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ABSTRACT
A growing number of mobile apps are exploiting smartphone
sensors to infer user behavior, activity, or context. Inference
requires training using labeled ground truth data. Obtaining
labeled data for new apps is a “chicken-egg” problem. With-
out a reasonable amount of labeled data, apps cannot pro-
vide any service. But until an app provides useful service it
is not worth installing and has no opportunity to collect user
data. This paper aims to address this problem. Our intuition
is that even though users are different, they exhibit similar
patterns on certain sensing dimensions. For instance, differ-
ent users may walk and drive at different speeds, but certain
speeds will indicate driving for all users. These common pat-
terns could be used as “seeds” to model new users through
semi-supervised learning. We prototype a technique to au-
tomatically extract the commonalities to seed personalized
inference models for new users. We evaluate the proposed
technique through example apps and real world data.

INTRODUCTION
The rich suite of sensors on mobile devices is enabling a new
class of sensing applications that recognize user activities,
their context, and environments, for several purposes [1].
Most of these applications rely on some form of inference
over the raw sensor outputs. Inferencing entails (1) an initial
training phase, where the raw data are labeled with the true
value of the attribute being inferred and a model is estab-
lished to relate the data to the inferred attribute, and (2) the
inference phase, where the trained model is used to infer the
attribute of interest from new unlabeled data.

For the inference to be reliable, the training phase needs to
use representative data. For instance, if an app intends to in-
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fer user mood from phone usage [2], it needs labeled phone
usage data from a large number of users with their specific
behavior for training. Training on a few users, say the app
developer or their friends, would result in poor inferencing
accuracy for most other users. Models trained on the same
user as the one for whom inference is to be performed are
more accurate [2] since the raining data is highly represen-
tative for that user.

In practice, obtaining labeled data from a large number of
users is hard. Obtaining labels from each user (to train a
personalized model) is even harder. Users are typically not
interested in providing labels for an app that they have not
yet found to be useful. But without the training labels the
app has poor inference performance, and is not very relevant
to be used or even installed in the first place. We refer to
this issue as the bootstrapping problem. It has been one of
the main hurdles in bringing inference-based sensing apps to
today’s mobile app store.

In this paper we develop techniques to automatically adapt
the inference models required by sensing applications to mul-
tiple users. The solution is based on an insight that ap-
plies well-studied semi-supervised learning methods to this
problem. We believe that the training data will contain cer-
tain data points that occur with higher frequency and cor-
respond to high confidence inference. Continuing with the
simple example of detecting user mood, certain data points
in the labeled data may reliably map to a happy or sad mood,
while other data points may have lower reliability and may
even correspond to a different mood for other users. Using
only the high confidence points as seeds for semi-supervised
learning, we incorporate the unlabeled data for each user to
train a new model specific to that user. Since the unlabeled
data is used from the user on which inference is performed,
the inference model is expected to be accurate for the user.
The unlabeled data is obtained from apps already in use that
may not have assigned any ground truth labels of interest to
the new applications.

Building up further on the above intuition we also extend our
model adaptation strategy to exploit multiple sensors or data



dimensions to enhance accuracy. The idea is to find seeds on
at least one of the sensing dimensions, and use them to infer
on other dimensions. For instance, Alice’s location may be
a reliable feature to infer whether she is at home or office,
but her location may not be a seed for labeling Bob’s data,
if Bob lives at a different location. Now, if accelerometer
readings correlate well to location (say, distinct motion pat-
terns emerge in home and office), then Alice’s motion pat-
terns may be matched to Bob’s, and therefrom, Bob’s office
and home locations identified. We show how model adapta-
tion is particularly effective because every labeled data, such
as “I am at home”, implicitly labels the location, accelerom-
eter, and other sensor readings from that time instance. Thus,
if any one dimension matches well between Alice and Bob,
the rest of Bob’s unlabeled data can potentially be labeled.

We evaluate our techniques in the context of multiple infer-
ence tasks using real world sensor data. We compare the ac-
curacy of the adapted models generated by our techniques to
the models trained using ground truth labels for each user.
Results show that the proposed techniques are indeed ef-
fective for the applications studied. Of course, deploying
our techniques in real world mobile app development frame-
works, such as Android or iOS, will require extensive testing
across a far greater number of applications and user-data. At
this stage, we show a proof of concept that allows small scale
app developers to bootstrap their apps with only a few users.

Finally, we note that since our system finds mechanisms to
label unlabeled data, and gain from the process, significant
amount of sensing data collected by different apps can be
consolidated. The consolidated data can then be used to
bootstrap new apps, particularly those that rely on collab-
orative sensing (e.g., GPS and accelerometer readings from
many users to infer traffic congestion, or potholes [3–6]).
Such apps are difficult to bootstrap on their own because
they require a large number of users to begin with. Again, as
a proof of concept, we prototype such a collaborative sens-
ing app and bootstrap it from data provided by other apps.
The prototype app partitions users current activity into into 2
classes – professional work and personal activity – and may
be used to measure the work life balance within a popula-
tion. The app is build using data that were collected entirely
from other apps.

DESIGN PHILOSOPHY
Our techniques are designed to reduce the need for labeled
data that is often hard to collect. However, unlabeled data
is still required to operate as may be expected for any data
driven inference methods. To facilitate the collection and
availability of such data, we make the following assumptions
regarding the application development and usage scenario.

Expansive User Coverage
We assume that applications that collect sensor data can share
it across users and other applications. Such sharing is al-
ready available for location sensors through services such as
Google Latitude1. This service collects location data from

1http://www.google.com/latitude

every application that senses location such as a weather app
that senses location to display the weather relevant to the
user’s region, local search apps, and of course map or navi-
gation apps. The collected data is made available to all ap-
plications, including apps that do not collect any data them-
selves but may just wish to get a historic trace of the data,
again subject to user permissions. Similar sharing for other
sensors on the phone such as accelerometers, light sensors,
gyroscopes, magnetometers, proximity sensors, is not hard
to envision. Even for sensors such as the microphone that
are relatively more privacy intrusive, certain data features
such as magnitude or variance, or features specifically de-
signed to preserve privacy [7] may still be shared assuming
appropriate access control is provided. Hence, not all sensor
data (e.g., microphone, camera) collected by an app may be
useful for other apps, but some generic sensors and features
are likely to be relevant.

While individual user may only use applications of inter-
est to them, collectively among all apps, coverage is likely
to build up for a large number of users and sensor types.
Ground truth labels will only be available for a very small
fraction of the users. Often, the ground truth labels will be
limited to the app developers who collect training data on
their own devices or a small number of enthusiastic users.
Some additional training data may exist through incentive
based or fun and game driven labeling [8]. However, the
bulk of data remains unlabeled. The key advantage of such
sharing is that when a new user downloads an app, and the
inference model needs to be adapted for this user, there is
likely already unlabeled data available from this user. In
some cases, the new app may be able to collect unlabeled
data from this user during initial usage. We will use this un-
labeled data for adapting the inference model for this user
and provide more accurate inference.

Critical Mass for Participatory Sensing
The sharing of data can enable new participatory sensing ap-
plications that might not reach critical mass on their own.
Consider for example an application deployed by each user
to rate driver performance [9] that collects accelerometer
data and potentially uploads it to compare to other drivers
in the relevant driving conditions. The mobile device may
also have a navigation app that collects location data, and
uploads this data to download relevant maps and traffic from
the cloud. If data from these apps is shared, the accelerom-
eter and GPS data collected from multiple drivers across a
city could be used to enable an app that maps potholes on
local roads [6]. The data sharing based design philosophy
automatically enables participatory sensing apps.

Design Overview
Figure 1 summarizes the two important aspects of this design
– exploiting model adaptation and bootstrapping participa-
tory sensing. Multiple apps from multiple users share their
data in a common repository. Only a small number of users,
recruited by the developers, have labeled data for each app
and the model adaptation methods are applied in the shared
repository to generate adapted inference models for all the
other users. The adapted models may be downloaded to each

http://www.google.com/latitude


user’s device for accurate inference. Related techniques will
be explained in detail in the next section.
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Figure 1. Sharing data generated from individual applications boot-
straps new participatory sensing applications.

Moreover, the large-scale shared data/inferences can also be
used to enable new participatory sensing apps. For exam-
ple, a series of applications [3–6] can benefit from knowing
whether the user is driving or not. Therefore, if any driving
detection app (e.g., Safe Drive) is contributing this inference
(driving/not driving) to the shared data repository, new ap-
plications can build their inference model based on known
driving status without developing their own driving detec-
tion module. Similarly, applications monitoring users’ con-
text (e.g., sleep detection, home/work status detection) can
also provide useful inferences to other applications. In the
next subsection, we present four such prototype applications
that exhibit this property.

Prototype Applications
Sensing inference is useful for several applications. While
we describe our methods generically, we use the following
concrete inference tasks to illustrate and evaluate the con-
cepts presented.

1. Safe Drive. People spend a significant amount of time
driving [10] and the detection of driving can be used for
preventing mobile device distractions [11], optimizing GPS
use based on movement [12], and other context dependent
tasks. We prototype the detection of driving using ac-
celerometer and GPS sensors as one of our activity sens-
ing examples. Similar inference has also been performed
for inactivity detection [13].

2. Healthy Sleep. Detecting if the user is sleeping has mul-
tiple uses. The mobile device may change the sounds
for alerts and notifications, or deactivate background tasks
such as email synchronization if the user has forgotten to
plug in their phone, so as to ensure that the battery can last
until the time set for the morning alarm. Long term ob-
servations may be used to track health problems or sleep
disorder [14]. We prototype sleep detection using several
sensors including audio, GPS, light level, and time of day.

3. Work-Life Balance. Determining user context in terms
of home or work can be useful for several ubiquitous com-
puting applications [15], mobile applications, and oper-
ating system services [16]. The home may preheat it-
self, user mobile device home screen and security settings

could be altered, alerts and ring-tones could be changed,
and WiFi radio could be turned on or off, among other
things. We prototype this detection using GPS and time.

4. Productivity Census (Participatory sensing supported
by existing apps). As an example of a participatory sens-
ing application, we consider the measurement of user ac-
tivity from an economic perspective. The US Bureau of
Labor Statistics conducts a survey known as the American
Time Use Survey (ATUS) [17], that measures the amount
of time people spend doing various activities, such as work-
ing (including educational activities), personal care activ-
ities (including sleep), and leisure activities. A summary
view of the collected data from 2009 is shown if Figure 2.

0 5 10 15 20 25
0

50

100

150

Time of day (HH)
F

ra
ct

io
n 

of
 u

se
rs

 (
%

)

 

 
Personal Work Leisure

Figure 2. Summary of American Time Use Survey Data showing user
activities at different times.

The data is used for economic research such as to quantify
work activities, enhancing worker productivity, and tracking
changes in work patterns with changing business cycles. The
data is also useful for studying health and safety, as well as
family-work-life balance. Currently the data is collected us-
ing manual surveys. This has a high cost and can only reach
a small percentage of the population. An alternative is to
use the sensors on mobile devices to automatically collect
user activity data and continuously the time use characteris-
tics for a large population. We use this as our example of
a participatory sensing application that can be supported by
existing applications.

Additionally, the techniques can be applied to any inference
task where user specific training will help improve the accu-
racy compared to a generic model, such as cough detection
from audio [7] or user inactivity [13].

INFERENCE MODEL ADAPTATION
Our primary goal is to automatically adapt inference mod-
els for new users, solving the bootstrapping problem. To
use a generic method for adaptation, independent of applica-
tion semantics, the inference model must be represented in
a common form. While many different types of algorithms
and application-specific rules can be applied to perform in-
ference on the sensor data, we focus on inference methods
based on probabilistic machine learning techniques. This
common structure is broad enough to cover a large class of
inferences. Many sensing tasks for sensing both the users
and their environments are based on probabilistic inference
models [1,18]. Applications that fall outside of this structure
can still take advantage of data sharing, but will not benefit
from the automated adaptation of inference models.



Most probabilistic inference methods begin with a training
data set that consists of the sensor data and labels that indi-
cate the ground truth activity or phenomenon corresponding
to each data sample or time window of samples. The la-
bels are often application specific. Appropriate features that
are likely to be beneficial for distinguishing between the in-
ferred states are computed from the raw sensor data and an
inference model is trained using statistical machine learning
techniques such as Support Vector Machines, Bayesian Net-
works, Gaussian Process Regression, or various clustering
methods. We follow this same general methodology, select-
ing specific methods for each step as conducive to model
adaptation.

Figure 3 illustrates an overview of the process. The labeled
data is used to establish inference models for training users.
Then, the high confidence data points from the training user
and unlabeled data from new users are combined to boot-
strap model adaptation for these new users.
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Figure 3. Block diagram of proposed optimizations that exploit shared
unlabeled data across multiple users and applications.
Below, we describe the set of techniques (Gaussian process
regression (GPR), co-training, semi K-mean) chosen for each
stage of the inference tasks, starting with the training on a
single user (the developer themselves) or a small set of vol-
unteers, to the final stages of adapting the model to a large
number of other users.

Initialization
To build a sensing application, the developer begins with a
training data set. The training set could be small and cover
only a few users for a limited duration of time. These users
are recruited by the developer to provide initial labeled data
for a new application. Notice that, assuming the application
uses probabilistic inference, such a training set would have
been required even if not using the proposed adaptation tech-
niques.

From a developer perspective, this simply means that they
collect the training data as they would have. They may po-

tentially collect on fewer users than would have been oth-
erwise required. The training data consists of the raw sen-
sor values, indexed by time stamps and a user identity (an
anonymized, randomly generated, key may be used for the
user to maintain their personalized model without revealing
their personal information). Each sensor value is labeled
with the ground truth value for the attribute to be inferred.
For instance, for the detection of driving activity, a trace
of sensor data may be collected over time and periods of
driving labeled as “driving” and other periods labeled “not
driving.” The developer may optionally indicate which fea-
tures they wish to compute from the raw sensor data (such as
the first derivative, or speed, over GPS data may be identi-
fied to be useful. After uploading the training data, suppose
the training set contains data from k sensors and contains N
data points coming from one or a few users. Denoting the
i-th data point as Si = {si1, ..., sik}, the data set becomes
{Si}Ni=1, with corresponding labels {li}Ni=1.

The first step is to build an inference model from the training
set. While several machine learning techniques are available
for this, we wish to select one that quantitatively tracks un-
certainty, since confidence level is used in adaptation across
multiple users. Gaussian Process Regression (GPR) is a
well known method that estimates uncertainty naturally dur-
ing inference [19]. In GPR, one assumes there is a latent
function fj that relates the sensor reading sij to the output
li for all data points i. The probability distribution p(fj) of
the possible functions is assumed to be a Gaussian Process,
characterized by its covariance matrix Kj, where j denotes
the j-th sensor dimension. The covariance matrix captures
the knowledge in the training data about the function f . Kj

can be computed using standard methods from the training
data once a kernel function, usually chosen from Radial Ba-
sis Function (RBF) based kernels, is assumed. Once Kj has
been computed, GPR can be directly used to predict the la-
bels for new observations, and inferences performed using
GPR automatically include a measure of uncertainty.

At this stage, two types of model adaptations may be per-
formed that exploit the unlabeled data available due to shar-
ing across multiple applications. First, the additional unla-
beled data available for the training user (such as data col-
lected by other apps previously) can be used to enhance the
model for the training user itself. Second, the model learned
from the training user may be adapted to additional users.

Adaptation for Training User
While the developer may only provide training data collected
over a limited time duration, there may be other data along
the same sensor dimensions available for other times, con-
tributed from other apps previously, or collected within the
app without labeling. Such data can be used to improve the
accuracy of the inference model by adapting the model from
that provided by the developer to one that incorporates ad-
ditional data. A semi-supervised learning technique that en-
ables this is co-training. Specifically, we use Bayesian co-
training that can naturally incorporate the uncertainty mea-
sures and learned kernels from GPR. The uncertainty mea-
sures are extended to the unlabeled data as it is incorporated.



Also, if different data points have labels on different sensor
dimensions, that data is easy to use.

Bayesian co-training methods are well-studied in literature
and we refer the reader to prior work [20] for details. Briefly,
the insight behind incorporating unlabeled data using co-
training is that the unlabeled data is used to bias the distribu-
tions of the functions fj for each sensor dimension towards
those function instances that maximize the consensus among
the inferences made for unlabeled data points using each of
the sensors. For example, in a driving detection app, for an
unlabeled data point, if the accelerometer readings exhibit
an ambiguous pattern, but the GPS based speed indicates
driving with high confidence based on the initial model de-
rived from labeled data, then the co-trained kernel will get
biased towards the higher confidence inference (driving) for
this data point. This will help infer the correct user state from
similar accelerometer data observed later. Thus co-training
allows the model to learn new accelerometer data patterns
that were not available in the labeled data set.

Mathematically, according to co-training theory, the covari-
ance matrix for the Gaussian Process characterizing the con-
sensus function is given by:

Kc =

∑
j

(
Kj + σ2

j I
)−1−1

where σj represents the noise level associated with the j-
th sensor, and I is the identity matrix. More reliable sen-
sors can be assigned lower noise levels and can hence have a
higher weight in the consensus. The co-variance matrix Kc

yields an enhanced inference model that incorporates mul-
tiple sensors as well as any available unlabeled data for the
most accurate inference possible using the available labeled
and unlabeled data.

The actual application of the above methods for model adap-
tation is summarized in Algorithm 1. Briefly, GPR is first
used to learn a model on each sensor dimension using only
the labeled data and then co-training is applied to incorpo-
rate the unlabeled data and derive a joint inference model.
In the specification, {Si}Mi=N+1 denotes any available unla-
beled data.

In practice, certain features computed over the raw sensor
data are used rather than the raw sensor values since the
inferred state label often has better dependence on the fea-
tures. For instance, the driving activity state may be bet-
ter inferred using the first derivative of GPS sensor values
(speed). Hence the introduction of step 1 in the algorithm.
In our prototype, we implement commonly used features,
namely the magnitude, variance, first derivative, and most
dominant frequency components of the data histogram. Other
features can be considered as well.

Since the algorithm operates in an application agnostic man-
ner, co-training weights must be determined automatically.
The search space of weights in k dimensions is rather large
and for tractability, we use a common heuristic that com-

Algorithm 1 ENHANCEMODEL({Si}Ni=1, {li}Ni=1 ,
{Si}Mi=N+1), α

1: Compute features g(Si) from raw data for each sensor.
2: Use labeled data [{g(Si)}Ni=1, {li}Ni=1] to compute Kj

for each j, using GPR techniques.
3: Drop sensors that yield accuracy below α. Suppose q

sensors remain.
4: List

(
q
2

)
pairs of sensors.

5: for each pair r do
6: w∗r = 0.01
7: for weight wr in {0.01, 0.1, 1, 10, 100} do
8: Incorporate {g(Si)}Mi=N+1 using co-training with

relative weight wr between sensors
9: If accuracy is better than with w∗r , set w∗r = wr

10: Normalize relative weights across all pairs, obtaining
{wj}qj=1.

11: Incorporate {g(Si)}Mi=N+1 using co-training with noise
variances σj = {1/wj}qj=1 to compute Kc.

12: return Kc

pares the performance of various sensors pairwise (step 5),
assigning relative weights in proportion to their accuracy.
Sensors that yield accuracy below a threshold are dropped
from Kc. The variable α is used to denote a threshold of
accuracy below which inference is not useful.

This algorithm can be applied to any application to derive
an inference model. This inference model can be applied di-
rectly to data streams from the initial users for whom the
training data was obtained. This inference model is also
ready to be used for multi-user adaptation.

Bootstrapping Additional Users
Once the inference model is determined, and represented in
a form that incorporates uncertainties, for the users with la-
beled data provided by the developer, we adapt this model to
other users using semi-supervised learning.

The uncertainty estimate from the use of Kc on the labeled
users gives an indication of which data points have high-
est inference confidence (estimated by separating out data
points randomly into training and test sets). We now select
top few percent highest confidence data points (20% in our
prototype implementation) along with their labels as poten-
tially useful labels for new users for whom no labeled data is
available. Also, while each data point is multi-dimensional
(has values for multiple sensor features) only those sensor
dimensions that had the highest inference accuracy (those
with the highest weights used in the co-training matrix Kc)
are selected.

Personalization
Since our goal is to adapt to the differences in behavior of the
new user, we do not incorporate the unlabeled data from the
new user into the training set from the labeled user and ap-
ply co-training to maximize consensus among the entire data
set. That would hide the individual differences and converge
towards an average behavior that may not work well for any



of the individual users. Instead we perform semi-supervised
learning on each new user separately. Since there are no
ground truth labels for the new users, there is no direct way
to test the accuracy of different sensor dimensions. Hence
we use a semi-supervised learning method that does not re-
quire the assignment of weights to different dimensions. A
lightweight semi-supervised learning method that automati-
cally uses all available sensor dimensions to the extent useful
is constrained k-means clustering [21]. This method works
under the assumption that the number of clusters, i.e., the
inferred states, is the same across different users. Also, the
high-confidence data points from the training user should be
indicative of true states for at least the new user’s data points
close to them. For instance, a high confidence data point that
indicates the inferred state ‘driving’ at a very fast speed for
the trained user should also indicate the state ‘driving’ for
the new user at similar speeds, even though the actual dis-
tribution of speeds (GPS data) and accelerometer data may
be different across two users. One user may typically drive
much slower, living in a busier city, or have smoother ac-
celerometer outputs based on a smoother vehicle, compared
to the other. These differences will result in different model
parameters after semi-supervised learning is applied.

Learning New User Models
The actual procedure for applying semi-supervised learn-
ing to new users for model adaptation boils down to Al-
gorithm 2. Here {Si}Mi=1 represents the unlabeled data for
the new user, and {S0

i}ni=1 represents the n high confidence
data points, sometimes referred to as seeds, selected for adap-
tation from the training users with labels.

The algorithm is essentially implementing standard constrained
k-means clustering but with one modification specific to our
scenario: to accept reduced dimensionality seed points.

While Si for the new user is k-dimensional, the seed points
may have less than k dimensions since only the high con-
fidence sensor dimensions are selected in the seeds. Sup-
pose S0

i is p dimensional. Suppose k′ and p′ represent the
number of features computed on k and p dimensions respec-
tively. Also, suppose there are L states to infer, implying
that li takes values in {1, ..., L}. Then, g(S0

i)|li = x rep-
resents the labeled points with label li, sometimes referred
to as cluster li. The difference in dimensions of S and S0

causes us to introduce step 3 in the algorithm before the
standard constrained k-means clustering algorithm can be
applied. This step is computing, for each cluster in the la-
beled data, the unlabeled point that is closest to that cluster.
The remaining k′ − p′ dimensions of the selected point are
used to expand the centroid of the labeled cluster to k′ di-
mensions from p′ dimensions. The value of n is taken as
20% of N , the number of labeled training points, in our im-
plementation. The variable θ denotes the threshold distance
that is used to declare that the constrained k-means algo-
rithm has converged when the centroids move less than θ.
Step 7 simply implements the standard constrained k-means
algorithm. The algorithm returns the adapted centroids after
constrained k-means has been applied. These centroids can
now be used for inference using a clustering algorithm for

Algorithm 2 ADAPTMODEL({Si}Mi=1, {S0
i}ni=1 , {li}ni=1),

θ

1: Compute features g(Si), g(S0
i) from raw data for each

sensor.
2: Compute the p′-dimensional Euclidean distance be-

tween g(Si) and g(S0
i).

3: for each label x ∈ {1, ..., L} do
4: Find the point gx in g(Si) that is closest to points

g(S0
i)|li = x, using p′ dimensional distances.

5: To the p′ dimensional centroid of cluster x, add the
remaining k′ − p′ values from the corresponding di-
mensions of gx. Denote the expanded centroid as cx.

6: Initialize constrained k-means algorithms with centroids
cx with weights corresponding to number of points in
{S0

i}ni=1 with label x.
7: repeat
8: for each unlabeled point g(Si) do
9: Find nearest centroid cx and add point to cluster x

10: Update cluster centroid cx with new point
11: until centroids move less than θ
12: return Return {cx}Lx=1

future sensor observations.

As an illustration of this algorithm, we consider the driving
detection activity, using the data set described in the evalu-
ation section. Figure 4 shows the original cluster centroids
using the seed points from the trained user, as extended to
k′ = 3 dimensions after step 3. The figure also shows the
evolved centroids after the model adaptation has been ap-
plied using the unlabeled data from the new user. Three
features coming from two sensors are shown. Accelerom-
eter feature 1 refers to the magnitude of the mean of the 3D
accelerometer vector computed over a 10 sample window.
Accelerometer feature 2 refers to the magnitude of variance
over a similar data window. The sensor dimensions are nor-
malized to be between 0 and 1. Cluster 2 represents driving
activity while cluster one represents not driving.
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Summary
The combination of methods discussed above inference adap-
tation is shown in Figure 3. The labeled data is used for
learning GPR models for the training users which may op-
tionally be enhanced using unlabeled data for the training
users themselves through co-training. This model suffices to
perform inference for the training users.

The high confidence data points from the training user and
unlabeled data from new users are used for model adaptation
to enhance the operation of inference on those new users.
The adapted model for each user is used for inference for
that specific user.

Limitations
The proposed method still has its limitations. For example,
like any learning method, if a user behaves completely dif-
ferently from any known user (e.g., constantly drive slower
than running), the model adaptation may fail to generate an
accurate inference model for her. Also, current implemen-
tation does not accommodate for device heterogeneity. Ac-
commodating devices with different sensing accuracy and
sampling rate is one of our future work.

EVALUATION
We evaluate the performance of the proposed adaptation meth-
ods on real world data sets to study the inference accuracy
achieved. The evaluations are performed in the context of
the applications mentioned in the prototype application sec-
tion, namely healthy sleep (sleep activity detection), work-
life balance (inferring at home or work), safe drive (driving
activity detection), and productivity census (the participa-
tory sensing app).

Datasets
While the proposed techniques help alleviate the need for
labeled datasets, we still need labeled ground truth data for
testing the accuracy of the proposed techniques. This re-
quires us to collect labeled data for each user to be included
in our evaluations. We collected the following two datasets
for this purpose.

• Sleeping Activity Dataset (used for work-life balance
app and healthy sleep app). We collected ground truth
labeled data recording the sleep activity for 5 volunteers
(recruited from among graduate students at our lab and
their families). Each user carried a mobile device that
collected light, proximity, GPS, accelerometer, and audio
magnitude data for 3 to 7 days. The actual sleeping times
were recorded manually. This dataset contains two sets of
labels, home/work and sleep/awake, associated with each
1 minute interval.

• Driving Activity Dataset (used for safe drive app). We
also collected labeled data for driving activity detection.
This set comprises sensor data including GPS, accelerom-
eter and other mobile device sensors from 14 mobile de-
vices. The users carried the devices in their pocket, hand,
or backpack, and engaged in driving as well as other ac-
tivities including walking and not moving. Each user was

followed by another person who labeled the ground truth
activity for the entire user trace. Each trace was collected
for 1 hour, representing a total of 14 hours of ground truth
labeled data. This data set is labeled with transportation
modes, walking/driving, associated with the mode switch-
ing time (e.g., the user starts driving at 7 AM).

• Productivity Census Moreover, we show that a produc-
tivity census app can be built using the inferences pro-
vided by existing apps.

Evaluation Metric
The performance of sensing applications can be evaluated by
comparing inference results with labeled ground truth. The
comparison result can be measured by various information
retrieval metrics such as precision/recall/fallout or a ROC
curve. In our evaluation, we choose the metric of accuracy
defined as:

Accuracy= (True Positives+True Negatives)/All Samples

Intra-User Adaptation
After initialization to establish an inference model for the
training data provided by the developer, we use Bayesian co-
training to incorporate any unlabeled data available for those
users, to derive an enhanced inference model. To evaluate
the advantage of model enhancement for the training users
using co-training, we first initialize the inference model us-
ing Gaussian Process Regression (GPR) on each sensor di-
mension using labeled data alone, and compare the accu-
racy with the co-trained model. The available data was par-
titioned into a training set taking 50% of the data and the
remaining 50% was used for testing.

Figure 5 shows the accuracy achieved by GPR and co-training
for various sensors for sleeping activity detection. Similar
results are shown for driving activity detection in Figure 6.
Co-training shows a clear advantage for almost all users.
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Figure 5. Co-training advantage for sleeping activity detection.

The co-training results for detecting if the user is at home
or work are similar, except that the co-training advantage
over using GPS is very small for a given user with labeled
data. For this sensing task, the evaluation for model adap-
tation across users is more important and is presented in the
following subsection.
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Figure 6. Co-training advantage for driving activity detection.

One of the reasons for using GPR and co-training was that
this automatically maintains a quantitative measure of un-
certainty. As an illustration, the uncertainty, measured as
the standard deviation, σ, is plotted in Figure 7 for sleeping
activity detection. The data points are sorted by the uncer-
tainty value. Low values of σ indicate low uncertainty and
high confidence. We use the 20% of the data points from the
training data for model adaptation to other users.
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Figure 7. Uncertainty for one labeled user’s data points after GPR
based learning.

Inter-User Model Adaptation
The bootstrapping performance is studied as follows. We
pretend that the app developer collected only one user’s data
as training data and provided it for the GPR model initial-
ization. We then learned an inference model from this one
user, referred to as the training user, and adapted the model
individually to the remaining users.

For the driving detection dataset with 14 users, using the first
user for training, Figure 8 shows the accuracy achieved by
each of the other 13 users through the adapted models. This
accuracy is compared to the accuracy that could have been
achieved using the ground truth labels for that user. The
figure shows that the adapted model performs pretty close
to the model that could be learned using ground truth la-
bels. The adapted model is much easier to obtain since it
can be learned without any labeled data for the remaining
users. The bars at the bottom show the difference in accu-
racy achieved by the adapted model compared to the model

learned using ground truth data.
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Figure 8. Accuracy after evolving the model from one user to the 13
others, for driving activity detection.

The above test was also performed using each of the other
users as the training user and adapting the model to the re-
maining 13 users in each case. These cross-validation results
are summarized in Figure 9. The average difference in ac-
curacy is plotted for each of the users used as training users
along with the standard deviation across all 13 remaining
users. We see that the accuracy loss is less than 10% in all
cases.
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Figure 9. Cross validation of model adaptation: mean accuracy af-
ter adapting model to other users, starting from different users as the
training user.

Performing the same experiments for the detecting sleeping
activity, Figure 10(a) shows the performance of the adapted
model trained from the first user’s data to other users, as
well as the the models trained on each user. We see that the
adapted model performs close to the model that uses per user
labels. Again, performing cross validation across the users
in the dataset, Figure 10(b) shows that the the accuracy loss
due to adaptation is small.

Similarly, for the inference tasks of detecting if the user is
at home or work, we perform the same experiments. Fig-
ure 11(a) shows an illustrative case for adapting the model
trained on the first user to remaining three and Figure 11(b)
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Figure 10. Model adaptation for sleeping activity. The legend for
Fig. 10(a) is same as in Fig. 8.

shows the cross validation result across users. Again the loss
in accuracy compared to acquiring ground truth labels for all
users is small. One of the users in the dataset always stayed
home and is omitted as they had an inference accuracy of
100%.
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Figure 11. Model adaptation for detecting if the user is at home or
work. The legend is same as in Fig. 8.

Participatory Sensing Application
We now illustrate a participatory sensing application, time
use survey, that is enabled using two of the individual activ-
ity detection applications on multiple users’ phones, namely
the sleeping detection and inferring if the user is at home or
work. The users initially just deploy the individual applica-
tions since they provide useful service to those users such
as for heating control [15]. However as the amount of data
collected by these individual apps grows, additional apps be-
come feasible.

This participatory app can automate the Time Use Survey [17]
conducted by US Department of Labor, previously described
with the prototype applications. The participatory app can
eliminate the need for manual surveys. Figure 12 shows the
statistics generated using our prototype that is bootstrapped
off of the data coming from individual activity sensing tasks.

Of course, our prototype detects a much smaller number of
user states compared to the detailed survey conducted by the
US Department of Labor that includes over two dozen differ-
ent activities in its raw data. However, this prototype already
produces important summary statistics that are beneficial for
some of the use cases of the time use survey data and il-
lustrates the feasibility of an automated survey with much
larger coverage. Interestingly, our data was collected by vol-
unteering graduate students and shows a different work-life
pattern than the US average data shown in Figure 2.
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Figure 12. Participatory sensing: Productivity census.

RELATED WORK
The use of sensor data from multiple mobile devices to im-
prove the performance of sensing inference has been consid-
ered before in [18]. However, the focus of the work was on
improving the robustness of a common model shared among
all devices. Semi-supervised learning techniques were em-
ployed to recruit additional sensor data from multiple oper-
ating environments and multiple devices. The specific semi-
supervised learning methods employed very different due
to the differences in the nature of the problem constraints
and solution requirements. Rather than learning a common
model, we are building personalized models for all users.
While prior work exploited similarities among users, we adapt
to differences. Our focus is on bootstrapping inference trained
on a small set of users to multiple other users to reduce the
burden on app developers.

Collection of sensor data from multiple mobile devices has
been proposed in various platforms and applications [3–6,
18,22–29]. User carried devices have been used for mapping
road traffic or potholes to city-wide user movement patterns.
Programming infrastructures to support such participatory
applications have also been developed [30]. Our goal in this
paper is to provide techniques that make it easier to develop.
We assist the development of such applications in two ways.
First, we make it easier for participatory sensing applications
to achieve critical mass since unlabeled data from other ap-
plications already installed by users can be used. Second,
we enable the participatory app to correctly infer the metric
of interest on multiple users even when each user has some



variations in their behavior.

CONCLUSIONS
We presented methods that enable multiple applications and
multiple devices to share their unlabeled sensor data to ben-
efit each other. Inference tasks for existing applications that
have been trained on a small number of users can be adapted
to work for new users using unlabeled data from those users
supplied by other applications running on those new user
devices. The developer is relieved of the effort to gather
training data on a large number of users and can bootstrap
their app with a small initial user base. The key intuition
behind adaptation of the inference models is based on semi-
supervised learning methods. We selectively apply the high-
est confidence data points in the highest confidence sensing
dimensions to seed the clustering methods for the new users.

The sharing of data for bootstrapping the inference tasks for
multiple applications has the additional benefit of consoli-
dating data in a shared repository. This can automatically
enable many participatory sensing applications that require
sensor data collected by a large number of users through
other applications previously installed by the users.

While the presented techniques are prototyped and evaluated
on multiple inference tasks using real world data, we realize
that their widespread usage requires testing across a much
larger set of applications and inferences. The current eval-
uation results indicate that the direction of research and the
initial methods designed to solve the bootstrapping problem
are promising and worth developing further.
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