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Abstract. In many segmentation scenarios, labeled images contain rich
structural information about spatial arrangement and shapes of the ob-
jects. Integrating this rich information into supervised learning tech-
niques is promising as it generates models which go beyond learning class
association, only. This paper proposes a new supervised forest model for
joint classification-regression which exploits both class and structural
information. Training our model is achieved by optimizing a joint ob-
jective function of pixel classification and shape regression. Shapes are
represented implicitly via signed distance maps obtained directly from
ground truth label maps. Thus, we can associate each image point not
only with its class label, but also with its distances to object boundaries,
and this at no additional cost regarding annotations. The regression com-
ponent acts as spatial regularization learned from data and yields a pre-
dictor with both class and spatial consistency. In the challenging context
of simultaneous multi-organ segmentation, we demonstrate the potential
of our approach through experimental validation on a large dataset of 80
three-dimensional CT scans.

1 Introduction

Semantic image segmentation consists of assigning a categorical label to each
pixel in an image. A common approach is to cast segmentation as a multi-label
classification problem and employ a classification algorithm. In this context,
supervised learning techniques have gained increased interest. Relying on the
availability of annotated data, they permit to learn the relationship between
visual features of pixels and their class labels during their training phase. Given
an unseen image, the learned classifier is then able to predict the correct label
assignment for each pixel.

Decision forests have emerged as a promising, flexible model for image un-
derstanding [1–4]. In particular, classification and regression forests have shown
great performance in the tasks of supervised classification and regression such as
human pose estimation [5], recognition [6], localization [7], or classification [8, 9].
Classification forests are popular because they are probabilistic and efficient, and
naturally handle multi-class problems. Moreover, they often compare favorably
with respect to other techniques [10, 11].
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In their original implementation classification forests provide as output a
class posterior distribution for each pixel independently. Recent work has started
to investigate new and more complex models of structured-output forests to
enable spatially consistent predictions [12–15]. However, accessible structural
information about the shapes and spatial arrangement of objects present in
ground truth annotations, i.e. label maps, is not fully exploited in previous
approaches.

The main contribution of this paper is a novel joint classification-regression
formulation based on decision forests which incorporates this extra information.
In each tree, we learn a discrete-continuous predictor based on class and spatial
consistency by extracting structural information from label maps. The key inno-
vation within our approach is a simple yet elegant modification of the training
objective function which enables joint learning of classification and regression.
We employ signed distance maps (SDMs) in a regression objective as efficient
representations of information about shapes and spatial arrangement.

Similar to pictorial structures [16] our model is particularly suited for images
with multiple objects whose organization shows some consistency (e.g . facial
features, limbs in a human body, internal organs in medical scans, etc.).

Classification and regression have been combined before in the context of
decision forests for body joint prediction [17] and object detection [18]. Both
approaches are quite different to ours. In [17], the prediction model is a single
continuous regressor, for which training is performed either based on a classifi-
cation or regression objective function. In [18], the training objective alternates
between classification and regression, but is not based on a joint objective func-
tion.

There are many other methods which aim at solving the problem of struc-
tured multi-object segmentation. Active shape and appearance models [19], or
random fields [20] are among the most successful ones. A comparison with these
methods is beyond the scope of this paper. Here, we focus on one particular ap-
proach based on classification forests, and demonstrate how performance can be
substantially improved through simple modifications. We believe that an isolated
view on this particular modification yields more insights than a broader compar-
ison with substantially different methods. Further, we believe that our proposed
modifications can be easily integrated in existing, more complex approaches.

Experimental validation of our model is carried out on multi-organ segmen-
tation on a challenging labeled dataset of 3D medical CT scans of 80 patients.

2 Classification-Regression Forests

In the following, we will derive a general formulation for joint classification-
regression in the context of decision forests. At the same time, we will provide
the necessary details for our application of multi-object segmentation. We refer
the interested reader to [2] for more details on forests.
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(a) CT scan (b) Label map (c) SDM liver (d) SDM kidney (e) SDM pelvis

Fig. 1. An example slice of a 3D input image in (a) with ground truth label map in
(b). Besides class membership, the label map contains additional information such as
a distance for each pixel to all objects of interest obtained from signed distance maps
as shown in (c)-(e). The zero-level is overlaid on the distance maps for clarity. Pixels
inside an object have negative distances.

2.1 Decision Forests for Supervised Learning

In its most general form, the goal of supervised, discriminative learning is to
obtain the posterior distribution p(y|x), where x ∈ Rm is some observation
represented by a feature vector, and y ∈ Rn is the output or prediction variable.
Learning this distribution allows us to make predictions for new (unseen) data,
e.g . by inferring the maximum-a-posteriori (MAP) estimate ŷ=arg maxy p(y|x).

We assume that a set of K training examples S = {(xk,yk)}Kk=1 is available,
from which we can learn the distribution p(y|x). In image segmentation, the
entity xk corresponds to a collection of image features – e.g . intensity or textural
information – extracted for an individual pixel k. The output variable is the
(one-dimensional) discrete class label yk∈C, where C is a finite set of labels (or
objects). The aim is then to learn a predictor that determines the probability
for assigning a particular class label to a pixel of a previously unseen test image.

We employ the decision forest framework which tackles the learning problem
in a divide-and-conquer fashion. A decision forest is an ensemble of (probabilis-
tic) decision trees, where each tree t yields its own distribution pt(y|x). By
iteratively subdividing the training set within the associated features space Rm,
posterior distributions can be learned “locally” on smaller training subsets. In-
jecting randomness into the training phase decreases the correlation between
individual trees, and increases generalization (see [1] for details).

Tree testing: A (binary) decision tree is a set of two types of nodes, the split
nodes and the leaf nodes. While split nodes store decision functions, leaf nodes
store empirical distributions. In order to make a prediction for previously unseen
data x, we push x through the tree, starting at the root node. At each split node,
a (binary) decision function is applied to x, which determines whether it is sent
to the left or right child node. Once the data point reaches a leaf node, we can
simply read out the stored distribution pt(y|x). The overall prediction of the
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forest with T trees can be obtained by averaging the individual tree predictions:

p(y|x) =
1

T

T∑
t=1

pt(y|x) . (1)

Tree training: The role of training is to optimize the parameters of the decision
functions and to determine the leaf node distributions. To this end, a (possibly
random sub-) set of training examples S is simultaneously pushed through the
tree. Let us denote by Si the training set reaching node i, where S0 = S at the
root node with index 0. At each split node the incoming set Si is divided into
two disjunct, outgoing sets SLi and SRi which are sent to the left and right child
nodes. The split is based on a decision function operating on the feature vectors
of incoming training examples. Most commonly used split functions are so called
axis-aligned functions fv,τ , defined as:

fv,τ =̂(v · x ≥ τ) , (2)

where v is a m-dimensional binary (random) vector and τ ∈ R is a threshold.
Note that v has only one non-zero entry and permits thereby to select one
dimension from the m-dimensional feature space. τ is then either (randomly)
drawn from the range of the feature values, or optimized via exhaustive search.
Based on the decision function the training examples are separated into two
subsets.

Following a greedy optimization strategy, different (randomly generated) split
function candidates are evaluated and the most discriminative one is found based
on maximizing an objective function such as the information gain:

I(Si,SLi ,SRi ) = H(Si)−
∑

j∈{L,R}

|Sji |
|Si|

H(Sji ) , (3)

where H(·) is the entropy. In case of classification with a finite set of discrete
labels C, H is defined as the Shannon entropy

H(S) = −
∑
y∈C

p(y|x) log p(y|x) , (4)

where p(·) is the empirical class distribution estimated from the training set
S. Good split functions should maximize the information gain which minimizes
the uncertainty of the empirical distributions. When the tree growing process
reaches a predefined depth, iterative splitting of the training data stops. The
current node becomes a leaf where the empirical distribution over the incoming
training examples is stored. The tree depth has an impact on the generalization
of the tree as it directly influences the resolution of the partition of the feature
space.

As a consequence of the objective function in Eq. (3), the training procedure
yields leaf nodes with peaked class distributions. At test time, an unseen data
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point should take the same path along the tree nodes as training examples with
similar features. The empirical distribution over those training examples would
then provide a good prediction for the test point.

After setting out the basics of decision forests in a classification scenario,
next we discuss our main contribution: a joint classification-regression model
employed within the same forest.

2.2 Joint Classification-Regression

Classification forests have been widely used in practice. In this paper we argue
that in some applications their discriminative power can be improved by a sim-
ple yet elegant modification within the learning procedure. So far, the training
of classification forests is only based on the ground truth class labels. The key
idea of our approach is to explore also the spatial structure of objects. In fact,
the same ground truth, i.e. label maps, contain information about the shapes
of objects, and in multi-class problems, about relative positions and spatial ar-
rangement (see Fig. 1 for an example). The integration of this rich information
into the supervised learning can yield better predictions. To this end, we for-
mulate a joint classification-regression approach where the training objective
is to increase both class and spatial consistency. We introduce two prediction
variables where c ∈ C corresponds to a one-dimensional discrete classification
output, and r ∈ Rn is a n-dimensional continuous regression variable. The role
of this variable is described in detail in Sec. 2.3. For now, let us assume it cap-
tures some continuous shape parameters. Given the same input variable x as
before, our goal is now to learn the joint probability p(c, r|x). Using the chain
rule, we can rewrite this joint distribution as p(c, r|x)=p(r|c,x) p(c|x). In order
to learn this distribution within the framework of decision forests, we define the
joint entropy as

H(S) = −
∑
c∈C

∫
r∈Rn

p(c, r|x) log p(c, r|x) dr

= −
∑
c∈C

p(c|x) log p(c|x)︸ ︷︷ ︸
Shannon Entropy: Hc

+
∑
c∈C

p(c|x)

(
−
∫
r∈Rn

p(r|c,x) log p(r|c,x) dr

)
︸ ︷︷ ︸

Weighted Differential Entropy: Hr|c

.

(5)

During training, we maximize the same objective function as defined in Eq. (3),
where now the entropy becomes H(S)=Hc(S)+Hr|c(S).

The two entropies Hc and Hr|c may live within quite different ranges de-
pending on the problem and its dimensionality, and one of them could easily
overrule the other one during optimization. Hence, we propose the following
normalization step

H(S) =
1

2

(
Hc(S)

Hc(S0)
+

Hr|c(S)

Hr|c(S0)

)
, (6)
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where each entropy is normalized w.r.t. the root node entropy. This normaliza-
tion maps both initial entropies at the root node to one, and the information gain
measures the relative improvement w.r.t. the inherent entropy of the training set.

2.3 Spatial Consistency via Distance Regression

In order to capture the spatial information contained in the label maps, we
employ Euclidean signed distance maps (SDMs) as an implicit representation of
shape. Assuming there are n different objects to be segmented, we can determine
n distance maps per training image. Note that we treat the background as an
extra class, so we have |C| = n+1 number of classes, and no distance map is
computed for the background class. Also note, that it is not necessary that
all objects are present in all images. In practice, we can make use of indicator
variables encoding the presence of an object which allows us to ignore missing
data in the computation of statistics. For sake of simplicity, in the following we
assume that all objects are present in all images.

The distance maps allow us to assign n-dimensional vectors r = (d1, ..., dn)>

to each pixel in the training set, where dc is the distance of a pixel to the closest
boundary point of the object with class index c. Negative distances are assigned
to pixels inside an object. This is an efficient way of enriching the training set to
S = {(xk, ck, rk)}, where now each data point carries both information about its
class membership and its relative positions w.r.t. the shapes of all objects. The
regression component r captures both shape and spatial layout of the objects,
which in a common classification approach would remain hidden in the label
maps. This supplementary information comes at no additional cost regarding
annotations. This is a major advantage since acquiring ground truth data can
be tedious and time-consuming, in particular, in the medical domain.

For efficient training of our joint model, we need a compact representa-
tion for the conditional distribution p(r|c,x) which can be efficiently stored
in the leaf nodes. We employ n-dimensional multivariate Normal distributions
p(r|c,x) =̂ N (µr|c, Σr|c|r, c,x), one distribution per class label c. Those can
be efficiently stored by keeping only the means and covariance matrices. Addi-
tionally, Gaussian distributions have a closed-form definition for the differential
entropy such that

Hr|c =
∑
c∈C

p(c|x)

(
1

2
log
[
(2πe)n|Σr|c|

])
, (7)

where | · | denotes the determinant of a matrix.

Optimizing the information gain w.r.t. this entropy encourages splits which
reduce the covariance over spatial location. This is the case when elements within
subsets belonging to the same class are also spatially consistent. In fact, the re-
gression component acts as a learned spatial regularization. In order to demon-
strate this effect, we perform a small experiment. We take one 2D image (a
coronal slice from a 3D CT scans) for training a single tree using the standard
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Fig. 2. (a,b) Leaf node region maps overlaid on ground truth segmentation. The maps
illustrate the spatial regularization effect of the regression component. (c) Progression
of different parts of the joint entropy (Eq. (6)) compared to standard classification.

classification objective function, and another tree using our joint objective func-
tion. To visualize the resulting “clustering” of training points, we use the same
image at test time and store for each pixel the index of the reached leaf node.
From these index maps we extract the cluster regions as shown in Fig. 2(a,b).
Each closed region corresponds to a particular leaf node in the corresponding
tree. At the same tree depth, training jointly on the combined classification-
regression objective yields leaf nodes with clusters of training examples which
are both consistent in terms of class membership and spatial location.

Robust Parameter Estimation The regression part of our joint predictor
model requires estimation of means and covariances of the corresponding Gaus-
sians N (µr|c, Σr|c|r, c,x). This is commonly done via maximum likelihood (ML)
estimation. Since we estimate the empirical distributions conditioned on the class
label, the sample size for a particular distribution can become quite small. In
order to overcome statistical problems when only few samples are available, we
employ a more robust Bayesian estimation where the parent distribution of a
child node plays the role of the prior. The mean is then estimated as

µchild

r|c =
|Schild

r|c |
κ+ |Schild

r|c |
µ̄child

r|c +
κ

κ+ |Schild

r|c |
µparent

r|c . (8)

The covariance matrix is then computed as

Σchild

r|c =
|Schild

r|c |
Z

Σ̄child

r|c +
ν + n− 1

Z
Σparent

r|c +
κ |Schild

r|c |
Z (κ+ |Schild

r|c |)
Ψr|c , (9)

where Z=ν+n−1+|Schild

r|c | and Ψr|c =(µparent

r|c − µ̄child

r|c )(µparent

r|c − µ̄child

r|c )>. Variables

µ̄child

r|c and Σ̄child

r|c are ML estimates of mean and covariance computed over the

subset Schild

r|c . Variables µparent

r|c and Σparent

r|c correspond to the mean and covariance

of the parent node. κ and ν are two parameters which permit to control the trade-
off between the prior and the empirical information w.r.t. sample size. In fact,
when the number of training examples |Schild

r|c | is sufficiently large (|Schild

r|c | >>
κ, ν), the ML estimates dominate. When the number of training samples gets
closer to the values of κ and ν the estimate of Σchild

r|c relies more on the parent.
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2.4 Forest Predictions

Our joint classification-regression model allows to make two kinds of predictions
at test time. The obvious one is regarding the most probable class label given a
new data point, i.e. a pixel of a test image. This MAP estimate can be obtained
by simply computing

ĉ = arg max
c∈C

p(c|x) . (10)

Note, that test efficiency from a computational perspective is exactly the same
as with standard classification forests. By obtaining the labels for all pixels, we
determine the multi-object segmentation of the image.

We can also make predictions regarding the regression component. The most
probable estimate of object distances for a pixel can be obtained by

r̂ = arg max
r
p(r|x)

= arg max
r

∑
c∈C

p(r|c,x)p(c|x) , (11)

which requires some sort of mode finding algorithm. Based on our Gaussian
model, an alternative, robust estimate can be obtained via the mixture mean

r̃ =
∑
c∈C

p(c|x)µr|c . (12)

The regression allows us to estimate SDMs which could be of great use for in-
stance in object alignment applications. One could think of defining a (weighted)
matching criterion on both image intensities and regressed SDMs. The SDM part
could potentially make the alignment less sensitive to initialization and more ro-
bust w.r.t. large transformations. The focus in this paper is on the segmentation
part, and we are mainly interested in the label maps obtained via Eq. (10).
However, we will also show results of SDM regression in the following section.

3 Experimental Validation

We evaluate our approach on the task of multi-organ segmentation in 3D med-
ical CT scans. To this end, we collected a large dataset of 80 highly variable
patient scans, in which 6 major organs have been manually delineated by an ex-
pert. The set of organs include liver, spleen, left and right kidney, left and right
pelvic bone. To demonstrate the potential of our joint classification-regression
strategy, we aim at isolating the effect of the proposed objective function, and
therefore compare it directly with standard classifcation forests. The challenges
in multi-organ segmentation arise from overlapping intensity profiles of different
organs, variability in patient anatomy, presence of pathologies, and image noise.
However, the human anatomy exhibits a highly structured spatial arrangement
of inner parts. Hence, our approach is paricularly suitable for this task.
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3.1 Experimental Setup and Training Parameters

For both methods, standard classification forest and our joint approach, we use
the same fixed set of parameters. We train decision forests with 50 trees and a
maximum tree depth of 20. We use bagging during training, which means each
tree is trained on a random subset containing 10% of the total number of training
image points. At each split node, we evaluate 100 different features from a pool
of 1000 randomly generated features. For each feature, and the corresponding
set of feature responses from the training points, we try 10 different thresholds
uniformly distributed along the range of responses.

We employ five different types of features, where four of them are variants of
3D box features efficiently computed on integral images [21]: (i) a simple look-up
of intensity in a smoothed version of the input image (Gaussian smoothing with
σ= 2mm), (ii) average intensity in a randomly sized box centered at the image
point, (iii) average intensity in a randomly sized box displaced by a random offset
from the image point, (iv) intensity difference between the local intensity and a
displaced box as in feature (iii), (v) intensity difference between two displaced
boxes as defined in (iii). These features can capture both local and long-range
contextual visual information. The range of the box sizes varies between 10
and 100mm. The displacements of boxes are drawn from an [0,100]mm interval.
Concerning the Gaussian update for the mean and covariance estimation within
the nodes, we choose κ = 10 and ν = 10.

Fig. 2(c) shows the progress along tree depth of different parts of the entropy
averaged over all trees. We make the following observations: i) the classification
part Hc progresses almost identical compared to standard classification; ii) the
regression part Hr|c decreases mainly after a tree depth of 10.

3.2 Results

We split the 80 CT scans in two non-overlapping sets with each 40 scans and then
perform a two-fold cross-validation. Hence, we can report overall segmentation
errors computed on all 80 scans. The quantitative results for individual organs
and the average performance are summarized in Fig. 3. Further qualitative re-
sults are shown in Fig. 4. We report errors w.r.t. ground truth annotations over
four different segmentation scores, namely Dice’s similarity coefficient (DSC)
measuring the agreement between label maps (also known as F-score combining
precision and recall into one value), and three surface distance measures. The
mean surface distance (MSD), root-mean-square surface distance (RMS-SD),
and Hausdorff distance (HD) are computed by determining the euclidean dis-
tances between segmentation boundaries extracted from the label maps. Note,
that medical scans are always metrically calibrated (while the actual physical
resolution between images varies). The unit of the last three errors is therefore
in millimeters. All four scores indicate an improved performance when using
our joint classification-regression approach. It is important to note, that both
methods have access to exactly the same feature space. The difference in the
segmentation results stems only from the modification of the training objective
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Fig. 3. Segmentation errors over four different scores. DSC measures the agreement
between prediction and ground truth where 1 indicates perfect results. MSD, RMS-
SD, and HD determine the surface distance in millimeters between prediction and
ground truth where 0 indicates perfect results. Scores for classification forests are the
black bars on the left, scores for our joint classification-regression are the gray bars on
the right. All four scores indicate improved segmentation results for our approach.

function, which favors features in the greedy optimization which are yield both
class and spatial consistency in the splits.

In particular, the improvement w.r.t. RMS-SD and HD is important. Both
measures are sensitive to segmentation errors with larger distances. Here, the reg-
ularization effect of the regression component helps in removing outliers. This
is confirmed by visual inspection of the qualitative results in Fig. 4. We observe
that the segmentations for our joint approach are spatially more consistent and
spurious results present in the standard classification are suppressed. We also
show exemplary distance maps for the liver and left kidney. The regressed dis-
tance at each image point is the mixture mean as defined in Eq. (12).

4 Conclusion

We propose joint classification-regression forests as a novel supervised learning
approach for the segmentation of spatially structured objects. Our experiments
demonstrate that joint optimization yields superior results with both class and
spatial consistency. This is achieved via a simple modification of the training
objective combined with efficient representation of shape regression at no ad-
ditional cost regarding annotations. A promising direction, where our method
could be of direct use, is learning application-specific energy functions – e.g . in
the context of random fields [12, 15]. Here, our joint model could be used to learn
strong unaries which exhibit spatial smoothness learned from the training data.
Other tasks, such as human pose estimation [5, 17] could also benefit from joint
learning. In conclusion, we believe our model adds an important component to
the framework of decision forests beyond the task of pixel-wise classification.
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Fig. 4. From left to right: Slice from 3D input image, ground truth segmentation,
MAP estimate of standard classification forest, MAP estimate of our joint approach,
regressed distance maps for liver and left kidney obtained via Eq. (12).


