
Finding Non-Terminating Executions in
Distributed Asynchronous Programs

Michael Emmi1∗ and Akash Lal2

1 LIAFA, Université Paris Diderot
mje@liafa.univ-paris-diderot.fr

2 Microsoft Research India
akashl@microsoft.com

Abstract. Programming distributed and reactive asynchronous systems
is complex due to the lack of synchronization between concurrently
executing tasks, and arbitrary delay of message-based communication.
As even simple programming mistakes have the capability to introduce
divergent behavior, a key liveness property is eventual quiescence: for any
finite number of external stimuli (e.g., client-generated events), only a
finite number of internal messages are ever created.
In this work we propose a practical three-step reduction-based approach
for detecting divergent executions in asynchronous programs. As a first
step, we give a code-to-code translation reducing divergence of an asyn-
chronous program P to completed state-reachability—i.e., reachability
to a given state with no pending asynchronous tasks—of a polynomially-
sized asynchronous program P ′. In the second step, we give a code-to-code
translation under-approximating completed state-reachability of P ′ by
state-reachability of a polynomially-sized recursive sequential program
P ′′(K), for the given analysis parameter K ∈ N. Following Emmi et al.
[8]’s delay-bounding approach, P ′′(K) encodes a subset of P ′’s, and thus
of P ’s, behaviors by limiting scheduling nondeterminism. As K is in-
creased, more possibly divergent behaviors of P are considered, and in
the limit as K approaches infinity, our reduction is complete for pro-
grams with finite data domains. As the final step we give the resulting
state-reachability query to an off-the-shelf SMT-based sequential program
verification tool.
We demonstrate the feasibility of our approach by implementing a pro-
totype analysis tool called Alive, which detects divergent executions in
several hand-coded variations of textbook distributed algorithms. As far
as we are aware, our easy-to-implement prototype is the first tool which au-
tomatically detects divergence for distributed and reactive asynchronous
programs.

1 Introduction

The ever-increasing popularity of online commercial and social networks, along
with proliferating mobile computing devices, promises to make distributed soft-
ware an even more pervasive component of technological infrastructure. In a

∗Supported by a Fondation Sciences Mathématiques de Paris post-doctoral fellowship.

2 Michael Emmi and Akash Lal

distributed program a network of physically separated asynchronous processors
coordinate by sending and asynchronously receiving messages. Such systems are
challenging to implement because of several uncertainties, including processor
timings, message delays, and processor failures. Although simplifying mechanisms
such as synchronizers and shared-memory simulation do exist [16], they add
significant runtime overhead which can be unacceptable in many situations.

Because of the inherit complexity in distributed asynchronous programming,
even subtle design and programming mistakes have the capability to introduce
erroneous or divergent behaviors, against which the usual reliability measures are
much less effective. The great amount of nondeterminism in processor timings
and message delays tends to make errors elusive and hard to reproduce in
simulation and testing. The combinatorial explosion incurred by the vast number
of processor interleavings and message-buffer contents tends to make formal
verification techniques intractable. Though many distributed algorithms are
proposed along with manual correctness proofs, key properties such as eventual
quiescence—i.e., for any number of external stimuli such as client-generated
events, only a finite number of internal network messages are ever created—
remain difficult to ensure with automatic techniques. Practically speaking, such
properties ensure the eventual construction of network spanning trees [16], the
eventual election of network leaders [20], and the eventual acceptance of network
peer proposals, e.g., according to the Paxos protocol [15].

In this work we develop an automatic technique to detect violations to
eventual quiescence, i.e., executions of distributed systems for which a finite
number of external stimuli result in an infinite number of internal messages. Our
reduction-based approach works in three steps. First, we reduce the problem of
finding nonterminating executions of a given (distributed) asynchronous program
P to the problem of computing reachability in a polynomially-sized (distributed)
asynchronous program P ′. This reduction is complete for programs with finite
data domains, in the sense that an answer to the reachability query on P ′ is a
precise answer to the nontermination query on P . In the second step, we reduce
reachability in P ′ to reachability in a polynomially-sized recursive sequential
program P ′′—without explicitly encoding the concurrent behavior of P ′ as data
in P ′′. This step is parameterized by an integer K ∈ N; for small K, P ′′ encodes
few concurrent schedules of P ′; as K is increased, P ′′ encodes and increasing
number of concurrent reorderings, and in the limit as K approaches infinity, P ′′

codes all possible behaviors of P ′—and thus P . Finally, using existing sequential
program verification tools, we check reachability in P ′′: a positive result indicates
a nonterminating execution in P , though the lack of nonterminating executions
in P can only be concluded in the limit as K approaches infinity. Our technique
supports fairness, in that we may consider only infinite executions in which no
message is ignored forever.

We demonstrate the feasibility of our reduction-based approach by imple-
menting a prototype analysis tool called Alive, which detects violations to
eventual quiescence in several hand-coded variations to textbook distributed
algorithms [16]. Our relatively easy-to-implement prototype leverages existing

Finding Non-Terminating Executions in Distributed Asynchronous Programs 3

SMT-based program verification tools [14], and as far as we are aware, is the
first tool which can automatically detect divergence in distributed asynchronous
programs.

To begin in Section 2, we introduce a program model of distributed compu-
tation. In Section 3 we describe our reduction to sequential program analysis,
and provide code-to-code translations which succinctly encode the reduction.
Following in Section 4 we describe our experimental results in analyzing textbook
distributed algorithms, and we conclude by discussing related work in Section 5.

2 Distributed Asynchronous Programs

We consider a distributed message-passing program model in which each processor
is equipped with a procedure stack and an unordered buffer of pending messages.
Initially all processors are idle. When an idle processor’s message buffer is non-
empty, some message is removed, and a message-dependent task is executed to
completion. Each task executes essentially as a recursive sequential program,
which besides accessing its own processor’s global storage, can post messages to
the buffers of any processor, including its own. When a task does complete, its
processor again becomes idle, chooses a next pending message to remove, and so
on. The distinction between messages and handling tasks is purely aesthetic, and
we unify the two by supposing each message is a procedure-and-argument pair.
Though in principle many message-passing systems, e.g., in Erlang and Scala,
allow reading additional messages at any program point, we have observed that
common practice is to read messages only upon completing a prior task [21].

Our choice to model message-passing programs with unordered buffers has two
important consequences. First, although some programming models do not ensure
messages are received in the order they are sent, others do; our unordered buffer
model should be seen as an abstraction of a model with faithful message queues,
since ignoring message order allows behaviors infeasible in the queue-ordered
model. Second, when message order is ignored, distributed executions are task-
serializable—i.e., equivalent to executions where the tasks across all processors
execute serially, one after the other. Intuitively this is true because (a) tasks of
different processors access disjoint memory, and (b) message posting operations
commute with each other. (Message posting operations do not commute when
buffers are ordered.) To simulate a distributed system with a single processor
we combine each processor’s global storage, and ensure each processor’s tasks
access only their processor-indexed storage. Since serializability implies that single
processor systems precisely simulate the behavior of distributed systems, we
limit our discussion, without loss of generality, to single-processor asynchronous
programs [19].

2.1 Program Syntax

Let Procs be a set of procedure names, Vals a set of values, Exprs a set of
expressions, Pids a set of processor identifiers, and let T be a type. Figure 1 gives

4 Michael Emmi and Akash Lal

P ::= var g:T (proc p (var l:T) s)∗

s ::= s; s | skip | x := e
| assume e
| if e then s else s
| while e do s
| call x := p e
| return e
| post p e

x ::= g | l

Fig. 1. The grammar of asynchronous
message-passing programs P . Here T is an
unspecified type, and e and p range over ex-
pressions and procedure names.

Dispatch

〈g, ε,m ∪ {f}〉 −→ 〈g, f,m〉

Complete
f = 〈`, return e; s〉
〈g, f,m〉 −→ 〈g, ε,m〉

Post
s1 = post p e; s2

`2 ∈ e(g, `1) f = 〈`2, sp〉
〈g, 〈`1, s1〉w,m〉 −→ 〈g, 〈`1, s2〉w,m ∪ {f}〉

Fig. 2. The transition relation →
of asynchronous message-passing pro-
grams.

the grammar of asynchronous message-passing programs. We intentionally leave
the syntax of expressions e unspecified, though we do insist Vals contains true
and false, and Exprs contains Vals and the (nullary) choice operator ?. We say a
program is finite-data when Vals is finite.

Each program P declares a single global variable g and a procedure sequence,
each p ∈ Procs having a single parameter l and top-level statement denoted sp; as
statements are built inductively by composition with control-flow statements, sp
describes the entire body of p. The set of program statements s is denoted Stmts.
Intuitively, a post p e statement is an asynchronous call to a procedure p with
argument e. The assume e statement proceeds only when e evaluates to true,
and this statement plays a role in disqualifying executions in our subsequent
reductions of Section 3. The programming language we consider is simple, yet
very expressive, since the syntax of types and expressions is left free, and we lose
no generality by considering only single global and local variables.

2.2 Program Semantics

A (procedure) frame f = 〈`, s〉 is a current valuation ` ∈ Vals to the procedure-
local variable l, along with a statement s ∈ Stmts to be executed. (Here s
describes the entire body of a procedure p that remains to be executed, and is
initially set to p’s top-level statement sp; we refer to initial procedure frames
t = 〈`, sp〉 as tasks, to distinguish the frames that populate task buffers.) The
set of all frames is denoted Frames. A configuration c = 〈g, w,m〉 is a current
valuation g ∈ Vals to the processor-global variable g, along with a procedure-frame
stack w ∈ Frames∗ and a multiset m ∈M[Frames] representing the pending-tasks
buffer. The configuration c is called idle when w = ε, and completed when w = ε
and m = ∅. The set of configurations is denoted Configs.

Figure 2 defines the transition relation→ for the asynchronous behavior. (The
transitions for the sequential statements are standard.) The Post rule creates

Finding Non-Terminating Executions in Distributed Asynchronous Programs 5

a new frame to execute the given procedure, and places the new frame in the
pending-tasks buffer. The Complete rule returns from the final frame of a task,
rendering the processor idle, and the Dispatch rule schedules a pending task on
the idle processor.

An execution of a program P (from c0) is a configuration sequence ξ = c0c1 . . .
such that ci → ci+1 for i ≥ 0; we say each configuration ci is reachable from
c0. An initial condition ι = 〈g0, `0, p0〉 is a global-variable valuation g0 ∈ Vals,
along with a local-variable valuation `0 ∈ Vals, and a procedure p0 ∈ Procs. A
configuration c = 〈g0, 〈`0, sp0〉 , ∅〉 of a program P is called 〈g0, `0, p0〉-initial. An
execution ξ = c0c1 . . . is called infinitely-often idle when there exists an infinite
set I ⊆ N such that for each i ∈ I, ci is idle.

Definition 1 (state-reachability). The (completed) state-reachability prob-
lem is to determine for an initial condition ι, global valuation g, and program P ,
whether there exists a (completed) g-valued configuration reachable in P from ι.

In this work we are interested in detecting non-terminating executions due
to asynchrony, rather than the orthogonal problem of detecting whether each
individual task may alone terminate. Our notion of non-termination thus considers
only executions which return to idle configurations infinitely-often.

Definition 2 (non-termination). The non-termination problem is to deter-
mine for an initial condition ι and a program P , whether there exists an infinitely-
often idle execution of P from some ι-initial configuration.

3 Detecting Non-Termination

Though precise algorithms for detecting (fair) non-termination in finite-data
asynchronous programs are known (see Ganty and Majumdar [10]), the fair non-
termination problem is polynomial-time equivalent to reachability in Petri nets,
which is an EXPSPACE-hard problem for which only non-primitive recursive algo-
rithms are known. Though worst-case complexity is not necessarily an indication
of feasibility on practically-occurring instances, here we are interested in leverag-
ing existing tools designed for more tractable problems whose solutions can be
used to incrementally under-approximate non-termination detection; i.e., where
for a given analysis parameter k ∈ N we can efficiently detect non-termination
from an interesting subset Bk of program behaviors.

Our strategy is to reduce the problem of detecting non-terminating executions
in asynchronous programs to that of completed state-reachability in asynchronous
programs. We perform this step using the code-to-code translation of Section 3.1,
and in Section 3.2 we consider extensions to handle fairness. Then, in the second
step of Section 3.3, we apply an incrementally underapproximating reduction from
state-reachability in asynchronous programs to state-reachability in sequential
program [8, 4], and discharge the resulting program analysis problem using
existing sequential analysis tools.

6 Michael Emmi and Akash Lal

3.1 Reduction from Non-Termination to Reachability

In the first step of our reduction, we use the fact that every infinite execution
eventually passes through two configurations c1, and then c2, such that every
possible execution from c1 is also possible from c2; e.g., when c1 and c2 are idle
configurations with the same global valuation in which all tasks pending at c1
are also pending at c2. Formally, given two configurations c1 = 〈g1, w1,m1〉 and
c2 = 〈g2, w2,m2〉 we define the order c1 � c2 to hold when g1 = g2, w1 = w2,
and m1 ⊆ m2.3 An execution c0c1 . . . is called periodic when ci � cj for two
idle configurations ci and cj such that i < j.4 The following lemma essentially
exploits the fact that � is a well-quasi-ordering on idle configurations.

Lemma 1. A finite-data program P has an infinitely-often idle execution from ι
if and only if P has a periodic execution from ι.

Proof. Suppose c0c1 . . . is the sequence of idle configurations in an infinitely-often
idle execution ξ. As the subset order ⊆ on multisets is a well-quasi order, and
the domain Vals of global variables is finite, � is a well-quasi order on idle
configurations. Thus there exists i < j such that ci � cj , so ξ is also periodic.

Supposing ξ = c0c1 . . . is a periodic execution from ι, there exists idle con-
figurations ci and cj of ξ such that i < j and ci � cj ; let ci = 〈gi, ε,mi〉 and
cj = 〈gj , ε,mj〉. Since gi = gj and mi ⊆ mj , by definition of �, the sequence of
execution steps between ci and cj is also enabled from configuration cj—we may
simply ignore the extra tasks mj \mi pending in cj . For any k, l ∈ N and task
buffer m ∈M[Frames] such that k < l < |ξ|, let ξmk,l be the sequence of configu-
rations ckck+1 . . . cl−1 of ξ, each with additional pending tasks m. Furthermore,
let k · m be the multiset union of k copies of m. Letting m = mj \ mi, then
ξ0,iξi,jξ

m
i,jξ

2m
i,j ξ

3m
i,j . . . is an infinitely-often idle execution from ι which periodically

repeats the same transitions used to construct ξ between ci and cj .

We reduce the detection of periodic executions to completed state reachability
in asynchronous programs. Essentially, such a reduction must determine multiset
inclusion between the unbounded task buffers at two idle configurations; i.e., for
some idle configuration ci = 〈gi, ε,mi〉 reachable in an execution c0c1 . . ., there
exists j > i such that cj = 〈gj , ε,mj〉 with gi = gj and mi ⊆ mj . As the set mi

of pending tasks at ci is unbounded, any reduction cannot hope to store arbitrary
mi for later comparison with mj using finite-domain program variables.

Our reduction determines the correspondence between unbounded task buffers
in the source program using only finite-domain program variables by leveraging
the task buffers of the target program. For each instance of a task t which is
pending in ci, we post an additional task pro(t) when t is posted; for each task
t pending in cj , we either post an additional task anti(t) instead of t, or we
post nothing, to handle the case where t is never dispatched. We then check
that for each executed pro(t) a matching anti(t) is also executed, and that at

3Here ⊆ is the multiset subset relation.
4As our definition of � only relates configurations with equal global valuations, our
notion of periodic is only complete for finite-data programs.

Finding Non-Terminating Executions in Distributed Asynchronous Programs 7

1 // translation of var g: T
2 var repeated: B
3 var turn: B
4 var last: Procs× Vals
5 var G[B]: T
6

7 // translation of
8 // proc p (var l: T) s
9 proc p (var l:T, period:B) s

10

11 // translation of call x := p e
12 call x := p (e,period)

13 // translation of g
14 G[period]
15

16 // additional procedures
17 proc pro(var t: Procs× Vals)
18 assume turn;
19 last := t;
20 turn := false;
21 return
22 proc anti(var t: Procs× Vals)
23 assume !turn ∧ last = t;
24 turn := true;
25 return

26 // translation of post p e
27 if ? then
28 assume !period;
29 post pro (p,e);
30 post p (e,true);
31 repeated := true
32 else if ? then
33 assume period;
34 post anti (p,e)
35 else if ? then
36 skip
37 else
38 post p (e,period)

Fig. 3. The translation ((P))nt of an asynchronous program P .

some point no pro(t) nor anti(t) tasks are pending. By considering executions
which alternate between tasks of {pro(t) : t ∈ mi} and {anti(t) : t ∈ m′j}—where
m′j ⊆ mj such that mj \m′j correspond to the dropped tasks—we can ensure
each instance of an mi task has a corresponding instance in mj , storing only the
last encountered pro(t) task, for t ∈ mi.

Figure 3 lists our code-to-code translation ((P))nt reducing non-termination in
an asynchronous program P to completed state reachability in the asynchronous
program ((P))nt. Besides the auxiliary variable last used to store the last encoun-
tered pro(t) task, for t ∈ mi, we introduce Boolean variables repeated, to signal
whether mi is non-empty, and turn, to signal whether an anti(t) task has been
executed since the last executed pro(t) task. We also divide the execution of tasks
into two phases by introducing a task-local Boolean variable period. The first
phase (!period) corresponds to the execution c0c1 . . . ci, while the second phase
(period) corresponds to ci+1ci+2 . . . cj . Initially pending tasks occur in the first
non-period phase. Then each time a new task t is posted, a non-deterministic
choice is made for whether t will execute in the non-period phase, in the period

phase, or never.
Finally, to determine which finite asynchronous executions prove the existence

of infinite asynchronous executions, we define the predicate ϕnt over initial
conditions ι and configuration c as

ϕnt(ι, c)
def
=


true when ¬repeated(ι) and turn(ι)

and repeated(c) and turn(c)
and G[0](c) = G[1](ι) = G[1](c)

false otherwise,

along with the mapping ϑnt which projects the initial conditions of ((P))nt to
those of P , as ϑnt(〈g, `, p〉)

def
= 〈g′, `′, p′〉 when g(g′) = G[0](g), l(`′) = l(`), and

p′ = p. Essentially, in any completed configuration c reachable from ι satisfying
ϕnt(ι, c), we know that some task has executed during the period (since repeated
evaluates to true), and that for each task pending at the beginning of the period,
an identical task is pending at the end of the period (since turn evaluates to
true, and there are no pending tasks in c). Finally, the conditions on the global

8 Michael Emmi and Akash Lal

variable G ensure that the beginning and end of each period reach the same global
valuation.

Lemma 2. A finite-data program P has an infinitely-often idle execution from
ι0 if and only if a completed configuration c is reachable in ((P))nt from some ι
such that ϕnt(ι, c) = true and ϑnt(ι) = ι0.

Proof. For the forward direction, by Lemma 1, P also has a periodic execution
ξ = ξ0,iξi,jξj,ω from ι0—where ξk,l

def
= ckck+1 . . . cl−1 for k < l < |ξ|—and ci � cj

for idle configurations ci = 〈g, ε,m1〉 and cj = 〈g, ε,m2〉. We build an execution
ξ′ = ξ′0,iξ

′
i,jξmatch of ((P))nt such that

– the configurations c′k of ξ′0,i correspond to configurations ck of ξ0,i, with
g(ck) = G[0](c′k), G[1](c′k) = g,

– the configurations c′k of ξ′i,j correspond to configurations ck of ξi,j , with
g(ck) = G[1](c′k) and G[0](c′k) = g,

– the pending tasks of each configuration c′k of ξ′0,j , excluding pro and anti

tasks, are contained within those of ck,
– the local valuations of each configuration c′k of ξ′0,i (resp., of ξ′i,j) match those

of ck, except period evaluates to 0 (resp., to 1) in every frame of c′k, and
– the sequence ξmatch alternately executes pro and anti tasks such that each

pro(t) task is followed by a matching anti(t) task.

It follows that we can construct such a ξ′ which reaches a completed configuration
c from some ι such that ϕnt(ι, c), ϑnt(ι) = ι0, and G[0](c) = G[1](c) = g.

For the backward direction, the reachability of a completed configuration c of
((P))nt from ι such that ϕnt(ι, c) implies that there exists a periodic execution
ξ = c0c1 . . . of P ; in particular, there exist configurations ci � cj of ξ with i < j,
and which have the global valuations g(ci) = g(cj) = G[0](c) = G[1](c) reached
at the end of each period of ((P))nt’s execution, and the set of pending tasks
m in ci are those second-period tasks posted by ((P))nt from first-period tasks.
Since the set of tasks posted and pending by the end of the second period must
contain m—otherwise unexecutable pro tasks would remain pending—we can
construct a run where the pending tasks of cj contain the pending tasks of ci,
and so P has a periodic execution. By Lemma 1 we conclude that P also has an
infinitely-often idle execution.

3.2 Ensuring Scheduling Fairness

In many classes of asynchronous systems there are (at least) two sensible notions
of scheduling fairness against which to determine liveness properties: an infinite
execution is called strongly-fair if every infinitely-often enabled transition is fired
infinitely often, and weakly-fair if every infinitely-often continuously enabled
transition is fired infinitely often. In our setting where asynchronous tasks execute
serially from a task buffer, weak fairness becomes irrelevant; while one task
executes no other transitions are enabled, and when idle (i.e., while no tasks are
executing), all pending tasks become enabled. Furthermore once a task is posted,

Finding Non-Terminating Executions in Distributed Asynchronous Programs 9

it becomes pending, and it is thus enabled in all subsequent idle configurations
until dispatched. We thus define fairness according to what is normally referred
to as strong fairness: an execution is fair when each infinitely-often posted task
is infinitely-often dispatched.

To extend our reduction so that only fair infinite executions are considered we
make two alterations to the translation of Figure 3. First, on Line 36 we replace
skip with assume period; this ensures participation of all tasks pending at the
beginning of each period. Second, we add auxiliary state to ensure at least one
instance of each task posted during the period is dispatched. This can be encoded
in various ways; for instance, we can add two arrays dropped and dispatched of
index type Procs× Vals and element type B that indicate whether each task has
been dropped/dispatched during the period phase (i.e., where the local variable
period evaluates to true). Initially dropped[t] = dispatched[t] = false for
all t ∈ Procs×Vals. Each time a post to task t is dropped during the period phase
(i.e., Line 36) we set dropped[t] to true, and each time task t is executed during
the period phase (i.e., Line 38 when period is true) we set dispatched[t]
to true. (Note that we need not consider the non-post of t on Line 34 as
dropped, since t is necessarily dispatched during the period phase; otherwise
there would remain a pending anti(t) task.) Finally, we add to our reachability
query the predicate ∀t.dropped[t]⇒dispatched[t], thus ensuring that when all
asynchronous tasks have completed the only dropped tasks have been dispatched
during the period.

Alternatively, we may also encode this fairness check by posting auxiliary
dropped and dispatched tasks to the task buffer, in place of using the dropped

and dispatched arrays. Essentially for each task t dropped during the period
phase on Line 36 we add post dropped(t), and for each task t posted into
the period phase we add post dispatched(t). Then, using a single additional
variable of type Procs× Vals we ensure that for every executed dropped(t) task
some dispatched(t) task also executes; a single variable suffices for this check
because we may consider only schedules where all dropped(t) and dispatch(t)

tasks execute contiguously for each t.

3.3 Delay-Bounded Reachability

Following the reduction from (fair) nontermination, we are faced with a highly-
complex problem: determining completed state-reachability in finite-data pro-
grams is polynomial-time equivalent to computing exact reachability in Petri nets
(i.e., such that all places representing pending tasks are empty), or alternatively
in vector addition systems (i.e., such that all vector components counting pending
tasks are zero). Though these problems are known to be decidable, there is no
known primitive-recursive upper complexity bound.

Rather than dealing with such difficult problems, our strategy is to consider
only a restricted yet interesting set of actual program behaviors. Following Emmi
et al. [8]’s delay-bounding scheme, we equip some deterministic task scheduler
with the ability to deviate from its deterministic schedule only a bounded number
of times (per task). As this development is very similar to Emmi et al. [8]’s, we

10 Michael Emmi and Akash Lal

1 // translation of var g: T
2 var g: T
3 var G[K]: T
4

5 // translation of
6 // proc p (var l: T) s
7 proc p (var l: T, k: K) s
8

9 // translation of call x := p e
10 call x := p (e,k)

11 // translation of post p e
12 let temp: T = g
13 and guess: T
14 and k’: K in
15 assume k ≤ k’ < K;
16 g := G[k’];
17 G[k’] := guess;
18 call p (e,k’);
19 assume g = guess;
20 g := temp;

Fig. 4. The K delay sequential translation ((P))Kdb of an asyn-
chronous program P .

refer the interested reader there. We recall in Figure 4 the essential delay-bounded
asynchronous to sequential translation.

To determine which executions of the sequential program ((P))
K
db prove the

existence of a valid asynchronous execution, we define the predicate ϕdb over
initial conditions ι and configuration c as

ϕdb(ι, c) =


true when G[0](ι) = g(c)

and ∀i ∈ N.0 < i < K ⇒ G[i](ι) = G[i− 1](c)

false otherwise,

along with the mapping ϑdb from initial conditions of ((P))
K
db to those of P as

ϑdb(〈g, `, p〉) def
= 〈g′, `′, p′〉 when g(g′) = g(g), l(`′) = l(`), and p′ = p. Essentially,

in any completed configuration c reachable from ι satisfying ϕdb(ι, c), we know
that the initially pending task returned with the shared global valuation G[0](ι)
resumed by the first-round tasks, and that the last (i−1) round task, for 0 < i < K,
returned with the shared global valuation G[i](c) resumed by the first i round
task. The following lemma follows from Emmi et al. [8].

Lemma 3. A valuation g is reachable in some completed configuration of a
program P from ι0 if some g-valued completed configuration c is reachable in
((P))

K
db from some ι, such that ϕdb(ι, c) = true and ϑdb(ι) = ι0, for some K ∈ N.

4 Experience

We have implemented a prototype analysis tool called Alive. Our tool takes as
input distributed asynchronous programs written in a variation of the Boogie lan-
guage [2] in which message posting is encoded with specially-annotated procedure
calls. Given a possibly non-terminating input program P , Alive translates P into
another asynchronous program P ′ (according to the translation of Sections 3.1
and 3.2) that may violate a particular assertion if and only if P has a (fair)
non-terminating execution. Then Alive passes P ′ and a bounding parameter
K ∈ N to our AsyncChecker delay-bounded asynchronous program analysis
tool [9] which attempts to determine whether the assertion can be violated (in

Finding Non-Terminating Executions in Distributed Asynchronous Programs 11

Example bug? K N time (s)

PingPong
√

1 5 5.32
PingPong-mod2

√
2 5 19.01

PingPong-mod2-1md × 1 5 4.94
PingPong-mod3

√
3 5 86.61

PingPong-mod3-1md × 2 5 23.53
PingPong-mod3-2md × 1 5 4.66
PingPongPung

√
2 5 111.92

PingPongPung-1md × 1 5 19.87

SpanningTree-bug
√

1 5 165.19
SpanningTree-correct × 2 3 28.80
Bfs-bug

√
1 5 286.95

Bfs-correct × 2 3 32.15
BellmanFord-bug

√
1 5 303.98

BellmanFord-correct × 2 3 33.74

Paxos-bug-individual
√

2 2 67.72
Paxos-bug-competition

√
2 2 T/O

Fig. 5. Experimental results with Alive.
Here K indicates the delay-bound, and N
the recursion-depth bound.

1 // program PingPong
2 var x: bool;
3

4 proc Ping ()
5 if ¬x then
6 post Ping ();
7 x := true;
8 return
9

10 proc Pong ()
11 if x then
12 post Pong ();
13 x := false;
14 return
15

16 proc Main ()
17 x := false;
18 post Ping ();
19 post Pong ();
20 return

3:Ping 5:Pong

1:Main

7:anti

2:pro 4:pro

8:Pong

9:anti

6:Ping

3:Ping 6:Pong

1:Main

4:anti

2:pro 5:pro

7:anti

(a)

3:Ping 5:Pong

1:Main

7:anti

2:pro 4:pro

8:Pong

9:anti

6:Ping

3:Ping 6:Pong

1:Main

4:anti

2:pro 5:pro

7:anti

(b)

Fig. 6. The PingPong program, along
with asynchronous executions of the
translations ((PingPong))nt (a) and
((PingPong-mod2))nt (b). Task order is
indicated by numeric prefixes; the dot-
ted line indicates delaying.

an execution using at most K delay operations, per task). AsyncChecker
essentially performs a variation of our delay-bounded translation of Section 3.3—
which results in a sequential Boogie program—and hands the resulting program
P ′′ to the Corral SMT-based bounded model checker [14] to detect assertion
violations.

Our implementation is able to find (fair) non-terminating executions in
several toy examples, and handed-coded implementations of textbook distributed
algorithms [16]; the source code of our examples can be found online [7]. Figure 5
summarizes our experiments on three families of examples which we discuss
below: the PingPong family of toy examples, the SpanningTree family of textbook
examples, and variations on Lamport’s Paxos algorithm [15]. For each family,
Figure 5 lists both “buggy” variations (i.e., those with infinite executions) and
“correct” variations (those without infinite executions—at least up to the given
delay bound). In each case the delay bound is given by K, and a recursion bound
is given by N ; our back-end bounded model checker Corral only explores
executions in which the procedure stack never contains more than N frames of
any procedure, for a given recursion bound N ∈ N. Note that our implementation
is a simple unoptimized prototype; the running times are simply listed as a
validation that our reduction is feasible.

12 Michael Emmi and Akash Lal

4.1 PingPong

As a simple example of a non-terminating asynchronous program, consider the
PingPong program of Figure 6. Initially the Main procedure initializes the Boolean
variable x to false and posts asynchronous calls to Ping and Pong. When Ping

executes and x is false, then Ping posts a subsequent call to Ping, and sets x

to true; otherwise Ping simply returns. Similarly, when Pong executes and x is
true, then Pong posts a subsequent call to Pong, and sets x to false; otherwise
Pong simply returns. This program has exactly one non-terminating execution:
that where the pending instances to Ping and Pong execute in alternation. This
execution is periodic, as the configuration where x=false, and both Ping and
Pong have a single pending instance, is encountered infinitely often.

Figure 6a depicts an execution of the program resulting from our translation
(Section 3.1) of the PingPong program. Following our translation, the Main

procedure takes the branch of Line 28 in Figure 3, posting both pro(Ping)

and Ping, then both pro(Pong) and Pong. Without using any delay operations,
the scheduler encoded by AsyncChecker executes the posted tasks in depth-
first order over the task-creation tree [8, 9]. Thus following Main, pro(Ping)
executes, then Ping, followed by anti(Ping). Subsequently, pro(Pong), Pong,
and anti(Pong) execute, in that order. Luckily this execution provides a witness
to nontermination without spending a single delay.

Our experiments include several variations of this example. The -mod2 and
-mod3 variations add an integer variable i which is incremented (modulo 2,
resp., 3) by each call of Ping. The addition of this counter complicates the search
for a repeated configuration, since besides the global variable x and pending tasks
Ping and Pong, the value of i must also match in the repeating configuration.
This addition also increases the number of delay operations required to discover
an infinite execution, as the depth-first task scheduler without delaying considers
only executions where all Ping tasks execute before all Pong tasks—see Figure 6b;
since, for instance, modulo 2 incrementation requires two of each Ping and Pong

tasks to return to a repeating configuration (i.e., with i=0), the second Ping

task must delay in order to occur after the first Pong task. In the -1md and -2md

variations, we reduce the budget of task delaying, and observe that indeed the
additional delay budgets are required to witness nonterminating executions. The
PingPongPung variation is an even more intricate variation in which each task
(i.e., Ping, Pong, or Pung) posts a different task.

4.2 SpanningTree

In Figure 7 we consider two examples of distributed algorithms taken from the
textbook of Lynch [16], and modified to introduce nonterminating executions.
Essentially, SpanningTree attempts to compute a spanning tree for an arbitrary
network by building a parent relation from message broadcasts. When the
parent link is established asynchronously there exist (unfair) executions in which
nodes cyclically propagate their search messages without ever establishing the
parent relation. The BellmanFord algorithm is a generalization of SpanningTree

Finding Non-Terminating Executions in Distributed Asynchronous Programs 13

1 // program SpanningTree
2 type Pid;
3 var parent[Pid]: Pid;
4 var reported[Pid]: bool;
5

6 proc Main ()
7 var root: Pid;
8 assume ∀p: Pid. reported[p] = false;
9 post search (root, root);

10 return
11

12 proc search (var this: Pid, sender: Pid)
13 var neighbor: Pid;
14

15 if ¬reported[this] then
16

17 // BUG: should be done synchronously!
18 post parent (this, sender);
19

20 while ? do
21 let neighbor: Pid in
22 assume neighbor 6= this;
23 assume neighbor 6= sender;
24 post search (neighbor, this);
25

26 return
27

28 proc parent (var this: Pid, p: Pid)
29 parent[this] := p;
30 reported[this] := true;
31 return

1 // program BellmanFord
2 type Pid;
3 type Val;
4 var dist [Pid]: int;
5 var parent [Pid]: Pid;
6 const weight [Pid, Pid]: int;
7

8 proc Main ()
9 var root: Pid;

10 assume ∀p: Pid. dist[p] = INF;
11 post bellmanFord (root, 0, root);
12 return
13

14 proc bellmanFord (var this: Pid, w: int,
15 sender: Pid)
16 var neighbor: Pid;
17

18 // BUG: should check <, not ≤
19 if w + weight[this,sender] ≤ dist[this]
20 then
21 dist[this] := w + weight[this,sender];
22 parent[this] := sender;
23

24 while ? do
25 let neighbor: Pid in
26 assume neighbor 6= this;
27 assume neighbor 6= sender;
28 post bellmanFord
29 (neighbor, dist[this], this);
30 return

Fig. 7. Two distributed asynchronous programs with divergent infinite executions.

in which links between nodes have weights; the algorithm attempts to establish a
spanning tree in which each node is connected by a minimal-weight path. Our
injection of a bug demonstrates that even the most trivial of programming errors
(e.g., typing ≤ rather than <) can introduce fair nonterminating executions.
Alive automatically discovers these nonterminating executions for an arbitrary,
unspecified network.

4.3 Paxos

Lamport’s Paxos algorithm [15] provides a two-phase protocol for collaboratively
choosing a (numeric) value from a set of values proposed by various nodes in
a network; Figure 8 lists a basic variation of the algorithm. Initially a set of
proposers choose a unique value to propose, and broadcast their intention to the
set of acceptors via the prepare message. Each acceptor then decides whether to
support the proposed value, depending on whether or not a higher proposal has
already been seen. When a proposal_OK message is received, the proposer checks
whether a majority has been achieved, and if so broadcasts an accept message.
If in the meantime the acceptors have not encountered a higher proposal, they
agree on the given proposal by setting accepted on Line 46.

Even in fair executions, divergent behavior can arise from several places. As
in the program of Figure 8, the proposers may periodically post higher proposals

14 Michael Emmi and Akash Lal

in case their initial proposal is not answered within a timeout (Line 12), when
NOTIFY_DECLINED is false. Then even an individual proposer may repeatedly
propose new values just before receiving the acceptors’ proposal_OK messages.
The acceptors, in turn, may continue to increment their prepared values, such
that previously agreed proposals will no longer be accepted (see the condition
on Line 40). Even preventing such behavior by assuming the proposers only
submit new proposals upon the reception of declined messages (i.e., suppose
NOTIFY_DECLINED is true), fair nonterminating executions may still arise by
competition between two or more proposers; for instance where two proposers
continuously outbid the other before either’s proposal has been accepted.

Since each subsequent proposal in the Paxos algorithm proposed an increas-
ingly large number, strictly speaking our detection algorithm will not discover
such nonterminating executions, since the same values of proposal and prepared

will not be encountered twice. Essentially we must extend our well-quasi-ordering
of Section 3.1 by relaxing the equality on global state valuations to a well-quasi-
ordering which is compatible with the program’s transition relation. For the
purpose of our experiments, we have encoded manually such an order �′ for our
variations on the Paxos algorithm; the order relates global valuations g1 �′ g2
when there exists some δ ∈ N such that the values of proposal for proposing
processes, and prepared for accepting processes, in g1 and g2 uniformly increase
by δ, and all other variables in g1 and g2 are equal. With this small manual effort,
Alive is able to discover the “individual” nonterminating execution described
above, and while Alive can also detect the “competing” nonterminating exe-
cution in theory, AsyncChecker times out on the reachability check after 30
minutes.

5 Related Work

Contrary to much work on sequential program (non)termination detection [5, 11],
less attention has been paid to concurrent programs, where nontermination can
arise from asynchronous interaction rather than diverging data values. Though
both Cook et al. [6] and Popeea and Rybalchenko [17] have proposed techniques
to prove termination in multithreaded programs, failure to prove termination
does not generally indicate the existence of nonterminating executions. In very
recent work, Atig et al. [1] suggest compositional nontermination detection for
multithreaded programs based on bounded context-switch; their technique detects
infinite executions between a group of interfering, and each non-terminating,
threads. Our approach is orthogonal, as we detect infinite executions in which
every task terminates; nontermination arises from the never-ending creation
of new tasks. Technically, while Atig et al. [1] explore the behaviors between
statically-known threads, our problem is to detect the repetition of an unbounded
set of dynamically-created tasks.

Our reduction-based technique follows a recent trend of compositional transla-
tions to sequential program analysis by considering bounded program behaviors.
Based on the notion of bounded context-switch [18], Lal and Reps [13] proposed

Finding Non-Terminating Executions in Distributed Asynchronous Programs 15

1 // The Proposers
2 var proposal[Pid]: int;
3 var agreed[Pid]: int;
4

5 proc propose (var p: Pid)
6 let n: int = gen_proposal_number () in
7 proposal[p] := n;
8 agreed[p] := 0;
9 post prepare (ACCEPTOR, p, n);

10

11 if ¬NOTIFY_DECLINED then
12 post propose(p);
13 return
14

15 proc proposal_OK (var p: Pid, n: int)
16 agreed[p] := agreed[p] + 1;
17 if agreed[p] ≥ MAJORITY then
18 post accept (ACCEPTOR, p,
19 proposal[p]);
20 return
21

22 proc declined (var p: Pid, n: int)
23 call propose (p);
24 return

26 // The Accepters
27 var prepared[Pid]: int;
28 var accepted[Pid]: int;
29

30 proc prepare (var p: Pid, sender: Pid, n: int)
31 if prepared[p] ≥ n then
32 if NOTIFY_DECLINED then
33 post declined(sender, n)
34 else
35 prepared[p] := n;
36 post proposal_OK(sender, accepted[p])
37 return
38

39 proc accept (var p: Pid, sender: Pid, n: int)
40 if prepared[p] > n then
41 if NOTIFY_DECLINED then
42 post declined(sender, n)
43 else
44 // do there exists infinite runs
45 // which never accept any proposal?
46 accepted[p] := n
47 return

Fig. 8. A basic variation of the Paxos distributed algorithm; for simplicity we suppose
there is only a single accepting process named ACCEPTOR.

a reduction from detecting safety violations in multithreaded programs (with a
finite number of statically-known threads) to detecting safety violations in se-
quential programs; shortly after La Torre et al. [12] extended this result to handle
an arbitrary number of parametric threads, which was further extended by Emmi
et al. [8] to handle dynamic thread creation—including the case of task-buffer
based “asynchronous programs” [19]. More recently Bouajjani and Emmi [3]
proposed a reduction from safety violations in distributed asynchronous programs
with ordered message queues. Thus far, only the recent (yet orthogonal—see
above) work of Atig et al. [1] considers liveness properties such as nontermination.

Finally, although reductions from fair nontermination of task-buffer based
finite-data asynchronous programs (alternatively, Petri nets) are known—e.g., by
encoding into Petri net path logic formalæ [10]—our encoding into asynchronous
programs is original, and takes advantage of existing program analysis tools
with efficient under-approximating exploration strategies. Technically, Ganty and
Majumdar [10]’s encoding uses constraints on marking-valued variables to ensure
that each task pending at the beginning of a repeating period is re-posted and
pending at the period’s end; a path-logic solver must then determine satisfiability
under those constraints. Our encoding handles the matching of pre- and post-
period pending tasks directly; we pose an asynchronous program reachability
query on a program whose additional tasks block executions in which pre- and
post-period tasks cannot be matched.

16 Michael Emmi and Akash Lal

6 Conclusion

We have proposed a practical reduction-based algorithm for detecting divergent
executions in distributed asynchronous programs. By incrementally increasing
possible task reordering, our approach explores an increasing number of possibly-
divergent behaviors with increasing analysis cost, and any possibly-divergent
behavior is considered at some cost. By reducing divergence of distributed asyn-
chronous programs to assertion violation in sequential programs, our approach
leverages efficient off-the-shelf sequential program analysis tools. Using our pro-
totype tool, Alive, we demonstrate that the approach is able to find divergent
executions in modified versions of typical textbook distributed algorithms.

References

[1] M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting fair non-
termination in multithreaded programs. In CAV ’12: Proc. 24th International
Conference on Computer Aided Verification, LNCS. Springer, 2012.

[2] M. Barnett, K. R. M. Leino, M. Moskal, and W. Schulte. Boogie: An inter-
mediate verification language. http://research.microsoft.com/en-us/

projects/boogie/.
[3] A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing

programs. In TACAS ’12: Proc. 18th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, LNCS. Springer,
2012.

[4] A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent
programs. In SAS ’11: Proc. 18th International Symposium on Static
Analysis, volume 6887 of LNCS, pages 129–145. Springer, 2011.

[5] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. In PLDI ’06: Proc. ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation, pages 415–426. ACM, 2006.

[6] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination.
In PLDI ’07: Proc. ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 320–330. ACM, 2007.

[7] M. Emmi and A. Lal. Finding non-terminating executions in distributed
asynchronous programs. May 2012. http://hal.archives-ouvertes.fr/
hal-00702306/.

[8] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In
POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 411–422. ACM, 2011.

[9] M. Emmi, A. Lal, and S. Qadeer. Asynchronous programs with prioritized
task-buffers. Technical Report MSR-TR-2012-1, Microsoft Research, 2012.

[10] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous pro-
grams. CoRR, abs/1011.0551, 2010. http://arxiv.org/abs/1011.0551.

[11] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. In POPL ’08: Proc. 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 147–
158. ACM, 2008.

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/projects/boogie/
http://hal.archives-ouvertes.fr/hal-00702306/
http://hal.archives-ouvertes.fr/hal-00702306/
http://arxiv.org/abs/1011.0551

Finding Non-Terminating Executions in Distributed Asynchronous Programs 17

[12] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameter-
ized concurrent programs using linear interfaces. In CAV ’10: Proc. 22nd
International Conference on Computer Aided Verification, volume 6174 of
LNCS, pages 629–644. Springer, 2010.

[13] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

[14] A. Lal, S. Qadeer, and S. Lahiri. Corral: A solver for reachability modulo
theories. In CAV ’12: Proc. 24th International Conference on Computer
Aided Verification, LNCS. Springer, 2012.

[15] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):
133–169, 1998.

[16] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN
1-55860-348-4.

[17] C. Popeea and A. Rybalchenko. Compositional termination proofs for multi-
threaded programs. In TACAS ’12: Proc. 18th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, LNCS.
Springer, 2012.

[18] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent
software. In TACAS ’05: Proc. 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 3440 of
LNCS, pages 93–107. Springer, 2005.

[19] K. Sen and M. Viswanathan. Model checking multithreaded programs
with asynchronous atomic methods. In CAV ’06: Proc. 18th International
Conference on Computer Aided Verification, volume 4144 of LNCS, pages
300–314. Springer, 2006.

[20] H. Svensson and T. Arts. A new leader election implementation. In Erlang
’05: Proc. 2005 ACM SIGPLAN Workshop on Erlang, pages 35–39. ACM,
2005.

[21] F. Trottier-Hebert. Learn you some Erlang for great good! http:

//learnyousomeerlang.com/.

http://learnyousomeerlang.com/
http://learnyousomeerlang.com/

	Finding Non-Terminating Executions in Distributed Asynchronous Programs
	Introduction
	Distributed Asynchronous Programs
	Program Syntax
	Program Semantics

	Detecting Non-Termination
	Reduction from Non-Termination to Reachability
	Ensuring Scheduling Fairness
	Delay-Bounded Reachability

	Experience
	PingPong
	SpanningTree
	Paxos

	Related Work
	Conclusion

