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ABSTRACT 
Steerable displays use a motorized platform to orient a pro-
jector to display graphics at any point in the room. Often a 
camera is included to recognize markers and other objects, 
as well as user gestures in the display volume. Such sys-
tems can be used to superimpose graphics onto the real 
world, and so are useful in a number of augmented reality 
and ubiquitous computing scenarios. We contribute the 
Beamatron, which advances steerable displays by drawing 
on recent progress in depth camera-based interactions. The 
Beamatron consists of a computer-controlled pan and tilt 
platform on which is mounted a projector and Microsoft 
Kinect sensor. While much previous work with steerable 
displays deals primarily with projecting corrected graphics 
onto a discrete set of static planes, we describe computa-
tional techniques that enable reasoning in 3D using live 
depth data. We show two example applications that are 
enabled by the unique capabilities of the Beamatron: an 
augmented reality game in which a player can drive a virtu-
al toy car around a room, and a ubiquitous computing demo 
that uses speech and gesture to move projected graphics 
throughout the room.  
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Human Factors 
Keywords: Steerable displays, augmented reality, ubiqui-
tous computing, depth cameras 

INTRODUCTION 
Augmented reality generally refers to viewing the real, 
physical world with superimposed computer-generated 
graphics. Today this usually involves rendering graphics 
onto a live video of the physical world, most commonly on 
a mobile device such as a smartphone. Graphics are updat-
ed continuously to follow the orientation of the device vid-
eo camera, such that the graphics appear to be inserted into 
the real world. This approach has the drawback that rather 
than look at the real world, the user must instead look at a 
small video feed of it. Near-to-eye displays address this 
shortcoming, allowing the user to view the real world with 
superimposed graphics directly, but require wearing exotic 
gear [4,16].  
An alternative approach to achieve direct viewing is to use 
projectors to render graphics onto the real world directly. 
Spatial augmented reality [4] entails correcting the project-
ed graphics to account for the shape of the projection sur-
face, possibly assuming the user’s viewpoint (see [30] for a 
particularly compelling example). Whereas the effective 
field of view of a smartphone or near-to-eye display AR 
system is potentially unlimited as the user moves their head 
or their device, a projected spatial augmented reality sys-
tem is limited by the field of view of the projector. This can 
be overcome somewhat by using multiple projectors and 
cameras, at the expense of the overall complexity of the 
system [35]. A handful of research prototypes have ex-
plored using a motorized platform to reorient a single pro-
jector and camera to view arbitrary locations throughout a 
room [22, 8, 6, 11]. Such steerable display systems trade 
the shortcomings of the multiple projector and camera ap-
proach for the problem of selecting the most appropriate 
orientation of the projector and camera at each moment. 
This paper builds on previous examples of steerable dis-
plays by replacing the usual video camera with a depth 
camera, and by developing algorithms and techniques 
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A B C D 
Figure 1. (A) The Beamatron mounts a projector and Kinect sensor to a pan and tilt motorized platform. (B) The 
Beamatron can project graphics in the user’s hand, and follow the user as they move about the room. (C) 
Skeletal tracking results superimposed on a user. (D) Driving a projected car on real objects in the room with a 
wireless wheel controller. 



 

 

which allow precise rendering of graphics that appear to be 
correctly inserted into the real world from the user’s point 
of view. Whereas much of the previous work on steerable 
displays exploits explicit calibration procedures against a 
set of discrete static planar surfaces of the real world [22], 
the real-time update of precise 3D shape information from 
the depth camera allows interactions with possibly moving 
objects (including the user’s body). This capability allows 
certain interactions new to steerable displays, such as hold-
ing a virtual (projected) object in the hand while walking 
around the room.  
We contribute the Beamatron, a hardware device design, 
calibration strategy and associated control algorithms to 
enable the use of a steerable projector and depth camera for 
spatial augmented reality throughout a room (see Figure 1). 
We believe the Beamatron is the first steerable display to  
• incorporate a depth camera to allow live changes in the 

3D environment, such as moving a projection surface, 
or following a user’s hand 

• use 3D calculations to allow the application to reason in 
room coordinates and correctly render 3D objects with-
out regard to the precise orientation of the platform 

• use a hardware feedback mechanism to more accurately 
stabilize projected graphics when the unit is moving 

• use projective texturing to appropriately render 3D 
graphics onto arbitrarily shaped surfaces for a given 
viewpoint 

• incorporate 3D (stereo) projection 
• use 3D sound source localization as a means to track 

user position when the user is not in view, to call the 
unit to view the user for subsequent gesture-based inter-
action or adjust rendering viewpoint 

In the rest of the paper, we discuss related work, and detail 
the Beamatron hardware and algorithms. We demonstrate 
the system in an augmented reality scenario of driving a 
virtual toy car around the real physical world, and in a 
ubiquitous computing scenario involving the gesture-driven 
movement of projected 2D graphics. Finally we discuss a 
number of possible extensions to the Beamatron. 
RELATED WORK 
Spatial Augmented Reality 
A number of previous works have explored using projec-
tors to superimpose graphics onto the real world [4]. A key 
technical challenge for these systems is taking into account 
the shape of the projection surface when rendering 
graphics, so that the projected graphics either appear 
“painted” on the object [25], or so that the projection gives 
the impression of a real 3D object of the correct size and 
shape [2]. These approaches require the precise calibration 
of the projector (i.e., focal length and optical center). 
Of particular relevance to the present work is the overall 
rendering pipeline of MirageTable [2], which uses Mi-
crosoft Kinect depth image data to distort projected 
graphics on a per-vertex basis. MirageTable also supports 
the correct rendering of 3D objects for a given viewpoint; 

this viewpoint is determined by tracking the user’s head. 
Beamatron adopts a similar approach to rendering graphics.  
Immersive Projection 
In many application scenarios involving projecting onto the 
real world, it is desirable to project over wide areas to cre-
ate an immersive experience [23, 30], and researchers have 
demonstrated the combination of multiple projectors to 
create bright, high resolution immersive displays [24]. 
Underkoffler et al.’s “I/O bulb” [32] is an intriguing vision 
of a single fixture in the ceiling which projects and senses 
throughout a room. While it is possible to use wide-angle 
optics to display and sense over a wide area (for example, 
see [1]), the limited brightness of projectors and limited 
sensing of cameras imposes a variety of tradeoffs to make a 
simple implementation of the I/O Bulb difficult. Light-
Space [35] addresses brightness and resolution concerns by 
mounting multiple cameras and projectors to create a large 
combined fustrum of display and sensing to approximate an 
I/O Bulb. As with the present work, LightSpace uses depth 
cameras to correct projected graphics, and enable a variety 
of 3D interactions. 
Steerable Projector-Camera Systems 
Steerable displays use a motorized platform or rotating 
mirrors to direct projected graphics programmatically. This 
avoids the complexity of multi-projector, multi-camera 
systems, but retains the ability to place graphics anywhere 
in the room. The IBM Everywhere Displays prototype is 
the first steerable display to demonstrate the correction of 
projected graphics to account for the orientation of the 
(planar) projection surface [22]. It consists of a projector 
and a small mirror with 2 axes of rotation. In contrast with 
the present work, Everywhere Displays is limited to pro-
jecting on a discrete set of planar surfaces which are cali-
brated beforehand, each modeled by a 2D homography. 
The Everywhere Displays project explored many applica-
tions of steerable displays, particularly in the retail domain. 
With the addition of a pan and tilt video camera, a number 
of gesture-based interactions are demonstrated, including 
touch-based manipulation of projected graphical widgets 
[12], as well as person tracking to enable graphics to follow 
the user. 
A small number of later works contribute steerable displays 
designs which mount the projector and camera directly onto 
motorized platform with pan and tilt axes of motion [8, 6, 
11]. Butz et al. [7] contribute a number of interactions in 
the tradition of ubiquitous computing, such as the ability to 
scan a room for special AR Toolkit markers [3] so that they 
later may be indicated to a viewer by a projected “search-
light” graphic, and to project graphical autonomous agents 
where they are needed. Molyneaux et al. [19] explore more 
generic object recognition techniques to find and annotate 
physical objects.  
Ehnes et al. [11] contribute a steerable display design that 
comes closest to the spirit of the present work. In particular, 
they address the challenges of stabilizing projected 
graphics while the projector is in motion. Such functionali-



 

 

ty can be interesting for a wide variety of applications, such 
as tracking and projecting onto a moving object (such as a 
person, or a mobile display). They describe their approach 
to model the precise pose of the head without use of a 
hardware feedback circuit, and note the importance of ac-
counting for the latency of the camera when matching im-
age processing results with platform pose. 
Handheld and Wearable Projectors 
Recent advances in the miniaturization of projectors have 
encouraged the study of handheld and wearable interactive 
projectors [36, 33, 9, 13, 20]. These share many traits of the 
steerable displays described above, including problems 
related to the distortion of the projected image and device 
pose [26]. Handheld projectors differ from steerable projec-
tors in at least one important way, however: the onus is 
primarily on the user to select the appropriate area to pro-
ject. As we will show with the Beamatron, steerable projec-
tors can split this responsibility between the user and the 
host computer, as appropriate to the application. 
Interacting with Light 
A number of early works demonstrate the interactive ma-
nipulation of graphics projected onto the environment. For 
example, Rekimoto at al.’s Augmented Surface [27] allows 
the user to drag a document off the laptop display and onto 
the projected desktop, and later bring the object from the 
desktop to the wall using a laser pointer. 
The present work demonstrates the ability for the user to 
“hold” a projected object in the hand, as if it were a real 
physical object. This has been demonstrated in previous 
interactive projection-based interfaces. Micromotocross 
[34] uses a projector and depth camera to allow a player to 
drive a virtual projected car over real objects and possibly 
into the hand, with the projected graphics corrected for the 
shape of the hand. LightSpace [35] gives the user the capa-
bility to move a projected off a tabletop and into the other 
hand. The projected object stays with the hand until 
dropped back onto the table top or onto the wall. Further-
more, the motion of the ball is simulated such that it rolls 
downhill along any real physical surface such as the user’s 
forearm or a piece of paper. MirageTable [2] adds the abil-
ity to correctly render 3D virtual objects for a given user 
viewpoint, as well as stereo rendering for active shutter 
glasses. Finally, LightGuide [29] demonstrates the use of 
projected graphics in the hand to guide the user to perform 
a particular motion in three dimensions. 
THE BEAMATRON 
Hardware configuration 
The Beamatron hardware device consists of a video projec-
tor and Microsoft Xbox Kinect sensor rigidly mounted to a 
City Theatrical Autoyoke [10] moving light platform. The 
Autoyoke’s configuration is similar to that of moving lights 
found at nightclubs and rock concerts, except that the in-
cluded spot light is easily removed and replaced with other 
gear. The Autoyoke tilts 270° and pans 360° with a hard 
stop (i.e., it cannot rotate past 360°). Product documenta-

tion indicates pan and tilt movement speed of 90°/s and 
positional accuracy of 0.1°. 
The Autoyoke uses the DMX lighting protocol and inter-
face. Commands to move to a new pan and tilt configura-
tion are issued programmatically using a USB to DMX 
adapter. As is common for DMX devices, there is no provi-
sion for providing feedback on the actual pan and tilt con-
figuration as the device moves to new target pan and tilt 
angles. Real-time knowledge of the platform pose is critical 
to projecting stabilized graphics while the platform is in 
motion. In lieu of such feedback it may be possible to mod-
el and predict the position of the platform, as demonstrated 
in [11]. Instead, we developed a small circuit board which 
connects to the pan and tilt optical shaft encoders built into 
the Autoyoke. This circuit uses the quadrature decoders of 
an AVR XMega256 microcontroller to relay pan and tilt 
configuration to the PC by a separate USB interface at 
100Hz. As far as we know, the Beamatron is the first steer-
able display to exploit accurate hardware-based feedback 
for the purposes of stabilizing graphics. 
For projecting graphics, the Beamatron uses the Dell 
1610HD 3D-ready projector, rated at 3500 lumens. This 
projector uses the Texas Instruments’ DLP Link technology 
to optionally render stereo 3D graphics with matching ste-
reo shutter glasses. Whereas other techniques employing 
active shutter glasses require the careful placement of an 
infrared beacon to synchronize the shutter glasses with the 
display, DLP Link instead hides a nonvisible synchroniza-
tion signal in the projected video. This approach is particu-
larly appropriate for steerable displays because it avoids the 
problem of placing a synchronization beacon so that it is 
visible regardless of platform orientation, or the complexity 
of rigging multiple beacons throughout the room. With 
DLP Link the glasses will synchronize with the video pro-
jection if the user can see the projection. 
As with other steerable display prototypes that move the 
projector and camera directly (e.g., [6, 8, 11]), the Beama-
tron obtains a wide range of pan and tilt motion at the ex-
pense of large and possibly noisy stepper motors. When 
hung in the ceiling near the center of the room, it can reach 
most surfaces of the room, but also may operate sitting on a 
desk or the floor. In contrast, the Everywhere Displays pro-
totypes use a small and quiet rotating mirror in front of a 
stationary projector and so have a more limited range of 
motion (pan 230°, tilt 50°). This more limited range of mo-
tion may place restrictions on where the unit is best placed 
for a given application. 
Calibration 
As in previous steerable displays work, precise calibration 
of the projector, camera and moving platform is critical to 
precisely superimpose projected graphics onto real objects. 
Much of the previous work in steerable displays (e.g., Eve-
rywhere Displays) is concerned with projecting graphics on 
to one or more discrete locations throughout the room 
while the platform is stationary. In this case calibration 
involves establishing the 2D transformation which warps 



 

 

the graphics for projection onto a given surface. Usually, 
this transformation is calculated to ensure that a rectangular 
source image appears rectangular when projected on a pla-
nar surface of arbitrary orientation. For this limited case, a 
camera is unnecessary. 
Ehnes et al. [11] calibrate their projector, platform and 
camera for a spherical coordinate system. This allows for 
rendering graphics in precise registration with visual mark-
ers (AR tags) found by image processing of the video feed.  
The Beamatron goes beyond existing work in steerable 
displays by performing all calculations in 3D. This is ena-
bled primarily by the use of the depth camera of the Kinect 
sensor. For example, the platform may be moved such that 
a given 3D point in the room projects to a given 2D point in 
the projected graphics. Thus it is possible to place projected 
graphics precisely on an object in the real world, and, as we 
will describe later, to account for the shape of the projec-
tion surface. We describe the Beamatron calibration proce-
dure in more detail in a later section. 
Integrating Depth Images 
Depending on the application, it may be necessary to ag-
gressively smooth the depth image data. Later, we present 
an application which runs a physics simulation benefitting 
from a smooth surface estimate. Averaging multiple suc-
cessive frames is challenging if the head is in motion. Min-
imally, before averaging, the previous smoothed frame 
must be rotated (in 3D) to match the platform motion. An-
other challenge is to reuse smoothed depth data for a par-
ticular view when the unit leaves and later returns to the 
same view. It is desirable for the system to build a coher-
ent, smoothed model of the room as it pans and tilts so that 
smoothed data may be reused over static regions. Certain 
applications may also make use of such a room model in 
planning platform motion.  
The Beamatron system addresses the problems of smooth-
ing the depth data under motion and incrementally building 
a model of the room by using KinectFusion [14, 20]. Ki-
nectFusion incorporates successive depth images into a 
voxel representation of the surfaces in the room (see Figure 
2). Calculations may be run against this volume directly, or 
it may be processed by successive ray casting to generate a 
smoothed depth image which is then processed. In its orig-
inal formulation, KinectFusion uses 3D image processing 
techniques to solve for the pose of the camera. At first it 
may seem that this would obviate the need to calibrate the 
platform geometry, but in early experiments we experi-
enced tracking loss and drift when relying exclusively on 
KinectFusion’s pose estimate over longer time scales. In 
the Beamatron, this pose information is instead drawn di-
rectly from the known pose of the platform. 
The present Beamatron implementation uses Kinect Fusion 
as a means to obtain smoothed depth images under plat-
form motion, but we expect future iterations to exploit its 
capability to build a model of the room. This could be use-
ful in determining where to next orient the unit if the de-
sired position is out of view. For example, an application 

may wish to plan a movement to display a graphic on any 
available flat surface in the room that is also visible to the 
user. In our present work, KinectFusion is configured to 
model a 7.5m cubic volume centered under the unit, cover-
ing much of our 6m × 10m space. 

   
Figure 2. KinectFusion integrates multiple depth 
camera images (left) as the Beamatron pans and 
tilts to reveal different parts of the room. Kinect fu-
sion provides stable, smoothed estimates of room 
geometry suitable for subsequent processing 
(right). 

Rendering 
Rendering graphics correctly onto the real world requires 
using a graphics projection and view matrix that incorpo-
rates the pose of the platform, and the projector focal length 
and principal point found in calibration. For graphics to 
appear correct when they are projected onto arbitrarily 
shaped objects, the rendering process must also take into 
account the shape of the projection surface [25]. Beamatron 
can use the depth image information to distort the projected 
graphics so that the projected graphics appear to be “paint-
ed” onto the real world object, but it also can correctly ren-
der 3D virtual objects for a particular viewpoint while tak-
ing into account the varied shape of the projection surface 
[2] (see Figure 3). This projective texturing-based tech-
nique uses multiple rendering passes: the first pass renders 
the real objects (the room) along with virtual objects from 
the point of view of the user. The second pass treats the 
output of the first pass as a texture map for a rendering of 
the real geometry. 

  
Figure 3. Beamatron rendering pipeline corrects 
projected graphics to account for projection surface 
distance and shape. This can be used to correctly 
project graphics for a particular viewpoint. Left: pro-
jective texturing disabled—the car is rendered from 
the projector’s viewpoint. Right: projective texturing 
enabled—the car is rendered for the user’s view. 

By this technique, Beamatron matches many aspects of the 
presentation possible with near-to-eye augmented reality 
glasses or head mounted displays (HMDs). In some aspects 
the Beamtron’s may be superior. Firstly, the focal distance 
of the projected graphics may be closer to the correct value, 
particularly when the virtual object is placed near a real 



 

 

world surface, whereas the focal distance of a rendering on 
glasses or an HMD is typically fixed. Secondly, graphics 
rendered on glasses or an HMD must account for the mo-
tion of the user’s head, particularly if the graphics are 
meant to be stabilized against the real world. While this can 
be very difficult given sensor and rendering latencies, pro-
jection on the real world would be approximately correct 
for objects near the real world surface, for any head motion. 
Such a projection might not show the precisely correct side 
of a 3D object during motion, but it would not slide across 
the user’s field of view as it might with glasses or an HMD, 
and therefore would appear more stable. 
Beamatron’s rendering pipeline supports 3D (stereo) ren-
dering using DLP Link compatible stereo active shutter 
glasses. Stereo rendering can be used to render virtual ob-
jects that appear to have a 3D shape rising from the surface 
of projection, and even potentially render objects that are 
located in room coordinate space above any real surface. 
Consider, for example, a helicopter hovering in space: the 
projection of the left eye view may fall far from that of the 
right eye view, depending on the configuration of the room 
geometry. This can pose a challenge for platform control: 
instead of controlling the platform to point at the room co-
ordinates of the helicopter, it must instead determine some 
view that includes the projections of both eyes as they fall 
on real surfaces. Our current implementation of Beamatron 
does not support this calculation. The effect of stereo 3D is 
noticeable, but weaker than that of MirageTable [2], pri-
marily because the distance to the rendered object may be 
beyond the range in which binocular disparity is a powerful 
depth cue. 
Reasoning in Room Coordinates 
The computational strategies described above provide the 
ability to relate all sensing data to a room coordinate frame, 
find the real time 3D pose of the moving platform and ren-
der viewpoint-corrected 3D graphics regardless of projector 
pose. Together they provide a fully 3D model of sensing 
and display.  
This model is useful for steerable displays because it allows 
application developers to perform reasoning in room coor-
dinates, without regard to the pose of the steerable display, 
provided that any real time changes in the scene are within 
the field of view of the depth camera. 
In fact, for many applications it may be useful to conceptu-
ally decouple the reasoning involving the room model (e.g.,  
placing virtual objects in 3D) from the process that controls 
platform motion, and instead think of the Beamatron as a 
“camera man” that is controlled by a process that selects 
the most active or relevant area of the room to monitor. In 
the case of an augmented reality application where the user 
controls an object moving around the room, it may be natu-
ral to simply have the platform follow the object. 
External Sensing with Sound Source Localization 
One shortcoming of placing a steerable display in the cen-
ter of the room is that it is difficult to use the unit’s camera 
to monitor events outside the view of the unit’s single cam-

era. KinectFusion could be used to plan the placement of 
graphics onto known locations throughout the room as long 
as they do not move while the unit is looking away. How-
ever, in applications that would make use of person-
tracking or gesture recognition, a model of the room’s static 
surface features may not be useful. In these cases, a means 
of drawing the unit’s attention is needed. 
A number of solutions to monitor the wider area come to 
mind, such as mounting one or more additional Kinect 
cameras on the unit, using multiple cameras throughout the 
space, or even moving the unit’s single camera to a second 
moving platform, decoupling the placement of display and 
sensing. Many of the possible solutions tend towards the 
more complex immersive setups (such as [34]) and there-
fore violate the spirit of the steerable display.  
Solutions that serve a wide area, but with coarse sensing 
resolution, seem more appropriate. For example, a single 
wide angle conventional camera mounted on the unit might 
be used to detect the presence of the user’s gesturing to 
gain the Beamatron’s attention. The unit may then rotate to 
gain a more detailed view. 
Rather than use more cameras and image processing, we 
exploit the beam-forming array microphone in the Kinect 
sensor to localize the user as they speak. The Kinect array 
microphone can be used to find the angle of the dominant 
sound source in the horizontal plane of the camera to an 
accuracy of 4° standard deviation at 4m. This is reported 
over a range of about 100°, approximately double that of 
Kinect’s video camera field of view and well suited for 
mounting in the corner of a room. We use three Kinect sen-
sors mounted in the corners of the room, one mounted in a 
vertical orientation, to solve for the 3D position of the dom-
inant sound source. The pose of each sensor in room coor-
dinates is determined by finding the same calibration pat-
tern used to calibrate the Beamatron (described later). The 
sound source position is found by noting that the angle re-
ported by each sensor constrains the sound to a plane or-
thogonal to the horizontal plane of the sensor. Thus the 3D 
position is calculated by computing the intersection of three 
planes indicated by the reported source angles (see Figure 
4). This position is reported along with beam forming con-
fidence values at 10Hz.  
A Beamatron application may designate one of the cameras 
as an audio source for speech recognition. Speech recogni-
tion can be an easy way to gate the continuous updates of 
the sound source localization process: e.g., when a particu-
lar user says “Beamatron!” the unit may be commanded to 
orient itself to bring that user into view, much in the same 
way that a person reflexively turns their head to look at 
someone who just called their name from across the room. 
In the worst case, the platform must pan nearly 360° (about 
4s) to put the user in view. 
We have found the accuracy of the audio localization to be 
good enough for the two applications reported in the rest of 
this paper. To characterize audio localization accuracy, we 
compared localization results to ground truth at 13 loca-



 

 

tions throughout the room. Standing at each location, the 
subject uttered the word “Beamatron”. 3D triangulated 
sound source position was recorded at the precise moment 
the word “Beamatron” was automatically recognized. This 
process was repeated four times for each location, with the 
subject turning to face each of the four walls of the lab. 
Comparing the audio localization results to ground truth, 
we notice that accuracy varies depending on the location in 
the room (RMS error = 0.84m), and that there is a bias that 
may be caused by imprecise calibration. Translating each 
sample by the average error can correct for this bias some-
what (RMS error = 0.50m). 

 
Figure 4. Audio sound source localization combines 
array microphone sound source output angles from 
three Kinect sensors (red and blue mounted horizon-
tally, white mounted vertically) to find the 3D position 
of the sound source within the room (yellow). Each 
array microphone provides a planar constraint on the 
3D position of the sound source (illustrated here by 
long thin rectangles, with minimum and maximum 
angles indicated by short rectangles). Plan view of 
the room is shown (6m × 10m). 

UBICOMP EXAMPLE: MASTER AND COMMANDER 
Our first Beamatron example application is an homage to 
Bolt’s Put-that-there system [5], the grandfather of all natu-
ral user interfaces. We also build on LightSpace [34], 
which demonstrated moving graphics from one surface to 
another as well as to holding a projected object directly in 
the hand. 
With Master and Commander, the user moves projected 
graphics around the room with speech and gesture. They 
can request Beamatron’s attention by calling “Beamatron”, 
place projected objects around the room or take them and 
hold them in their hand. For example, while the Beamatron 
displays a graphic on the wall, a user in the room may say 
“take that”. This utterance is recognized using the Kinect 
sensor designated for speech recognition, and the 3D posi-
tion of the speech audio source is determined as described 
above. The Beamatron is then oriented to the 3D position 
of the speaker sound source. With the user now in full view 
of the onboard Kinect sensor, Master and Commander ena-
bles Kinect skeletal tracking (see Figure 5).  
Once the user’s skeleton is found, a graphical representa-
tion of the object previously projected on the wall now ap-
pears in the user’s hand, thus completing the “take that” 
command. This projected object may be passed from one 

hand to the other, and to another tracked user’s hand. This 
is accomplished simply by computing the distance of the 
hand currently holding the virtual object to all other availa-
ble hands, and transferring the object to any sufficiently 
nearby hand, with some hysteresis to prevent instantly 
handing the object back. 

  
Figure 5. left: Master and Commander skeletal 
tracking. right: projecting skeleton onto the user. 

The user may place the object in the room by pointing with 
their free hand to a destination position in the room while 
saying “put that there”. Recognition of this phrase triggers 
the movement of the virtual object from their hand to the 
3D point indicated by the ray from the user’s head to the 
user’s hand, and its first intersection with a surface in the 
room (see Figure 6).  

 
Figure 6. Master and Commander allows the user 
to take projected graphics from the wall into their 
hand and then place the objects on another part of 
the room. Here the user is holding a graphic in their 
left hand while pointing at a destination. Saying “put 
that there” will cause Beamatron to animate the ob-
ject to the wall, where it will find a surface to “hang” 
the graphic. 

Computing this destination position can be done in multiple 
ways. The voxel space representation of KinectFusion 
holds a representation of all surfaces viewed thus far as the 
unit has been reoriented to view various points throughout 
the room. It is thus possible to use this representation to 
find the intersection of the user’s pointing ray with the sur-
face of the room. In the current implementation, we use an 
approach which does not rely on the model of the entire 
room. Instead, the Beamatron is continuously moved to 
look at points along the pointing ray, beginning with the 3D 
position of the hand. As the Beamatron is moved along the 
ray, the depth image data in the current view is tested for 
intersection with the ray after transformation to room coor-
dinates. While this search along the ray is conducted, a 



 

 

graphical representation of the virtual object is rendered 
along the floor to illustrate the connection between the us-
er’s gesture and the movement of the virtual object. 
Once the intersection point is found, the virtual object is 
“hung” on the wall or any other surface by finding the 
normal at the point of intersection from the depth image. 
We can also account for gravity by rotating the object to 
align with the room up vector. This is particularly useful 
when trying to place graphics or slides on the wall for a 
presentation.  
In Master and Commander, gesture recognition depends on 
the Beamatron’s ability to locate the user well enough that 
the Kinect skeletal tracking successfully tracks the user. 
Not all viewpoints work equally well. In particular, loca-
tions away from the Beamatron tend to work better, while 
in the area directly under the Beamatron tracking tends to 
fail, since the skeleton tracker was trained for frontal views.   
In addition, sound source localization can provide noisy 
position information. When calling its attention, this can 
cause the Beamatron to move in the right direction, but not 
center on the user accurately enough to capture their entire 
body. We address this by randomly moving the Beamatron 
in a small search pattern around the sound source position 
until a skeleton is found. In practice, this process can take a 
few seconds, but due to the limitations of the skeletal track-
er is not guaranteed to succeed. When the user’s skeleton is 
found, the Beamatron orientation is trained on the hips of 
the recovered skeleton, and will then follow the user as 
they move about room. 
AUGMENTED REALITY EXAMPLE: BEAMABUGGY 
Our second Beamatron example application takes inspira-
tion from Wilson’s Micromotocross tabletop augmented 
reality depth camera demo [34].  
Beamabuggy allows a player to drive a small virtual car 
throughout the entire room using a wireless steering wheel 
gaming controller and standard driving controls (see Figure 
7 and Figure 1d). Calculations on the KinectFusion surface 
data enable the car to interact appropriately with real ob-
jects placed in the room. Driving the car over a cardboard 
ramp causes the car to jump appropriately, possibly flip-
ping over. The movement of the car is determined by a 
gaming physics engine configured to model the dynamics 
of the car and perform collision detection against the 
ground mesh derived from the depth image. The Beamatron 
is programmed to keep the car in the center of the projected 
image.  

Using a smooth surface representation rather than raw 
depth image data is critical for a reasonable driving experi-
ence. Consider that at the scale of a toy car, a bit of noise in 
the depth data may seem like a giant pothole! KinectFusion 
provides a smooth depth map for the current view, regard-
less of the Beamatron motion, as described previously. 
Transformed to room coordinates, this depth information is 
used to create the appropriate collisions with the car’s 
wheels and chassis. We use the Newton gaming physics 
engine [21] for its flexible support of custom collision de-
tection routines. 
One of Beamatron’s drawbacks in this application is that 
correct interaction with real world objects is limited to the 
combined view fustrums of the projector and depth camera. 
For example, our current prototype does not allow the play-
er to drive under a table. In this case, the depth information 
at the transition from table to floor leads to a “curtain” in 
the collision geometry that the car cannot drive through. 
One approach to addressing this problem is to remove this 
curtain by rejecting mesh triangles that are at a very oblique 
angle to the camera, and by providing a dummy ground 
plane under the table to allow the car to drive under the 
table. Even with this approach, however, the player will not 
see the projection of the car under the table. 
Beamabuggy uses the multi-pass projective texturing tech-
nique described earlier to render the car so that it appears to 
have the correct 3D shape given a particular user view-
point, regardless of what surface the car is driving over. In 
our present implementation, the user viewpoint is deduced 
by the sound source localization procedure described 
above. When the user says “Beamatron”, the 3D viewpoint 
is updated with the most recent 3D sound source localiza-
tion values. 
CALIBRATING THE BEAMATRON 
To fully calibrate the Beamatron, we first find the focal 
length and principal point (optical center) of Kinect’s infra-
red (depth) camera and color camera. In the case of the 
color camera we also find radial lens distortion parameters. 
These intrinsic parameters are computed using the tech-
nique described in [37], which uses multiple images of a 
known 2D printed calibration pattern (i.e., a checkerboard 
of known dimensions) placed at various orientations. 
We must also find the intrinsic parameters of the projector. 
While it is useful to think of the projector as a camera, with 
its own focal length and principal point, projector calibra-
tion must be handled differently. First, we use the (calibrat-
ed) color camera to acquire an image of the calibration pat-

Figure 7. Beamabuggy takes a ramp. A gaming physics engine simulates vehicle dynamics and contact with room ge-
ometry modeled by KinectFusion. 



 

 

tern lying on a large poster board. Because the calibration 
pattern is known, we can find the plane equation of the 
calibration pattern (and thus the poster board itself). Then, 
the printed pattern is taken away, and a similar calibration 
pattern is projected onto the poster board. This pattern is 
then imaged by the color camera. In this configuration, the 
real world dimensions of the projected pattern at the poster 
board are unknown (the poster board is at an unknown dis-
tance and orientation), but because the projected pattern 
lies in the plane of the poster board, we can compute the 
3D position of all points of the calibration pattern using the 
plane equation. We may then use the usual calibration cal-
culations designed for cameras (see [28] for more detail). 
Once the intrinsic parameters of a camera are known, it is 
straightforward to recover the pose (position and orienta-
tion) of the calibration pattern. Thus it is possible to find 
the extrinsic parameters: the relative pose of the Kinect 
color camera and infrared camera, as well as that of the 
color camera and projector. 
Remaining is the characterization of the moving platform 
geometry. This includes the conversion of DMX pan and 
tilt device parameters to radians, the pose of the camera 
relative to the platform axes of rotation and its pose relative 
to the room coordinate system. For these calculations we 
use a procedure described in [15] and [31] which again 
relies on several images of the same calibration pattern 
used above, under varying platform pan and tilt angles. 
In summary, Beamatron calibration establishes the follow-
ing quantities, listed here in the approximate order that they 
should be collected: 
• focal length 𝑓, principal point (𝑐𝑥, 𝑐𝑦) and lens distor-

tion parameters of the Kinect color camera 
• focal length and principal point of the infrared (depth) 

camera 
• focal length and principal point of the projector 
• T𝑐𝑜𝑙𝑜𝑟→𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 , the coordinate transform (rotation and 

position) relating the pose of the color and depth camer-
as 

• T𝑐𝑜𝑙𝑜𝑟→𝑝𝑟𝑜𝑗, the coordinate transform relating the pose 
of the color camera and projector 

• scalar values converting DMX pan and tilt commands to 
pan and tilt angles radians (𝛼,𝛽), and device feedback 
units (stepper motor counts) to (𝛼,𝛽) 

• T𝑏𝑎𝑠𝑒→𝑐𝑜𝑙𝑜𝑟 , the coordinate transform relating the pose 
of the color camera with respect to the pan and tilt axes 
of rotation 

• T𝑟𝑜𝑜𝑚→𝑏𝑎𝑠𝑒 , the coordinate transform placing the pan 
and tilt axes of rotation in room coordinates 

We note that during runtime the color camera is not used, 
our current calibration formulation is formed around the 
color camera primarily because of its use in the calibration 
procedure. 
Platform Movement 
Two important tasks in working with the Beamatron are 
controlling its orientation to bring either a real or virtual 

object within view, and determining the pose of the unit as 
it moves to the target orientation.  
For both we make use of the platform geometry calibration 
described above to find the pose of the color camera given 
pan and tilt angle values (𝛼,𝛽). A point in the room coor-
dinate frame can be brought into the coordinate frame of 
the projector by 

x𝑝𝑟𝑜𝑗 = T𝑐𝑜𝑙𝑜𝑟→𝑝𝑟𝑜𝑗T𝑏𝑎𝑠𝑒→𝑐𝑜𝑙𝑜𝑟R(𝛼,𝛽)T𝑟𝑜𝑜𝑚→𝑏𝑎𝑠𝑒x𝑟𝑜𝑜𝑚 

where R(𝛼,𝛽) is the matrix which rotates about the two 
axes of the platform. A similar formula may be used to 
convert a depth camera coordinate point to room coordi-
nates. 
To determine the real-time pose of the unit, the encoder 
feedback values are converted from device units to radians, 
and the formula for the pose of the color camera is used. 
The pose of the unit can be used to transform a point in the 
depth camera to a 3D room coordinate point. In this case it 
is important to note that if the head is in motion, the latency 
of the camera will cause the transformed point to be incor-
rect because the unit will have moved since the image data 
was acquired. This discrepancy can be eliminated by buff-
ering the encoder feedback values, and selecting older val-
ues when dealing with camera-derived information. Our 
current implementation was manually tuned for a delay of 
eight encoder frames, which at the 100Hz reporting rate of 
encoder frames is about 80ms, which corresponds well with 
the latency of the Kinect depth image. This approach is 
suggested in [11]. 
Determining the pan and tilt values to bring an object into 
view is basic to a steerable display. Given a 3D point in the 
room, we calculate the pan and tilt angles such that the 
point projects to a given 2D point in the projected graphics 
(this 2D point is often chosen to be the center of the pro-
jected image). A 3D point in a camera or projector’s coor-
dinate is projected to image coordinates by the following 
standard camera model (neglecting lens distortion): 

𝑃(x) = 𝑠 �
𝑢
𝑣
1
� = �

𝑓 0 𝑐𝑥
0 𝑓 𝑐𝑦
0 0 1

� x 

The relationship between pan and tilt angles and the unit 
pose is nonlinear due to the rotations involved. Thus it is 
appropriate to use a nonlinear optimization technique. We 
minimize an objective function that calculates the distance 
between the desired projector image position (𝑢, 𝑣) and 
current guess for (𝛼,𝛽): 

𝑓(𝛼,𝛽) = �(𝑢, 𝑣) −  𝑃𝑝𝑟𝑜𝑗(x𝑝𝑟𝑜𝑗(𝛼,𝛽))�2 

The choice of optimization technique is complicated by the 
fact that for every pan and tilt solution there is a dual solu-
tion that pans 180°, and tilts to reflect about the vertical 
axis. Without constraining the optimization, the platform 
control algorithm runs the risk of making a drastic and dis-
ruptive motion to this second solution, perhaps only to re-
turn to the other side in the next moment. Accordingly, we 
use the Luus-Jaakola nonlinear optimization technique 



 

 

[17], which is easy to implement to include the constraint 
that solutions must have a tilt value greater than 0°. 
FURTHER WORK 
The two very different example applications suggest the 
broad range of applications enabled by the Beamatron sys-
tem. The many capabilities of the system, such as the abil-
ity to stabilize graphics while the platform is in motion, 
follow a given point in 3D, render 3D graphics for a given 
viewpoint and interpret the user’s speech and gesture, in-
vite a variety of further investigations into new interactions 
and applications enabled by the Beamatron. As one exam-
ple, it is straightforward to contemplate rendering of a 3D 
object in the user’s hand corrected for viewpoint and sur-
face shape as the user wanders about the room, and fur-
thermore use stereo rendering to make the graphic appear 
to rise off the user’s hand. 
Here we consider a few areas of further work directed at 
improving the basic capability of the device. 
Automated Calibration 
Our current method for calibrating the Beamatron involves 
several steps and is still very manual in nature. It may be 
possible to automate much of the calibration procedure. 
Ultimately, we care most to precisely project graphics on 
features in the depth image, yet our current calibration pro-
cedures are ill-suited to directly minimize any discrepancy 
between the projected graphics and the target feature in the 
depth image. Rather, this alignment comes about from mul-
tiple independent calibrations, which when composed can 
accrue noticeable alignment errors. We note that due to the 
movement of the platform and the need to accurately cali-
brate its internal geometry, the calibration of the Beamatron 
is more difficult than the calibration of a static projector 
and camera pair. 
Deeper Integration with KinectFusion 
Our present implementation uses KinectFusion primarily as 
a means to obtain smooth surfaces from noisy depth images 
even while the platform is moving. There are a number of 
other ways we could exploit KinectFusion, however. 
The original development of KinectFusion includes calcu-
lating camera pose by matching features of the image. This 
pose information is used to correctly integrate new depth 
image data, and is a potentially useful by-product. Beama-
tron overrides this pose information with the pose calculat-
ed more directly by the known pan and tilt configuration of 
the platform and the calibration of its internal geometry. 
Whereas Beamatron’s pose estimate will never drift or fail 
due to tracking failure, it may possess systematic errors due 
to inaccurate calibration. The complementary nature of 
these two sources of platform pose suggests that the two 
could be fused to adjust the calibration of the platform 
while the unit is used initially, for example. 
Additionally, many Beamatron applications could make use 
of the voxel space model of the room that KinectFusion 
constructs as the camera is reoriented to view the entire 
room. This whole-room model could be useful in planning 
the Beamatron’s next movement, such as where best to 

display a graphic. This model may also be used to integrate 
data from another camera, possibly a handheld unit or a 
second Beamatron in the same room. A handheld Kinect 
sensor, for example, could be used to obtain close-in, high 
resolution scans of parts of the room, and also complete 
geometry that is not visible to the camera on the platform, 
such as under furniture or just around corners. This more 
complete model could be useful in some applications; e.g., 
driving the car under the table. 
Alternate Hardware Configurations 
The Beamatron prototype is large in part because of the use 
of a regular DLP video projector. The device could be 
made much smaller with an LED or laser projector. While 
LED and laser projectors are not nearly as bright as a full 
size projector, this could be mitigated by the use of longer 
projection lenses. The smaller projection area of a longer 
lens is a reasonable tradeoff for a steerable display. 
Automated control of focus and zoom might be useful for 
some applications. In our experience the depth of field of 
the projector is not a great problem, but it could be for 
close-in work. Of course, a laser projector requires no focus 
adjustment.  
While the limited viewing and display areas are characteris-
tic of steerable displays, it is tempting to consider more 
elaborate hardware designs that effectively enlarge the 
viewing and display areas without resorting to many cam-
eras and many projectors. For example, multiple Beama-
tron units could be used to cover a large area at relatively 
little expense. Multiple units could be coordinated in useful 
ways, such as performing a handoff of projected graphics 
around a user as they move from one unit’s service area to 
another (see Figure 8).   
As suggested earlier, the use of multiple units could address 
the problem of split attention between the user and some 
distant focal point of the presentation. In such cases it may 
be desirable to task a unit with monitoring a user and an-
other unit with monitoring or displaying on another part of 
the room, and in some cases it may suffice to include units 
that have only a camera and others that have only a projec-
tor. 

 
Figure 8. An arrow directs a man through an airport 
in Microsoft Office Labs' Productivity Future Vision 
video [18]. This could be realized by multiple coor-
dinated steerable displays. 



 

 

CONCLUSION 
The Beamatron advances steerable displays by drawing on 
recent progress in depth camera-based interactions. 
Through its calibration, control and rendering algorithms, 
the Beamatron allows applications to reason in the 3D co-
ordinate system of the room, enabling a wide range of 
augmented reality and ubiquitous computing scenarios with 
a minimal amount of hardware and computation. 
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