real use (albeit in a local setting so it

is easily observed and supported), we compare our approach with

three types of products our users might consider in lieu of

Cimetric: Dropbox, Google Docs, and popular distributed version

control systems such as Git (and online GitHub repositories).

Dropbox is a widely adopted application that syncs local files

among devices using the cloud as an intermediary that maintains

file versions, which can be accessed through a Web browser.

While Cimetric has some of the same functionality as Dropbox,

we are interested in seeing the effect of an optional cloud store, as

well as investigating an explicit distinction between working files

and shared files. Finally, while Dropbox hides much of its sync

mechanism (users may not be aware of how Dropbox works,

conceiving of it as a literal dropbox or a cloud-only store [18]),

Cimetric allows users to inspect and control many aspects of

synchronization, so they can address, for example, bandwidth

limitations and differences in work style.

Google Docs supports on-line synchronous editing of cloud-

resident documents. Although it is a popular tool for the co-

creation of content, unlike Cimetric or Dropbox, it requires

always-on connected operation to support content changes, as well

as the adoption of specific editors.1

Cimetric shares some functional aspects of source/revision control

systems (e.g. CVS [7], Git [1], Mercurial [29], and Subversion

[2]), including provenance-tracking, offline working sets, and

asynchronous updates to shared state, although Cimetric tracks

provenance on a per-file basis only and does not group edits to

multiple files as a single changed version. More to the point,

because it was designed for general collaboration, Cimetric omits

features of revision control systems that are aimed at software

development (e.g. branching, automatic merging, and exclusive

locking); our prior study suggested that the complexity of a

revision control system was likely to require more administrative

overhead and intellectual effort than many ordinary users in our

target environment would tolerate [17].2

Studies of collaborative writing
Although our work is not aimed at extending the scope of previous

collaborative writing research [1, 23, 15, 19, 32], we rely on this

research to inform our understanding of some salient local work

practices and perspectives (as documented in [17]). As these

studies have shown, collaborative writing is largely asynchronous

(although it may become more synchronous as deadlines

approach), crucially involves email for draft-passing, and is tied to

the authors’ normal content production tools.

CIMETRIC SYSTEM DESCRIPTION
As a result of our understanding of the intended use situation and

our need to more closely observe the problems that arise from file

syncing [3, 27], we developed an application called Cimetric.

Cimetric is a Windows application that manages documents and

other files associated with ad hoc collaborations. It serves multiple

purposes: collaboration (sharing data with others); roaming

(sharing data with oneself on different devices); and backup

(copying data to secondary storage).

We designed Cimetric to have the following key attributes:

 Decentralized synchronization that does not rely on a single

authority (such as a central server), and that can handle the

demands of offline operation;

 Bi-level synchronization that distinguishes between sharing

work in progress with oneself across devices, and sharing

versions of these files with one’s collaborators;

1
 Its successor, Google Drive [12], has some support for offline

operation; however, unlike Cimetric, access to shared files that the

user does not own requires network connectivity.

2
 In reported past experiences, version control systems were

adopted by some members of a collaborative writing group, and

not by others (because of their apparent overhead), thus thwarting

their original purpose.

 User control of change integration (in other words, preventing

the synchronization process from accidentally destroying local

changes by overwriting them);

 Sufficient feedback to allow users to understand the system

state (e.g., whether synchronization has completed when one is

about to go offline);

 Lightweight mechanisms to show users what their collaborators

are doing (e.g. who last wrote a file, or who is working on it

now); and

 The ability to use cloud storage without relying on it.

The remainder of the section describes Cimetric’s abstractions,

architecture, and the feedback it offers users.

Abstractions
Cimetric is based on three central abstractions: collaborations,

worksets, and repositories. From a user’s perspective, each

collaboration has two parts: (1) a workset, which contains a user’s

working files for a particular effort, and (2) a corresponding

repository, which is the set of files that are shared among the

people who are working together. A workset is a folder (or a folder

hierarchy) in the file system which is managed by the user, and

which may be replicated among the user’s computers. Files in a

workset are not versioned; they look and behave like normal

Windows files. A repository is a versioned file store that is

managed by Cimetric. A user controls the movement of files

between workset and repository and vice-versa via a lightweight

mechanism that allows users to communicate with each other

about who is working on a file (or files); this mechanism also

enables users to incorporate their colleagues’ changes when they

are ready, so their own changes are not overwritten.

From the system’s perspective, a collaboration may be hosted at

multiple client computers; the repository that stores the

collaboration’s constituent files is replicated in full on each

computer. Worksets—i.e. a user’s working files—may be

replicated as well, so users can continue working seamlessly as

they move from, say, a work computer to a laptop, then to a home

computer. A user may be involved in multiple collaborations

(possibly with different collaborators) using the same instance of

the Cimetric application.

A repository instance may be hosted in the Azure cloud [6] if

desired, but the cloud is not required by the application. For

example, collaborators may decide to create an Azure repository

instance because one person works outside the firewall. If several

collaborators are on the same subnet, and are working nearly

synchronously because a deadline is approaching, they may prefer

to use Cimetric’s peer-to-peer synchronization because it is

significantly faster and lower overhead than syncing via the cloud.

Architecture
Figure 1 shows the Cimetric architecture. In this example, Ted and

Cathy are working together on a paper. Ted’s computing

environment includes a home computer, a laptop he works on

while he commutes on the train, and a computer that he uses at

work. Cathy is only using two computers to work on the paper, her

laptop, and a work desktop. Ted’s working files (his Cimetric

workset) are replicated on each of his three computers, but as

Figure 1 shows, his laptop usually syncs with his home computer

when he brings the laptop home, and with his work desktop when

he brings the laptop back to work. Likewise, Cathy’s working files

are replicated on each of the computers she’s using to write the

paper. Both Ted and Cathy may have files replicated on their own

computers that the other doesn’t see; practically speaking, these

files may include source content related to a particular activity

each is working on alone, say creating the figures, or temporary

files generated in the course of writing—for example, intermediate

versions, that aren’t suitable for sharing, or PDFs of references

one author is reading for the purpose of filling in citations.

Each computer involved in the collaboration also has a complete

local copy of the repository. Like worksets, repositories are

synchronized with one another opportunistically. In Figure 1,

Cathy’s repositories sync with one another, and with the

repository instance on Ted’s work computer. The repository

instance on Ted’s laptop syncs with his work computer too. In this

scenario, Ted and Cathy have discovered that it would be

convenient to have a repository instance in the cloud because they

tend to work outside of the firewall fairly frequently. Not all

repository instances must sync with the one hosted in the cloud

though—only Ted’s home computer and laptop and Cathy’s work

computer sync with the cloud.

We have discussed how worksets sync with selected partners, and

how repositories similarly sync with one another. How do files

move between the two local stores? Users control the movement

of files as they move between a workset and the corresponding

local instance of the repository by using an explicit, user-initiated

mechanism. Each time a user selects files from the repository and

moves them to his or her workset, the mechanism overwrites the

existing versions of the files; the system asks the user’s permission

if a newer version is being replaced by an older one. When a user

moves files from a workset to a repository, new versions of the

files are created in the repository instance. Older file versions can

be moved from repository to workset at a user’s request; they also

can be inspected in place if, say, a user wants to recover specific

text. The portion of the repository browser that provides access to

older file versions is not prominent, however. It relies on user

discovery, because we recognize that it is relatively uncommon for

a user to return to an earlier file version.

Versions are visible (on demand) to users for three reasons. First,

they protect a user against accidental loss. Because we are urging

researchers to use the system for real, time-critical efforts, we are

being conservative about potential content loss, regardless of its

source (user error, system malfunction, or design infelicities).

Figure 1. An example Cimetric configuration.

Second, our system allows users to modify shared files when

disconnected and, in general, to make updates asynchronously.

Explicit versioning makes it possible to coordinate such

modifications and to detect conflicts. Finally, system-supported

versions enable us to probe the utility of specific aspects of the

version abstraction from a user’s perspective: will users ever

retrieve content from old versions? Will they replace newer

versions with older ones? Will they consult them to resolve

conflicts? Will they freely overwrite their collaborators’ efforts,

knowing that no content is destroyed?

As Figure 1 shows, files may be checked out of or into any local

repository instance, and they need not be checked into the same

local repository they were checked out from. To accomplish this,

workset files must carry information about their provenance at the

repository of origin. At check-in time, the provenance of the

workset file is compared with that of the version (or versions) in

the target repository. If the former is not a superset of the latter, a

conflict exists. This same mechanism allows for the detection of

versions submitted simultaneously to different repositories. Since

Cimetric allows simultaneous updates, the best that we can do is to

show the conflicting versions to users and let them resolve the

conflict after the fact.

Cimetric uses the Cimbiosys topology-independent

synchronization protocol via its replication library [25].

Practically, we could have used other popular sync technologies

that offer an SDK to support application development, but as we

explained earlier, we were interested in exploring certain features

of Cimbiosys (for example, decentralized peer-to-peer

synchronization) through use. Cimbiosys uses Windows

Communication Foundation (WCF), and the default mode of

communications uses TCP connections and the TCP protocol.

Cimbiosys guarantees eventual consistency. In other words, over

time the replicas will converge and each will store the latest file

versions; its design assumes that network connectivity will be

intermittent, and that users may wish to work without cloud

storage (for reasons such as privacy or performance).

It is often difficult for users to set up peer-to-peer network

connections. Because we didn’t want to burden users with the

need to pass around complex network addresses to join

collaborations, a broadcast protocol enables Cimetric instances to

discover each other when they are on the same network segment;

user-assigned names allow people to identify the appropriate

collaboration. Thus, instances on the same network segment can

establish connections with one another easily. Alternatively, there

is a user interface for inserting the URL of a designated

collaborator by hand (in this case, we might expect collaborators

to email each other the URLs of their own instances). Finally, the

cloud can be used as a central point for establishing a potential

sync connection between local repository instances.

User interface
Most of the time, Cimetric does not need to be a visible part of

collaborators’ work; as is the case with Dropbox and other sync

infrastructures, people interact with a synced folder in the file

system the way they would normally, editing the files with their

usual editors, and managing the files through the folder hierarchy.

Cimetric can sync a user’s working files in the background,

keeping them up to date with a sync partner if the user works on

multiple computers capable of syncing with one another. That

way, it is easy for a user to switch among devices.

As an aspect of our investigation, certain aspects of Cimetric’s

operation are revealed through a browser, shown in Figure 2. Each

browser tab corresponds to a collaboration (which may involve

different people and computers). Workset files are listed on the

left; repository files are listed on the right. The hierarchical

structure of the workset is represented in terms of paths; in the

collaboration shown in Figure 2, no subdirectories were used.

Repository files show when they were last checked in (and by

whom, from which computer); comments and advisory locks are

shown if they exist. The advisory locks do not prevent other users

from using the files—they are simply a visual indication that

someone else may be modifying the same file; we expect this type

of conflict to be resolved socially.

The workset file list uses visual conventions to indicate whether

the user has changed the file since the last checkout, or whether

there is a newer version in the repository. If both conditions are

true (the user has changed the file and there is a newer version in

the repository), then a user-generated conflict exists. We leave it

to the user to resolve such conflicts; automatic resolution is apt to

result in a merge that does not take user intent into account.

Repository conflicts are likewise indicated, and are left to the

collaborators to resolve. For example, if two people check in new

versions of the same file, a repository conflict will result, and will

require human attention.

The browser also gives the user access to the sync process. A user

can initiate a manual sync and can get answers to questions such

as “When did my repository and workset last sync? Where is the

workset folder stored? Who is working on what file, and what are

they doing?” Other functionality, hidden more deeply in the UI,

allows the replication-savvy user to control parameters such as the

sync interval (how often the system attempts to sync with its

peers), or to turn automatic sync off and work with user-initiated

sync. Logs provide an additional means of inspecting what has

happened during the sync process.

As is true with some popular file synchronization services, a

history mechanism allows users to inspect a file’s history and

retrieve older versions of it; like most version control systems (and

unlike most file sync services), the versions are created explicitly

when they are moved into the repository, with the idea that the

versions that are shared with collaborators are more meaningful

than the versions created by automatic workset syncs. Older

versions may be examined or users may move them into their

worksets (in which case, users are consulted to make sure that

their intention was to overwrite a more recent version of the file).

Cimetric’s user interface is designed to meet the expectations of

its immediate audience, people who are generally familiar with

synchronization concepts. If the system were to be used by a

broader audience, some aspects of its functionality might be more

readily accessible through visualizations (for example, of file

movement during sync); others may end up being hidden from the

casual user. Conversations with our user community, as well as

Figure 2. Cimetric Browser

the results of a broader study [18], indicate that synchronization

has been rendered overly opaque as it stands. Changes to the user

interface have been iterative, and have relied on continued

feedback from the user community.

OBSERVING CIMETRIC IN USE
For Cimetric to be adopted and used locally, it needed to address a

real problem and be sufficiently reliable for people to use it in the

face of deadlines. Potential users needed to be assured that their

data was versioned and safe. Crash recovery needed to be simple,

and involve only a restart of the application. Furthermore, the

application needed to be easy to use with existing material, and

easy to opt out of if it didn’t satisfy a group’s needs.

In this section, we describe how we fielded Cimetric and what we

learned from doing so. We recruited real users in our own

organization; we wanted to be able to support these users and

observe their collaborations closely. We knew that if Cimetric

proved to be useful, the researchers who used it would pull in

additional collaborators and there would be more adoption as time

went on.

To recruit users, we gave talks and demos to describe Cimetric

and what it might be used for; we also talked to people who were

in situations that might benefit from the application (e.g. writing

papers and sharing data files). To discover how the system was

being used, we relied on a multi-dimensional approach: (1) we

supported users (in person and via email), with an eye toward

finding out what they were doing with the system; (2) we engaged

in iterative design, creating frequent releases of the application

with new user-driven features and bug fixes so that users felt their

needs were being met; (3) users sent us feedback, both to

influence system design, and to be good citizens; and (4) we

interviewed users during and after they used Cimetric, using their

own repositories to elicit responses. Thus our data consists of

notes taken during observed use; recorded interviews; the file

repositories themselves (examined with the users’ permission);

system logs; and accumulated email correspondence.

The observation period has lasted about a year, and has involved 9

distinct collaborative activities (summarized in Table 1). One of

the collaborations, UC9, was active until recently, and two of the

others, UC3 and UC5, still see intermittent activity. In all, there

were 12 different users involved in the 9 collaborations; in five of

the collaborations, a member of a Cimetric-based collaboration

used the application for a second or third project.

Use characteristics
So far, adoption has been dominated by dyads, pairs of

collaborators sharing files, although four-person and three-person

collaborations used the system too. One singleton also used

Cimetric to replicate his own files among multiple devices (much

as he used Live Mesh, a predecessor to Windows Skydrive [35],

earlier). Although we described the application to prospective

users as collaborative, we felt that single-person adoption might be

a viable way to encourage collaborative use when this user began

new collaborative projects.

Table 1 summarizes the use cases we have been tracking in the

field. Although we requested that internal users let us know when

they installed the system, people in other organizations inside our

company could also install it and use it without our intervention

(and the existence of several mystery repositories leads us to

suspect they did). Table 1 also indicates whether the collaboration

used a cloud replica, and whether an external collaborator was

involved.

The uses were by-and-large successful: in 7/9 cases, the desired

collaborative artifacts were created, and people did not lose their

data when the system occasionally crashed (with one exceptional

situation we will describe later in this section). In one case, UC3,

the prospective Cimetric users switched to email, and in another

case, UC9, the users switched to Dropbox when they were

revising their paper; both changes were linked to cloud

malfunctions.

The range of uses we observed enabled us to address key concerns

about our strategy for supporting file sync and sharing, including:

 The role of the cloud;

 The efficacy of a bi-level design; and

 Which aspects of synchronization to reveal.

We have continued to encourage people to use the system now

that it is stable and has been developed to the point that it is useful

to different kinds of research collaborations. In the future, we

would like to observe larger collaborations.

Inherent risks of synchronization

UC7 used Cimetric for four months in a configuration we did not

intend; he used the system by himself to replicate files between his

office computers so he would not need to store intellectual

property on an outside provider’s cloud (for example, Dropbox,

uses Amazon’s S3 cloud service). Before Cimetric, UC7 had also

experimented with Microsoft’s Live Mesh to sync files between

his own computers. Herein lies a cautionary tale.

Dearman and Pierce warn us:

“We believe that the lack of trust in automatic file

synchronization is due in part to the higher cost of failure. If a

user loses an email or a calendar entry, the consequences are

relatively minor, whereas losing a file that contains hours of

work is much more traumatic.” [6]

UC7’s synced files included a subdirectory that contained a

critical presentation related to his project. This subdirectory was

replicated on two out of three of his office computers. Earlier he

had used Live Mesh to replicate the subdirectory on all three of his

office computers, as well as in the cloud. As he worked on the

presentation in a last minute push before a conference, the file

mysteriously vanished. He was justifiably upset: what had

happened?

ID Description
of

users
External

collaborator
Cloud

replica?

UC1
Sharing project-
related files

4 No No

UC2 Writing a paper 2 No No

UC3
Sharing project-
related files

2 Yes Yes

UC4 Writing a paper 2 Yes Yes
UC5 Writing a paper 4 No Yes
UC6 Writing a paper 2 No Yes

UC7
Developing
algorithms

1 No No

UC8 Writing a paper 3 Yes Yes
UC9 Writing a paper 2 Yes Yes

Table 1. Summary of observed Cimetric use

Figure 3 shows the drawing he created on his whiteboard to

explain his model of how the sync applications interacted with one

another. The “x” represents the folder that contained his lost

presentation; “SkyDrive” is the Live Mesh cloud store, and 1, 2,

and 3 are his computers. The left (red) box shows the folders on 1,

2, and 3 that are synced by Live Mesh, and the right (blue) box

shows the folders on 1 and 2 synced by Cimetric. Interaction

between the two systems’ conflict resolution code apparently

caused the file vanish. Naturally, the undesired delete propagated

(the way it would in any replicated system). Although UC7 was

subsequently able to recover a recent version of the file using a

Windows 7 feature, this mishap still served as a visceral reminder

of Dearman and Pierce’s warning.

Because synchronization is usually fairly silent once it has been

set up (i.e. in systems like Dropbox, LiveMesh, and Cimetric, the

synced folder looks like a normal folder), we might expect this

type of interaction between sync applications to be relatively

common. It is hard for users to remember which folders have been

synced, and it’s easy to imagine installing sync apps on top of

each other, especially if the original sync app did not perform as

expected. In other words, if one solution doesn’t work, a user will

probably try to solve the synchronization problem a different way,

possibly without uninstalling the first solution. Sync applications

that are simultaneously applied to the same folder structure may

lead to unexpected side-effects or misidentified update conflicts.

Figure 3. UC7’s account of replicated system interactions

The role of the cloud
A significant proportion (6/9) of the collaborations used a cloud

replica, a copy of the shared repository that was stored in the

cloud and synchronized with other repository replicas as a peer.

Using the cloud as a peer (rather than as an integral part of the

synchronization architecture, as it is in many sync tools) turned

out to be an effective way of incorporating the cloud without

relying on it. A brief initial period of use revealed that the cloud

would be necessary for three reasons:

 Some of the research collaborations involved external

colleagues who worked outside the firewall, a situation that

made setting up a peer-to-peer network difficult.

 Changing and unanticipated configurations made the cloud an

on-demand bridge to connect sync partners that may have

been peer-to-peer in the past.

 Power saving software, which is increasingly common,

sometimes made the cloud necessary to ensure a path from

one PC to another, even during normal working hours (i.e.

PCs were often automatically powered down if they were left

unattended, even for a brief period of time).

Making the cloud optional, on the other hand, was useful for four

countervailing reasons:

 When collaborators were physically proximate (working on

the same subnet), peer-to-peer synchronization had better

performance; syncs seemed instantaneous to users during

periods of intensive semi-synchronous work.

 If the cloud wasn’t working (or the connection was slow), it

was still possible to sync some users’ files. This situation

came to pass several times during the longer-running

collaborations.

 Collaborations with security concerns did not want to store

data on an externally-owned cloud. In this case, the cloud

was not externally-owned, but often sync tools use an

external—or third party’s—cloud services.

 Cloud services may incur additional costs; the cloud may be

eliminated from the network when it isn’t necessary. In this

case, we absorbed the cost of the cloud for the prototype, but

we were aware of storage and transaction costs silently

accruing, and at a larger scale, these costs could have been

noticeable to an organization.

Initially we fielded the system without a cloud replica, in line with

the decentralized eventual consistency model assumed by the

Cimbiosys platform [25]. Indeed, the system’s flexible peer-to-

peer topology is a distinguishing feature of the platform, one we

were anxious to test. This completely decentralized strategy

worked for some collaborations (and for other collaborations some

of the time), especially for those involving co-located researchers

connected to the network during overlapping time periods. In

other words, people were not necessarily working on content

synchronously, but their computers were connected to the network

in such a way that there was an eventual path from one computer

in the collaboration to another.

Without the ability to create a cloud replica, adoption was slow.

Although the system provided collaborators with certain

advantages (the ability to track who was working on what files, for

example, and the ability to instantaneously and efficiently

synchronize files among personal machines), the advantages

weren’t so profound that they outweighed researchers’ reluctance

to adopt a new technology when a deadline was in sight.

Furthermore, corporate IT had steadily rolled out new automatic

power saving software, so it became increasingly difficult to reach

any replicas if a user was trying to sync files when her coworkers

were away from their desks (including times during the day when

machines powered down because people were in meetings).

Without a cloud replica, one’s collaborators all needed to be

within the corporate firewall at least part of the time, and much

collaboration in the lab (and 4/9 of the Cimetric collaborations)

involved at least one academic collaborator who was always

outside the firewall. The ability to span the firewall turned out to

be a significant advantage in enlisting users, and was necessary off

and on throughout a collaboration.

It is telling that although we began writing this paper using

Cimetric in a wholly peer-to-peer fashion, by the time we were

finished, we found it necessary to create a cloud replica of the

repository we used to store our work. Normally we all work in the

office, but one day close to the deadline, several of us ended up

working from home, and our sync patterns changed abruptly; as

with several of the other collaborations, we needed the optional

cloud replica midstream. Interview data suggests UC2, one of two

collaborations that were successfully completed without a cloud

replica, would have created one if the capability were available.

Instead, the dyad temporarily shifted to email, and shifted back to

Cimetric when they returned to the office.

This pattern of shifting in and out of cloud-based syncing

appeared in multiple collaborations as collaborators were added

(or dropped out of the collaboration) and as cloud availability

changed. UC8 started with a cloud replica; one collaborator was

outside the firewall, and the cloud replica was necessary. During

the final revision cycles, the cloud was unavailable and the

external collaborator was out of the picture. Rapid revision cycles

continued via a peer-to-peer connection as the remaining two

collaborators worked closely.

Furthermore, it is easy to forget that there may be storage and

transaction costs associated with cloud-based repositories; a peer-

to-peer solution is, for all intents and purposes, free. Although

storage is generally cheap, other demands—e.g., maintaining an

open connection to the cloud so repositories can sync at the

specified frequency—can make the costs of offering such a service

conspicuous.

Evaluating the bi-level design
One of our central research questions concerned the efficacy of the

bi-level design: did Cimetric’s bi-level synchronization support

collaboration in a useful way, or did its complexity overwhelm

any potential benefits?

There are several different ways we can reflect on this question:

(1) We can examine how people configured the system—did they

ever use synced worksets in conjunction with synced repositories

in configurations akin to Figure 1? If they didn’t, did they adopt

workarounds that created a bi-level configuration similar to the

one the system supported? (2) Did users perceive any advantages

to the system behaviors that stem from this capability, and if not

why not? As part of this question, we discuss two related aspects

of bi-level design: repository versioning, and controlling the scope

of what is shared.

Configurations. We were aware at the outset that people might

configure Cimetric in a variety of ways: e.g. one user might not

sync worksets (because she writes on a docked laptop that she

carries with her), while another might rely on workset

synchronization (because she uses a desktop with a big screen in

her office, and carries a laptop home with her). We anticipated that

at least some of our users would find synced worksets useful. So

at first blush, the question seems simple: did anyone (besides

UC7, the singleton user we have already discussed) configure

Cimetric to take advantage of workset replication?

The answer is, in fact, not simple. In principle, Cimetric users

could have used workset replication more often than they did;

records show that users often accessed Cimetric repositories from

more than one PC. So we asked them why they didn’t take

advantage of this facility. Three reasons emerged: (1) the lack of a

cloud-based workset replica; (2) users’ need to reconfigure their

computing resources on-the-fly; and (3) the complexity of

configuring bi-level sync.

The first reason parallels our initial problems with repository

syncing: that is, worksets weren’t replicated in the cloud; they

relied on peer-to-peer syncing. Thus all of the problems we

discussed in the previous subsection were true of worksets as well

as repositories.

The second reason was more nuanced: we did not foresee just how

often users would need to change configurations on the fly. In

other words, although it was easy for new people to join a

collaboration (and later, to add a cloud replica to an existing

collaboration), it was more difficult for users to change a system

configuration mid-collaboration. The design precluded adding a

sync relationship between existing worksets or changing the way

an existing sync relationship was set up.

For example, one collaborator in UC2 wanted to add another

workset/repository pair when he found himself working on his

laptop (which he didn’t often use) in an unexpected place—a

café—outside the firewall. Before a cloud-based repository replica

was available (as was the case in the system’s early days), this

type of improvisation was completely impossible. Even so, if there

wasn’t already a replica in the cloud, nothing could be done to

establish one in this situation short of contacting collaborators to

find out if they were in a position to set one up. Finally, there was

no provision for the remote worker to access his existing workset.

Thus to take full advantage of bi-level sync—and this speaks to

the third point—users had to plan their work and anticipate the

computers they would be using and places they would be working.

In retrospect, we realize this is a lot to expect. The problem was

not so much that Cimetric users did not write on multiple

computers, but more that if they did, they did so in an

opportunistic way. The ability to synchronize a workset with the

cloud would have enabled the system to better handle these

unanticipated configurations; that way, if a user found him- or

herself working unexpectedly outside the firewall on a different

computer, his or her working files would still be accessible (in

addition to the files that had already been moved into the

repository).

Workarounds. It is possible for users to set up bi-level

synchronization themselves. Ironically, one of the collaborators in

UC9 was unaware of Cimetric’s ability to sync worksets, but he

perceived a need to do so. So instead of using Cimetric to sync his

workset folder (i.e. his work-in-progress), he used Dropbox to

sync this folder and Cimetric to sync the repository he shared with

his co-author. Thus he effectively simulated the bi-level design by

using the two sync services—Cimetric and Dropbox—in tandem.

Repository versioning. While worksets were normal Windows

folders, repositories were versioned; each time a user shared his or

her work, a new version of the file would be created. Earlier

studies documented that user communities like ours want versions

to be maintained on their behalf [15, 17, 23]; popular sync and

sharing applications such as Dropbox and Google Docs support

for automatic versioning (with the important distinction that in

those services, versions are created when files are saved, not when

they are explicitly shared). Code development efforts [11] or

compliance- and recovery-oriented solutions [20] also make

productive use of versions. Would these results generalize to

Cimetric?

Again, the answer varied with the collaboration. In some Cimetric

repositories (e.g. UC1, UC2, and UC5), the co-authors maintained

the same naming conventions they had in the past: collaborators

passed drafts back and forth, appending their initials to indicate

who had checked in the draft and renaming the file to note the

version’s role in the overall writing process. In others (e.g. UC9),

the users let Cimetric’s file versioning do a larger proportion of

the provenance maintenance work for them.

For example, both authors in UC2 were asked about apparently

branching versions that used naming conventions (for example,

one collaborator’s file, intro.tex, would be revised by a second

collaborator, and saved as intro-svr.tex). One of the UC2 authors

said, “Oftentimes when I have to revise a section, I would revise it

in a separate file so that if for some reason he wants to go back to

the old stuff, he can do it.” The other author in this collaboration

adopted a similarly conservative approach and retained all

changed text as comments in the shared file. “You don’t take away

text,” he explained. In other words, appending one’s initials is a

way of acknowledging the contingent nature of the changes a co-

author introduces. On the other hand, UC9’s collaborators, who

worked together over a much longer period to create a monograph,

simply overwrote one another’s files, and relied on the system’s

versioning mechanism to keep things sorted out. In practice, none

of the collaborators ever returned to old versions of their files, but

the ability to do so (at least in theory) was comforting.

Controlled sharing. Bi-level design also enabled users to control

the scope of what is shared. In other words, users could sync work

that they had no intention of sharing (e.g., intermediate files used

to produce figures, temporary files created in the process of

running LaTeX, and data used to produce the results that appeared

in a publication). This aspect of the bi-level design was successful;

many users created files they did not share.

Revealing synchronization processes

As Cimetric development progressed, we experimented with

different models of which aspects of synchronization to reveal,

and which aspects could remain hidden. Certainly revealing too

much was as confusing and as unhelpful as revealing too little. We

kept the design of this feedback literal, with the idea that an adept

designer could generalize from what we’ve learned, and

potentially create better visualizations of portions of the sync

process.

From interviews and observing use, we found that it was useful for

the tool to reveal three types of information: information about file

provenance; the status and progress of the sync itself; and an

overview of what has changed.

Provenance. Where did a file come from? When was it last

synced? Users found this information to be useful to track their

own activities as well as their collaborators’ work. Figure 4 shows

a portion of a Cimetric browser that a user cited as useful. From

this listing, he could determine not only who had last written the

file, but also which computer it came from (information which

might be as useful to the user who had checked the file in as it

would be to his collaborators).

Figure 4. Snippet of file provenance information

Sync complete. When did syncing in each direction (inbound and

outbound) complete? It is important that this information be

unambiguous so a user can be confident that local changes have

been fully propagated, and that incoming files from other

computers are up-to-date. In other words, it is important to make

sure the user knows that another computer was successfully

contacted (sync began), and that the sync finished (sync

complete). If the sync involves a cloud replica, users need to know

the status of this connection that is assumed to be ‘always on’.

Changes. Who has synced with the repository since the last time

the user looked, and from where? What did they change, and have

they added new files? This information provides useful feedback

when collaborators are working at a distance (has everyone seen

my changes yet? Has a specific co-author started to work on the

paper yet?) and in a decentralized system, it reassures users that a

remote collaborator’s repository has synced with the others.

Some aspects of the sync process were visible and controllable,

yet users did not seem to find them useful. For example, users

were more apt to repeatedly force a sync than they were to change

the sync interval to be more frequent (it was 5 minutes by default).

We also found that users wanted to know when the cloud was

available, and needed progress indicators for syncs that were slow

to complete.

Collaborators in UC3 were sharing numerous large data files and

presentations, in addition to the files directly relevant to the

writing process, and the collaborators in UC9 created many

smaller files as part of co-authoring a scholarly monograph over

the better part of a year. These two collaborations revealed

shortcomings in the initial synchronization feedback model.

Specifically, both of these collaborations found it hard to tell

whether their local files reflected what was in the cloud, and what

had been added to the repository. For example, the collaborator

who joined UC3 was not sure when the first sync was complete, or

how long the sync would take. In an email, he said:

“After the first couple files showed up I thought the repository

was somehow smaller than what [I] expected but then other

files started showing up. Of course, being an impatient user, I

have hit the sync button a few times so am [somewhat]

unclear on whether that causes it to go retrieve additional

files (via magic) or if they are being downloaded over some

schedule so as to not swamp the network."

Thus, the person who had set up the repository had to explicitly

specify how many files to expect, and roughly what was in the

repository. Would it have been easy to add such an indicator to

Cimetric’s user interface? This is a case in which the base

technology did not support such a change: the sync protocol did

not surface this information. Nor could either user control the sync

order: files that were more germane to current tasks might well be

the last to sync. It is frustrating for both sides of a dyad to watch a

series of large (but not immediately necessary) files sync while the

small file necessary to make progress on the current portion of the

joint effort is waiting in the wings.

CONCLUSION
Through the development of a file synchronization application,

and by observing its local use for scholarly collaboration, we set

out to make three types of contributions: (1) to better understand

the role of a cloud store in file synchronization; (2) to build a

bridge between device synchronization and file sharing; and (3) to

understand which aspects of synchronization to reveal to users.

What we learned was that a confluence of factors—organizational

firewalls; the power-saving mechanisms and policies that are

becoming increasingly commonplace; and fluid unanticipated

configurations of people and computers—made it necessary to

give users the option of syncing with the cloud. Yet there are

reasons to keep a cloud replica optional, rather than making it a

fixed element of every session. Performance, flexibility, cost, and

privacy all arose as reasons to retain the possibility of peer-to-peer

syncing. For example, if users are working with highly sensitive

material—e.g. code that represents significant intellectual property

or data that might compromise study participant privacy—they

may not want to store it on an external cloud service. Furthermore,

peer-to-peer syncing was much faster than cloud-based syncing

when the collaborators remained on the same subnet and were

working in a semi-synchronous way as a deadline approached.

Thus the topology-independent aspect of Cimetric was successful

as long as there was an option to create a cloud replica of

working files or shared content.

What of our attempt to separate device sync and file sharing? Did

the bi-level design add needless complexity? Yes and no. The

difficulty of understanding how to configure the system and the

difficulty of changing configurations on the fly made users less

likely to take advantage of bi-level syncing. Yet the work-arounds

we observed (such as UC9’s adoption of Dropbox to sync

worksets) convinced us of two results: (1) maintaining a

distinction between the two types of syncing is useful and (2)

worksets would have benefitted substantially from the option to

sync with the cloud.

Finally, we consider the sync information we made visible, and

what we did not. In most situations, people do not examine when

the last sync occurred, nor do they check the provenance of a file

(where they received it from at sync time). Yet when breakdowns

occurred, that information—and more (as was apparent in the

feedback from UC3 and UC9)—was useful. Because we fielded

the Cimetric application among technically-savvy users, it would

be interesting to see whether the sync information would

interpreted correctly among different user populations; some of it

(when the last sync completed, who last edited a file, and from

where) can be reassuring and possibly vital to interpreting what is

going on.

Our investigation underscores the value of file synchronization in

domains that stress the co-creation of content, just as it highlights

some of the difficulties and pitfalls of sync applications. In the

end, one question remains: are any of our collaborations still using

Cimetric? As Grudin observed in his study of a collaborative

writing tool [13], most of our collaborations did not continue

using the tool after their specific activity had concluded, although

several used it again when new writing tasks arose. This long-term

use gives us hope that a cloud-optional approach that bridges

between the rhythms of personal file sync and collaborative file

sharing is a viable way to support content co-creation.

ACKNOWLEDGMENTS
We would like to thank our patient and daring users, especially

those who used Cimetric in its early days.

REFERENCES
1. About Git. http://git-scm.com/about

2. Apache Subversion. http://subversion.apache.org/

3. Beck, E. & Bellotti, V. Informed Opportunism as Strategy:

Supporting Coordination in Distributed Collab. Writing. Proc.

ECSCW’93 (1993), 233–248.

4. Belaramani, N., Dahlin, M., Gao, L., Nayate, A.,

Venkataramani, A., Yalagandula, P., & Zheng, J. PRACTI

replication. NSDI’06, USENIX (2006), 59–72.

5. Bentley, R., Horstmann, T., & Trevor, J. The World Wide

Web as enabling technology for CSCW: The case of BCSCW,

CSCW 6, 2-3 (1997), 111-134.

6. Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A.,

McKelvie, S., Xu, Y., et al. Windows Azure Storage: A

Highly Available Cloud Storage Service with Strong

Consistency. Proc. SOSP’11, 143-157.

7. Cederqvist, P. Version Management with CVS.

http://ximbiot.com/cvs/manual/

8. Dearman, D. & Pierce, J. It’s on my other computer!:

Computing with multiple devices. CHI’08, 767–776.

9. Dropbox. http://www.dropbox.com/ (retrieved 1 June 2012).

10. Farnham, S., Pedersen, E., & Kirkpatrick, R. Observation of

Katrina/Rita Groove deployment. Proc. ISCRAM’06, 39–49.

11. Fitzpatrick, G., Marshall, P., & Phillips, A. CVS integration

with notification and chat: lightweight software team

collaboration. CSCW’06, 49-58.

12. Google Drive. https://drive.google.com/start (retrieved 1 June

2012).

13. Grudin, J. Groupware and social dynamics: Eight challenges

for developers. CACM 37, 1 (1994), 92-105.

14. Karlson, A., Iqbal, S., Meyers, B., Ramos, G., Lee, K., &

Tang, J. Mobile Taskflow in Context: A Screen Shot Study of

Smartphone Usage, CHI’10, 2009-2018.

15. Kim, E. & Eklundh, K. How Academics Co-ordinate their

Documentation Work, Royal Inst. Tech., Technical Report

TRITA-NA-P9815, NADA, August 1998.

16. Kotla, R., Alvisi, L., & Dahlin, M. SafeStore: A Durable and

Practical Storage System. Proc. USENIX’07 (2007), 129-142.

17. Marshall, C.C. From Writing and Analysis to the Repository.

Proc. JCDL'08, ACM Press (2008), 251-260.

18. Marshall, C.C. and Tang, J. That Syncing Feeling: Early user

experiences with the cloud. Proc. DIS’12, ACM Press (2012).

19. McDonald, D., Weng, C., & Gennari, J. The multiple views of

inter-organizational authoring. Proc. CSCW'04. ACM Press

(2004), 564-573.

20. Müller, A., Rönnau, S., & Borghoff, U. A file-type sensitive,

auto-versioning file system. Proc. DocEng'10, ACM Press

(2010), 271-274.

21. Muller, M., Millen, D.R., & Feinberg, J. Patterns of usage in

an enterprise file-sharing service: publicizing, discovering, and

telling the news. Proc. CHI '10, ACM Press (2010), 763-766.

22. Noel, S., Robert, J-M. Empirical Study on Collaborative

Writing: What Do Co-authors Do, Use, and Like? Journal of

CSCW 13, 1 (2004), 63-89.

23. Posner, I. & Baecker, R. How People Write Together. In

Baecker (ed.): Readings in Groupware and CSCW, Morgan

Kaufmann (1993), 239–250.

24. Rader, E. Your, Mine and (Not) Ours: Social Influences on

Group Information Respositories. Proc CHI EA ’09, ACM

Press (2009), 2095-2098.

25. Ramasubramanian, V., Rodeheffer, T., Terry, D.B., Walraed-

Sullivan, M., Wobber, T., Marshall, C., & Vahdat, A.

Cimbiosys: A platform for content-based partial replication.

Proc. NSDI’09, USENIX (2009).

26. Salmon, B., Schlosser, S., Cranor, L.F., Ganger, G.

Perspective: Semantic Data Management for the Home. Proc.

FAST '09, USENIX (2009).

27. Sohn, T., Li, K., Griswold, W., Hollan, J. A Diary Study of

Mobile Information Needs, CHI’08, ACM Press (2008), 433-

442.

28. Schilit, B.N. and Sengupta. U. Device Ensembles. IEEE

Computer 37, 12, (2004), 56–64.

29. Understanding Mercurial.

http://mercurial.selenic.com/wiki/UnderstandingMercurial

(retrieved 1 June 2012).

30. Voida, S., Edwards, W.K., Newman, M., Grinter, R., &

Ducheneaut, N. Share and share alike: exploring the user

interface affordances of file sharing. CHI’06, ACM Press

(2006), 221-230.

31. Wang, Y., Gräther, W. & Prinz, W. Suitable notification

intensity: the dynamic awareness system. Proc. GROUP’07,

ACM Press (2007), 99-106.

32. Weng, C. & Gennari, J. Asynchronous collaborative writing

through annotations. Proc. CSCW'04, ACM Press (2004), 578-

581.

33. Whalen, T., Smetters, D., & Churchill, E. User experiences

with sharing and access control. Proc. CHI’06, ACM Press

(2006), 1517-1522.

34. Whalen, T., Toms, E., & Blustein, J. Information displays for

managing shared files. In Proc. CHiMiT'08, ACM Press

(2008).

35. Windows SkyDrive. http://windows.microsoft.com/skydrive/

(retrieved 1 June 2012).

36. Yamauchi, Y., Yokozawa, M., Shinohara, T. & Ishida, T.

Collaboration with Lean Media: How Open-Source Software

Succeeds Distance and Proximity. Proc CSCW'00, ACM Press

(2000), 329-338.

