
A Semantic Integrated Development Environment

Francesco Logozzo, Michael Barnett,
Manuel Fändrich
Microsoft Research

{logozzo, mbarnett, maf} mtfro oi cs . o@m c

Patrick Cousot Radhia Cousot
ENS, CNRS, INRIA, NYU CNRS, ENS, INRIA
pcousot s e. ud.unymic@ rcousot . rfsne@

Abstract
We present SIDE, a Semantic Integrated Development En-
vironment. SIDE uses static analysis to enrich existing IDE
features and also adds new features. It augments the way ex-
isting compilers find syntactic errors — in real time, as the
programmer is writing code without execution — by also
finding semantic errors, e.g., arithmetic expressions that may
overflow. If it finds an error, it suggests a repair in the form
of code — e.g., providing an equivalent yet non-overflowing
expression. Repairs are correct by construction. SIDE also
enhances code refactoring (by suggesting precise yet general
contracts), code review (by answering what-if questions),
and code searching (by answering questions like “find all
the callers where x < y”).

SIDE is built on the top of CodeContracts and the Roslyn
CTP. CodeContracts provide a lightweight and programmer-
friendly specification language. SIDE uses the abstract
interpretation-based CodeContracts static checker (cccheck/
Clousot) to obtain a deep semantic understanding of what
the program does.

Categories and Subject Descriptors D. Software [D.3
Programmimg Languages]: D.3.3 Language Constructs and
Features; F. Theory of Computation [F.3 Logics and mean-
ings of Programs]: F.3.1 Specifying and Verifying and Rea-
soning about Programs, F.3.2 Semantics of Programming
Languages; I. Computing Methodologies [I.2 Artificial In-
telligence ]: I.2.2 Automatic Programming

General Terms Design, Documentation, Experimentation,
Human Factors, Languages, Reliability, Verification.

Keywords Abstract interpretation, Design by contract, In-
tegrated Development Enviroment, Method extraction, Pro-
gram Repair, Program transformation, Refactoring, Static
analysis

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

1. Introduction
Integrated Development Environments (IDEs) provide a co-
hesive view of the software development environment in
which many tools are unified under a common and uniform
user interface. The ultimate goal of an IDE is to assist and
improve programmer productivity by simplyfing and ratio-
nalizing program development. Routinely, IDEs include a
source editor, build automation tools, debuggers and pro-
filers. Modern IDEs, like Eclipse or Visual Studio, provide
additional functionalities like real-time compilation, type
checking, IntelliSense, refactoring, class browsers, quick
fixes for compile-time errors, etc. Existing IDEs have only
a very partial and syntactical understanding of the program.
We believe that in order to provide further value to the pro-
grammer the IDEs should get a deeper, more semantic un-
derstanding of what the program does. In the demo we show
a working prototype of a Semantic Integrated Development
Environment (SIDE).

2. SIDE
SIDE is a smart programmer assistant. It statically analyzes
the program in real time, while the programmer is develop-
ing it. Unlike similar program verification tools, our static
analysis infers loop invariants, significantly reducing the an-
notation burden. The information gathered by the static anal-
ysis is used to verify the absence of common runtime errors
(e.g., division by zero, arithmetic overflows, null pointer ex-
ceptions, and buffer overruns) as well as user-provided as-
sertions and contracts [1].

If SIDE detects a potential runtime error, it suggests a
fix in the form of code. The suggested fix is valid in that it
guarantees that no good execution is removed: only bad ones
are [7]. Since the fix is based on a static analysis, SIDE can
suggest fixes for partial or even syntactically incorrect pro-
grams. No test runs are needed. Examples of fixes include
object and constant initializations, arithmetic overflows, ar-
ray indexing, wrong guards, missing contracts — e.g., pre-
conditions [4].

SIDE helps the programmer in other common tasks, such
as refactoring. For instance, when the programmer extracts a
method, SIDE proposes a contract (precondition, postcondi-



tion) for the extracted method [5]. The proposed contract is
valid, safe, complete, and general. In particular, complete-
ness implies that the contract is precise (strong) enough
to carry on the proof in the method from which the code
was extracted. Generality guarantees that the contract can be
called from other calling contexts i.e., it does not just project
of the state of the analyzer, which encodes the local context
of the extracted method.

SIDE exploits the inferred semantic information to an-
swer non-trivial queries on the program execution. For in-
stance, SIDE supports what-if scenarios: The programmer
adds extra-assumptions on the program state at some points
and then she asks, e.g., if some program point is reach-
able, or a certain property holds. The assumption and the
queries are arbitrary Boolean expressions in the target lan-
guage. SIDE enables semantic search, too. The programmer
can ask if a certain method is invoked in a certain state. Ex-
amples of semantic searches are callers such that: x 6= null,
a.f > b.c+ 1, or a Boolean combination thereof. Overall,
the semantic queries targets common scenarios in the code-
reviewing phases.

3. The Architecture
Our target language is C# or VB, the two most popular .NET
languages. We implemented SIDE on the top of the Roslyn
CTP and of CodeContracts. The Roslyn CTP exposes the
VB and C# compilers as services. We leverage Roslyn for
the user interaction, e.g., the squiggles for warnings and
the previews for applying fixes, as well as to get basic ser-
vices as “standard” refactoring. We use the CodeContracts
API as the specification language for the preconditions, post-
conditions and object invariants. The CodeContracts API is
a standard part of .NET. The CodeContracts static checker
(cccheck [6]) is the underlying semantic inference and rea-
soning engine for SIDE. cccheck is a static analyzer based
on abstract interpretation [3]. To enable real-time analy-
sis, cccheck drawes on a SQL database to cache the analy-
sis results, so that unmodified code is not re-analyzed. Code-
Contracts has been publically available for 3 years and has
been downloaded more than 60,000 times.

4. The Demo
We show how SIDE acts as a smart programmer assistant,
quickly catching tricky bugs, explaining them, and propos-
ing fixes. In particular we show how the interaction is very
natural for the user, despite the complex analyses and rea-
soning performed underneath.

In the first part of the demo, we code an Insert method,
which inserts an element into a list represented as an array.
SIDE points out several errors in a trivial implementation (a
buffer overrun and a null dereference) and it proposes some
preconditions to fix them. Then we add some code to resize
the array when an insertion into a full array occurs. SIDE
points out that the new code is unreached. Once the bug is

fixed, it finds some other weaknesses in the code: an arith-
metic overflow and a buffer overrun. In both cases it suggests
a code repair — actually more than one: we will see and dis-
cuss in the demo that there are several different ways of fix-
ing a program. In the case of the buffer overrun, we use the
query system of SIDE to understand the origin of the warn-
ing (“what happens when ...”). Then we apply one of the
(non-trivial) fixes proposed by SIDE. Finally, we realize that
the code for resizing is more general than the usage made in
the Insert body. Therefore we decide to refactor it into a
new method. SIDE generates a new method, Resize, and
the corresponding contracts. In particular: (i) the inferred
precondition is more general than the simple projection of
the original abstract state, enabling more calling contexts;
(ii) the inferred postcondition is strong enough to ensure the
safety in the refactored Insert method, i.e., no imprecision
is introduced by the assume/guarantee reasoning. We con-
clude this part of the demo by asking SIDE some semantic
queries (e.g., “which callers insert an empty string into the
list?”).

In the second part of the demo, we consider a slightly
more complicated example, a buggy implementation of the
binary search algorithm. Discovering the bug(s) and present-
ing the fixes require the analysis to perform complex reason-
ing, e.g., inferring a complex loop invariant. However, we
will show how all this machinery is totally transparent to
the user. For instance we show how SIDE naturally suggests
a (verified!) repair for the famous Java arithmetic overflow
bug [2].

5. Presenters
F. Logozzo is a researcher in the RiSE group at MSR
Redmond. He is the co-author of the CodeContracts static
checker and of SIDE. His main interests are abstract inter-
pretation, program analysis, optimization, and verification.

References.
[1] M. Barnett, M. Fähndrich, and F. Logozzo. Embedded contract

languages. In SAC’10, pages 2103–2110. ACM, 2010.
[2] J. Bloch. Nearly all binary searches and mergesorts are broken,

2008. http://googleresearch.blogspot.com/2006/06/extr

a-extra-read-all-about-it-nearly.html.
[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL, pages 238–252, 1977.

[4] P. Cousot, R. Cousot, and F. Logozzo. Contract precondition infer-
ence from intermittent assertions on collections. In VMCAI, pages
150–168, 2011.

[5] P. Cousot, R. Cousot, F. Logozzo, and M. Barnett. An abstract
interpretation framework for refactoring with application to extract
methods with contracts. In OOPSLA, 2012.

[6] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In FoVeOOS, pages 10–30, 2010.

[7] F. Logozzo and T. Ball. Modular and verified repairs. In OOPSLA,
2012.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

	Introduction
	SIDE
	The Architecture
	The Demo
	Presenters

