
Streaming Graph Partitioning for Large Distributed Graphs

Isabelle Stanton
University of California Berkeley

Berkeley, CA
isabelle@eecs.berkeley.edu

Gabriel Kliot
Microsoft Research

Redmond, WA
gkliot@microsoft.com

ABSTRACT
Extracting knowledge by performing computations on graphs
is becoming increasingly challenging as graphs grow in size.
A standard approach distributes the graph over a cluster of
nodes, but performing computations on a distributed graph
is expensive if large amount of data have to be moved. With-
out partitioning the graph, communication quickly becomes
a limiting factor in scaling the system up. Existing graph
partitioning heuristics incur high computation and commu-
nication cost on large graphs, sometimes as high as the fu-
ture computation itself. Observing that the graph has to be
loaded into the cluster, we ask if the partitioning can be done
at the same time with a lightweight streaming algorithm.

We propose natural, simple heuristics and compare their
performance to hashing and METIS, a fast, offline heuristic.
We show on a large collection of graph datasets that our
heuristics are a significant improvement, with the best ob-
taining an average gain of 76%. The heuristics are scalable
in the size of the graphs and the number of partitions. Using
our streaming partitioning methods, we are able to speed up
PageRank computations on Spark [32], a distributed com-
putation system, by 18% to 39% for large social networks.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory, Graph Algorithms; D.2.8 [Software
Engineering]: Metrics—Complexity measures, Performance
measures

General Terms
Algorithms, Experimentation

Keywords
Graph Partitioning, Streaming Algorithms, Distributed Graphs,
Experimental Evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

1. INTRODUCTION
Modern graph datasets are huge. The clearest example is

the World Wide Web where crawls by large search engines
currently consist of over one trillion links and are expected
to exceed ten trillion within the year. Individual websites
also contain enormous graph data. In Jan 2012, Facebook
consisted of over 800 million active users, with hundreds of
billions friend links [1]. There are over 900 million additional
objects (communities, pages, events, etc.) that interact with
the user nodes. In July 2009, Twitter had over 41.7 million
users with over 1.47 billion social relations [21]. Since then,
it has been estimated that Twitter has grown to over 200
million users. Examples of large graph datasets are not lim-
ited to the Internet and social networks - biological networks,
like protein interaction networks, are of a similar size. De-
spite the size of these graphs, it is still necessary to perform
computations over the data, such as calculating PageRank,
broadcasting Twitter updates, identify protein associations,
as well as many other applications.

The graphs consist of terabytes of compressed data when
stored on disks and are all far too large for a single com-
modity type machine to efficiently perform computations.
A standard solution is to split the data across a large clus-
ter of commodity machines and use parallel, distributed al-
gorithms for the computation. This approach introduces a
host of systems engineering problems of which we focus only
on the problem of data layout. For graph data, this is called
balanced graph partitioning. The goal is to minimize the
number of cross partition edges, while keeping the number
of nodes (or edges) in every partition approximately even.

Good graph partitioning algorithms are very useful for
many reasons. First, graphs that we encounter and care
about in practice are not random. The edges display a great
deal of locality, whether due to the vertices being geograph-
ically close in social networks, or related by topic or domain
on the web. This locality gives us hope that good parti-
tions, or at least partitions that are significantly better than
random cuts, exist in real graphs. Next, inter-machine com-
munication, even on the same local network, is substantially
more expensive than inter-processor communication. Net-
work latency is measured in microseconds while inter-process
communication is measured in nanoseconds. This disparity
substantially slows down processing when the network must
be used. For large graphs, the data to be moved may border
on gigabytes, causing network links to become saturated.

The primary problem with partitioning complicated graph
data is that it is difficult to create a linear ordering of the
data that maintains locality of the edges i.e. if it is possible

to embed the vertices of a graph into a line such that none of
the edges are ‘too long’, then a good balanced cut exists in
the graph. Such an ordering may not even exist at all. There
is a strong connection between graph partitioning and the
eigenvectors and eigenvalues of the corresponding Laplacian
matrix of the graph via the Cheeger bound. This connec-
tion has inspired many spectral solutions to the problem,
including ARV [11] and the many works that followed.

However, spectral methods do not scale to big data. This
is in part due to the running time and in part because cur-
rent formulations require full graph information. When a
graph does not physically fit on one machine, maintaining
a coherent view of the entire state is impossible. This has
led to local spectral partitioning methods, like EvoCut [9],
but local methods still require access to large portions of the
graph, rely on complex distributed coordination and large
computation after the data has been loaded. Thus, we look
for a new type of solution. A graph loader is a program
that reads serial graph data from a disk onto a cluster. It
must make a decision about the location of each node as it is
loaded. The goal is to find a close to optimal balanced parti-
tioning with as little computation as possible. This problem
is also called streaming graph partitioning.

For some graphs, partitioning can be entirely bypassed by
using meta data associated with the vertices, e.g. clustering
web pages by URL produces a good partitioning for the
web. In social networks, people tend to be friends with
people who are geographically nearby. When such data is
available, this produces an improved cut over a node ID
hashing approach. Unfortunately, this data is not always
be available, and even if it is, it is not always clear which
features are useful for partitioning. Our goal in this work is
to find a general streaming algorithm that relies only on the
graph structure and works regardless of the meta data.

1.1 Applications
Our motivating example for studying this problem is a

large distributed graph computation system. All distributed
computation frameworks, like MapReduce, Hadoop, Orleans
[15] and Spark [32] have methods for handling the distribu-
tion of data across the cluster. Unfortunately, for graphs,
these methods are not tuned to minimize communication
complexity, and saturating the network becomes a signifi-
cant barrier to scaling the system up.

The interest in building distributed systems for graph
computation has recently exploded, especially within the
database community. Examples of these systems include
Pregel [25], GraphLab [24], InfiniteGraph, HyperGraphDB,
Ne04j, and Microsoft’s Trinity [4] and Horton [3], to name
but a few. Even for these graph specific systems, the graphs
are laid out using a hash of the node ID to select a parti-
tion. If a good pseudorandom hash function is chosen, this
is equivalent to using a random cut as graph partitioning
and will result in approximately balanced partitions. How-
ever, computations on the graph run more slowly when a
hash partitioning is used instead of a better partitioning,
due to the high communication cost. Fortunately, these sys-
tems tend to support custom partitioning, so it is relatively
easy to substitute a more sophisticated method, provided it
scales to the size of the graph. As our experiments show,
even using our simple streaming partitioning techniques can
allow systems of this type to complete computations at least
20-40% faster.

1.2 Theoretical Difficulties - Lower Bound
Theoretically, a good streaming partitioning algorithm is

impossible. It is easy to create graphs and orderings for any
algorithm that will cause it to perform poorly. A simple ex-
ample of this lower bound is a cycle. The optimal balanced
2-partition cuts only 2 edges. However, if the vertices are
given in an order of ‘all even nodes then all odd nodes’, we
won’t observe any edges until the odd nodes arrive. With-
out any information, the best an algorithm could is to try
and balance the number of vertices it has seen across the 2
partitions. This leads to an expected cut of n

4
edges. The

worst algorithm might put all even nodes in one partition
leading to all edges being cut!

We can partially bypass this problem by picking the input
ordering. The three popular orderings considered in the lit-
erature are adversarial, random, and stochastic. The above
cycle example is an adversarial order and demonstrates that
the streaming graph partitioning problem may have arbi-
trarily bad solutions under that input model. Given that
adversarial input is unrealistic in our setting - we have con-
trol over the data - we focus on input that results from either
a random ordering, or the output of a graph search algo-
rithm. The second option is a simplification of the ordering
returned by a graph crawler.

Theorem 1. One-pass streaming balanced graph partition-
ing with an adversarial stream order can not be approximated
within o(n).

Theorem 2. One-pass streaming balanced graph partition-
ing with a random stream order can not be approximated
within o(n).

The full proofs are elided due to space. Theorem 1 can
be proved with the above cycle discussion. Theorem 2 can
be proved by analyzing the expected number of vertices in
a random order that arrive with no edges (a third). Each of
these vertices contributes an edge to the cut in expectation.
This means, in expectation, a random cut will cut O(n)
edges, while an optimal partitioning cuts only 2.

We leave open the theoretical problem of analyzing the
performance of our heuristics. While there are current ap-
proaches to analyzing streaming algorithms, our use of breadth-
first and depth-first stream orders is novel and previous ap-
proaches can not be applied. Theorem 1 shows we should
not hope to analyze any algorithm with an adversarial or-
der, while a random ordering will always hide edges in sparse
graphs untilO(

√
n) vertices arrive, making competitive anal-

ysis difficult.

1.3 The Streaming Model
We consider a simple streaming graph model. We have a

cluster of k machines, each with memory capacity C, such
that the total capacity, kC, is large enough to hold the whole
graph. The graph is G = (V,E) where V is the vertices,
and E the edges. The graph may be either directed or undi-
rected. The vertices arrive in a stream with the set of edges
where it is a member so for undirected graphs, each edge
appears twice in the stream. We consider three orders: ran-
dom, breadth-first search and depth-first search. As vertices
arrive, a partitioner decides to place the vertex on one of
the k machines. A vertex is never moved after it has been
placed. In order to give the heuristics maximal flexibility,
we allow the partitioning algorithm access to the entire sub-
graph defined by all vertices previously seen. This is a strong

assumption, but the heuristics studied in this paper use only
local (depth 1) information about this subgraph. We extend
the model by allowing a buffer of size C so that the partition-
ing algorithm may decide to place any node in the buffer,
rather than the one at the front of the stream.

Our model assumes serial input and a single loader. This
is somewhat unrealistic for a real system where there may be
many graph loaders working in parallel on independent por-
tions of the stream. While we will not explore this option,
the heuristics we investigate can be easily adapted to a par-
allel setting where each loads its portion of the graph inde-
pendently from the others, sharing information only through
a distributed lookup table of vertices to partition IDs.

1.4 Contributions
We provide a rigorous, empirical study of a set of natural

heuristics for streaming balanced graph partitioning. To the
best of our knowledge, this is a first attempt to study this
problem. We evaluate these heuristics on a large collection
of graph datasets, from various domains: the World Wide
Web, social networks, finite-element meshes and synthetic
datasets from some popular generative models - preferential-
attachment [13], RMAT [23] and Watts-Strogatz [30]. We
compare the results of our streaming heuristics to both the
hash based partitioning, and METIS [19], a well-regarded,
fast, offline partitioning heuristic.

Our results show that some of the heuristics are good and
some are surprisingly bad. Our best performing heuristic is
a weighted variant of the greedy algorithm. It has a signifi-
cant improvement over the hashing approach without signif-
icantly increasing the computational overhead and obtains
an average gain of 76% of the possible improvement in the
number of edges cut. On some graphs, with some orderings,
a variety of heuristics obtain results which are very close to
the offline METIS result. By using the synthetic datasets,
we are also able to show that our heuristics scale with the
size of the graph and the number of partitions. We demon-
strate the value of the best heuristic by using it to partition
both the LiveJournal and the Twitter graph for PageRank
computation using the Spark cluster system [32]. These are
large crawls of real social networks, and we are able to im-
prove the running time of the PageRank algorithm by 18%
to 39% by changing the data layout alone. Our experimental
results motivate us to recommend that this is an interesting
problem worthy of future research and is a viable prepro-
cessing step for graph computation systems.

Our streaming partitioning is not intended to substitute
for a full information graph partitioning. Certain systems
or applications that need as good a partitioning as possi-
ble will still want to repartition the graph after it has been
fully loaded onto the cluster. These systems can still greatly
benefit from our optimization as a distributed offline parti-
tioning algorithm started from an already reasonably parti-
tioned graph will require less communication and may need
to move fewer vertices, causing it to run faster. Our stream-
ing partitioning algorithms can be viewed as a preprocessing
optimization step that cannot hurt in exchange for a very
small additional computation cost for every loaded vertex.

2. RELATED WORK
Graph partitioning has a rich history. It encompasses

many problems and has many proposed solutions, from the
very simple to the very sophisticated. We cannot hope to

cover the whole field and will only focus on the most relevant
formulation - balanced k-partitioning. The goal is, given
a graph G as input and a number k, to cut G into k bal-
anced pieces while minimizing the number of edges cut. This
problem is known to be NP-Hard, even if one relaxes the
balanced constraint to ‘approximately’ balanced [10]. An-
dreev and Racke give an LP-based solution that obtains a
O(logn) approximation [10]. Even et al. [16] provide an-
other LP formulation based on spreading metrics that also
obtains an O(logn) approximation. Both require full in-
formation about the graph. There are many heuristics that
solve this problem with an unknown performance guarantee,
like METIS [19], PMRSB [14], and Chaco [17]. In practice,
these heuristics are quite effective, but many are intended
for scientific computing purposes. One can recursively use
any balanced 2-partitioning algorithm to approximate a bal-
anced k-partitioning when k is a power of 2 [11].

While we are unaware of any previous work on the ex-
act problem statement that we study - one pass balanced
k partitioning - there has been much work on many re-
lated streaming problems, primarily graph sparsification in
the semi-streaming model, cut projections in the streaming
model as well as online algorithms in general, like online bi-
partite matching. This work includes both algorithms and
lower bounds on space requirements.

The work on streaming graph problems where multiple
passes on the stream are allowed includes estimating PageR-
ank [29] and cut projections [28]. While PageRank has been
used for local partitioning [8], the approach in [8] uses per-
sonalized PageRank vectors which does not easily generalize
the approach in [29]. Additionally, cut projections do not
maintain our balanced criterion.

Bahmani et al. [12] maintain an accurate estimate of the
PageRank in one pass in the semi-streaming model, where
the nodes are fixed but edges arrive in an adversarial or-
der. In the semi-streaming model, further results are known
with regards to finding minimum cuts, i.e. no balance re-
quirement. Jin Ahn and Guha [6] give a one pass Õ(n/ε2)
space algorithm that sparsifies a graph such that each cut
is approximated to within a (1 + ε) factor. Kelner and
Levin [20] produce a spectral sparsifier with O(n logn/ε2)

edges in Õ(m) time. While sparsifiers are related to parti-
tioning, we do not have a prespecified computation task, so
we cannot be sure that a sparsified graph will give accurate
answers. Zelke [33] shows lower bounds of o(n2) space to find
max and min cuts in one pass. Zelke [33] has shown that
this cannot be computed in one pass with o(n2) space. By
contrast, our methods require only access to a distributed
lookup table and a buffer of size C.

3. HEURISTICS AND STREAM ORDERS
In this paper, we examine multiple heuristics and stream

orders. We now formally define each one.

3.1 Heuristics
The notation P t refers to the set of partitions at time t.

Each individual partition is referred to by its index P t(i) so
∪k

i=1P
t(i) is equal to all of the vertices placed so far. Let v

denote the vertex that arrives at time t in the stream, Γ(v)
refers to the set of vertices that v neighbors and |S| refers
to the number of elements in a set S. C is the capacity
constraint on each partition. Each of the heuristics gives an
algorithm for selecting the index ind of the partition where

v is assigned. The first seven heuristics do not use a buffer,
while the last three do.

1. Balanced - Assign v to a partition of minimal size,
breaking ties randomly:

ind = arg min
i∈[k]
{|P t(i)|}

2. Chunking - Divide the stream into chunks of size C and
fill the partitions completely in order:

ind = dt/Ce

3. Hashing - Given a hash function H : V → {1 · · · k},
assign v to ind = H(v). We use:

H(v) = (v mod k) + 1

4. (Weighted) Deterministic Greedy - Assign v to the par-
tition where it has the most edges. Weight this by a
penalty function based on the capacity of the partition,
penalizing larger partitions. Break ties using Balanced.

ind = arg max
i∈[k]
{|P t(i) ∩ Γ(v)|w(t, i)}

where w(t, i) is a weighted penalty function:

w(t, i) = 1 for unweighted greedy

w(t, i) = 1− |P
t(i)|
C

for linear weighted

w(t, i) = 1−exp{|P t(i)|−C} for exponentially weighted

5. (Weighted) Randomized Greedy - Assign v according to
the distribution defined by

Pr(i) = |P t(i) ∩ Γ(v)|w(t, i)/Z

where Z is the normalizing constant and w(t, i) is the
above 3 penalty functions.

6. (Weighted) Triangles - Assign v according to

arg max
i∈[k]
{ |E(P t(i) ∩ Γ(v), P t(i) ∩ Γ(v))|(|P t(i)∩Γ(v)|

2

) w(t, i)}

where w(t, i) is the above 3 penalty functions andE(S, T)
is the set of edges between the nodes in S and T .

7. Balance Big - Given a way of differentiating high and
low degree nodes, if v is high-degree, use Balanced. If
it is low-degree, use Deterministic Greedy.

The following heuristics all use a buffer.

8. Prefer Big - Maintain a buffer of size C. Assign all high
degree nodes with Balanced, and then stream in more
nodes. If the buffer is entirely low degree nodes, then
use Deterministic Greedy to clear the buffer.

9. Avoid Big - Maintain a buffer of size C and a threshold
on large nodes. Greedily assign all small nodes in the
buffer. When the buffer is entirely large nodes, use
Deterministic Greedy to clear the buffer.

10. Greedy EvoCut - Use EvoCut [9] on the buffer to find
small Nibbles with good conductance. Select a parti-
tion for each Nibble using Deterministic Greedy.

Each of these heuristics has a different motivation with
some arguably more natural than others. Balanced and
Chunking are simple ways of load balancing while ignoring
the graph structure.

Hashing is currently used by many real systems [25]. The
benefit of Hashing is that every vertex can be quickly found,
from any machine in the cluster, without the need to main-
tain a distributed mapping table. If the IDs of the nodes
are consecutive, the hash function H(v) = (v mod k) + 1
makes Balanced and Hashing equivalent. More generally, a
pseudorandom hash function should be used, making Hash-
ing equivalent to a random cut.

The greedy approach is standard, although the weighted
penalty is inspired by analysis of other online algorithms.
The randomized versions of these algorithms were explored
because adding randomness can often be shown to theoret-
ically improve the worst-case performance.

The (Weighted) Triangles heuristic exploits work showing
that social networks have high clustering coefficients by find-
ing triangles completed triangles among the vertices neigh-
bors in a partition and overweighting their importance.

Heuristics Balance Big, Prefer Big, and Avoid Big assume
we have a way to differentiate high and low degree nodes.
This assumption is based on the fact that many graphs have
power law degree distributions. These three heuristics pro-
pose different treatments for the small number of high degree
nodes and the large number of low degree nodes.

Balance Big uses the high degree nodes as seeds for the
partitions to ‘attract’ the low degree nodes. The buffered
version, Prefer Big, allows the algorithm more choice in find-
ing these seeds. Avoid Big explores the idea that the high
degree nodes form the expander portion of the graph, so
perhaps the low degrees nodes can be partitioned after the
high degree nodes have been removed.

The final heuristic, Greedy EvoCut, uses EvoCut [9], a local
partitioning algorithm, on the buffer. This algorithm has
very good theoretical guarantees with regards to the found
cuts, and the amount of work spent to find them, but the
guarantees do not apply to the way we use it.

Edge Balancing: While our experiments focus on parti-
tions that are node balanced, in part because this is what
our comparator algorithm METIS produces, there is noth-
ing that prevents these heuristics from being used to produce
edge-balanced partitions instead, i.e. each partition holds at
most C = (1 + ε)|E|/k edges. An edge-balanced partition
may be preferable for power-law distributed graphs when
the computation to be performed has complexity in terms
of the number of edges and not the number of vertices. In
fact, in our second set of experiments with the PageRank
algorithm in Section 6 we used the edge-balanced versions
of the algorithms instead, for the above reason.

3.2 Stream Orders
In a sense, the stream ordering is the key to having a

heuristic perform well. A simple example is Chunking, where,
if we had an optimal partitioning, and then created an or-
dering consisting of all nodes in partition 1, then all nodes in
partition 2 and so on, Chunking would also return an optimal
partition. For each heuristic, we can define optimal order-
ings, but, unfortunately, actually generating them reduces
to solving balanced graph partitioning so we must settle for
orderings that are easy to compute.

We consider the following three stream orderings:

• Random - This is a standard ordering in streaming
literature and assumes that the vertices arrive in an
order given by a random permutation of the vertices.

• BFS - This ordering is generated by selecting a start-
ing node from each connected component of the graph
uniformly at random and is the result of a breadth-first
search that starts at the given node. If there are mul-
tiple connected components, the component ordering
is done at random.

• DFS - This ordering is identical to the BFS ordering
except that depth-first search is used.

Each of these stream orderings has a different justifica-
tion. The random ordering is a standard assumption when
theoretically analyzing streaming algorithms. While we gen-
erate these orderings by selecting a random permutation of
the vertices, one could view this as a special case of a generic
ordering that does not respect connectivity of the graph.
The benefit of a random ordering is that it avoids adversari-
ally bad orderings. The downside is that it does not preserve
any locality in the edges so we expect it to do poorly for sta-
tistical reasons like the Birthday paradox. Via the Birthday
paradox, we can argue that for sparse graphs, we expect to
go through O(

√
n) of the vertices before we find a first edge.

Both BFS and DFS are natural ways of linearizing graphs
and are highly simplified models of a web crawler. In prac-
tice, web crawlers are a combination of local search ap-
proaches - they follow links, but fully explore domains and
sub-domains before moving on. This is breadth-first search
between domains, and depth-first search within. The main
benefit of both orderings is that they guarantee that the par-
titioner sees edges in the stream immediately. Additionally,
they maintain some locality. Each has their drawbacks, but
it should be noted that BFS is a subroutine that is often
used in partitioning algorithms to find a good cut, particu-
larly for rounding fractional solutions to LPs [16].

4. EVALUATION SETUP
We conducted extensive experimental evaluation to dis-

cover the performance and trends of stream partitioning
heuristics on a variety of graphs. The questions we ask are:
Which of these heuristics are reasonable? Can we recom-
mend a best heuristic, restricted to graph type? Do these
heuristics scale to larger graphs? Our intent is to use this
style of solution for graphs that include trillions of edges,
yet in our initial experiments our largest graph has 1.4 mil-
lion edges. We address this last question by using synthetic
datasets to show that the heuristics scale and in Section 6
use our heuristics on two larger social networks successfully.

4.1 Datasets
We used several sources to collect multiple datasets for

our experiments. From the SNAP [22] archive, we used
soc-Slashdot0811, wiki-Vote and web-NotreDame. From the
Graph Partitioning Archive [5] we used : 3elt, 4elt, and vi-
brobox. We also used: Astrophysics collaborations (astro-
ph) [27], C. Elegans Neural Network (celegans) [30], and the
Marvel Comics social network [7]. We used two large social
networks (LiveJournal [26] and Twitter [21]) to evaluate our
heuristics in a real system in Section 6.

We created synthetic datasets using popular generative
models, preferential attachment (BA) [13], Watts-Strogatz

Name |V | |E| Type Source
3elt 4720 13,722 FEM [5]
4elt 15606 45,878 FEM [5]

vibrobox 12,328 165,250 FEM [5]
celegans 297 2,148 Protein [30]
astro-ph 18,772 396,160 Citation [27]

Slashdot0811 77,360 504,230 Social [22]
wiki-Vote 7,115 99,291 Social [22]
Marvel 6,486 427,018 Social [7]
web-ND 325,729 1,497,134 Web [22]

BA 1,000 9,900 Synth. [13]
BA 10,000 129,831 Synth. [13]
BA 50,000 1,249,375 Synth. [13]

RMAT 1,000 9,175 Synth. [23]
RMAT 10,000 129,015 Synth. [23]
RMAT 50,000 1,231,907 Synth. [23]

WS 1,000 5,000 Synth. [30]
WS 10,000 120,000 Synth. [30]
WS 50,000 3,400,000 Synth. [30]
PL 1,000 9,878 Synth. [18]
PL 10,000 129,763 Synth. [18]
PL 50,000 1,249,044 Synth. [18]

LiveJournal 4.6*106 77.4*106 Social [26]
Twitter 41.7*106 1.468*109 Social [21]

Table 1: Graph datasets summary

(WS) [30], the RMAT generator [23], and a power-law graph
generator with clustering (PL) [18]. Three of the synthetic
datasets, BA, WS, and PL were created with the NetworkX
python package. For each model, we created a degree dis-
tribution with average degree O(logn) (average degree of 10
edges for 1,000 nodes, 13 for 10,000, and 25 for 50,000). This
fully specifies the BA model. For WS and PL we used .1 as
the rewiring probability. The RMAT datasets were created
with the Python Web Graph Generator, a variant of the
RMAT generator [2]. The RMAT or Kronecker parameters
used by this implementation are [0.45,0.15;0.15,0.25].

The datasets were chosen to balance both size and variety.
All are small enough so that we can find offline solutions with
METIS so that our results are reproducable, while still big
enough to capture the asymptotic behavior of these graph
types. The collection captures a variety of real graphs, focus-
ing on finite-element meshes (FEM) and power-law graphs.
FEMs are used for scientific computing purposes to model
simulations like the flow over a wing, while power-law (and
other heavy-tailed) distributions capture nearly all ‘natural’
graphs, like the World Wide Web, social networks, and pro-
tein networks. In general, it is known that FEMs have good
partitions because their edges are highly local, while natural
graphs are more difficult to partition because they have high
expansion and low diameter. The basic statistics about each
graph, as well as its type and source are in Table 1.

4.2 Methodology
We examined all the combinations of datasets, heuristics

and steam orders and ran each experiment 5 times on each
combination. The Random ordering is a random permuta-
tion of the vertices, while BFS and DFS were created by
sampling a random vertex to be the root of the BFS or DFS
algorithm. Each of the heuristics was run on the same order-
ing. We ran each experiment on 2, 4, 8, and 16 partitions
and fixed the imbalance such that no partition held more

than 5% more vertices than its share. The imbalance was
chosen as a reasonable setting of this parameter in practice.

5. EVALUATION RESULTS
In all of the following figures, the y-axis has been scaled

to zoom in on the data. The ordering of the heuristics in
the figures is the one given in Table 2.

5.1 Upper and lower bounds
In order to evaluate the quality of our heuristics, we must

establish good upper and lower bounds for the performance.
A natural upper bound is the approach currently used in
practice - hashing the node ID and mapping it to a par-
tition. This approach completely ignores the edges so its
expected performance is cutting a k−1

k
fraction of edges for

k partitions. This bound is marked by the upper black line
in our figures. We expect Balanced and Hashing to always
perform at this level, as well as Chunking on a random order.

The lower bound can be picked in many more ways. Find-
ing an optimal lower bound is NP-hard, so we focus on
more realistic approaches. We compare against a practical
and fast approach, the partition produced by METIS v4.0.3.
While METIS has no theoretical guarantees, it is widely re-
spected and produces good cuts in practice, and is thus a
good offline comparison for our empirical work. This METIS
value is marked as the lower black line in our figures. Note
that METIS is given significantly more information than the
streaming heuristics, so we would not expect them to pro-
duce partitioning of the same quality. Any heuristic between
these two lines is an improvement.

5.2 Performance on three graph types
We have included figures of the results for three of the

graphs, a synthetic graph, a social network graph and a FEM
with the goal of covering all three major types of graphs.

Figure 1 depicts the performance on the PowerLaw Clus-
tered graph [18] of size 1,000 with 4 partitions. This is one of
our synthetic graphs where the model is intended to capture
power law graphs observed in nature. The lower bound pro-
vided by METIS is 58.9% of the edges cut, while the upper
bound for 4 partitions is 75%. The first heuristic, Avoid Big,
is worse than a random cut. Linear Deterministic Greedy and
Balance Big both perform very well for all 3 stream order-
ings. These each had a best average performance of 61.7%
and 63.2% of the edges cut respectively, corresponding to
82% and 73% of the possible gain in performance. This gain
was calculated as the fraction of edges cut by the random
minus the fraction cut by the heuristic, divided by the frac-
tion cut by a random cut minus the fraction cut by METIS

(random−heuristic
random−METIS

).

Figure 2 is our results for a social network, the Marvel
Comics network [7], with 8 partitions. The Marvel network
is synthetic, as it is the result of character interactions in
books, but studies have shown it is similar to real social
networks. The lower bound from METIS cuts only 32.2%
of edges. The upper bound is 7/8 = 87.5% cut. The two
heuristics at the upper bound level are Balanced and Hash-
ing, with Chunking on the random order also performing
poorly, as expected. Again, the best heuristic is Linear De-
terministic Greedy, with 48%, 48.7% and 50.8% edges cut
for the BFS, DFS and Random orderings respectively. This
constitutes a gain of 71.3%, 70% and 66%.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

PL1000 results, 4 partitions

BFS
DFS

Random

Figure 1: PL1000 results. The top line is the cost
of a random cut and the bottom line is METIS. The
best heuristic is Linear Deterministic Greedy. The fig-
ures are best viewed in color.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

Marvel results, 8 partitions

BFS
DFS

Random

Figure 2: Marvel results. The top line is the cost of
a random cut and the bottom line is METIS. The
best heuristic is Linear Deterministic Greedy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

AB B PB C DG EDG ERG ET GE H LDG LRG LT RG BB T

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Heuristic

4elt results, 4 partitions

BFS
DFS

Random

Figure 3: 4elt results. The top line is a random cut
and the bottom line is METIS (0.7% edges cut).

Heuristic BFS DFS Random
Avoid Big AB -27.3 -38.6 -46.4
Balanced B -1.5 -1.3 -0.2
Prefer Big PB -9.5 -18.6 -23.1
Chunking C 37.6 35.7 0.7

Deterministic Greedy DG 57.7 54.7 45.4
Exp. Det. Greedy EDG 59.4 56.2 47.5
Exp. Rand. Greedy ERG 45.6 45.6 38.8

Exp. Triangles ET 50.7 49.3 41.6
Greedy EvoCut GE 60.3 58.6 43.1

Hashing H -1.9 -2.1 -1.7
Linear Det. Greedy LDG 76 73 75.3
Linear Rand. Greedy LRG 46.4 44.9 39.1

Linear Triangles LT 55.4 54.6 49.3
Randomized Greedy RG 45.5 44.9 38.7

Balance Big BB 67.8 68.5 63.3
Triangles T 49.7 48.4 40.2

Table 2: The average gain of each heuristic over all
of our datasets and partitions sizes.

Figure 3 contains the results for a FEM, 4elt [5], with 4
partitions. The change in graph structure gives us quite dif-
ferent results, not the least of which is that METIS now cuts
only 0.7% of edges. The upper bound remains at 75%, pro-
viding a huge range for improvement. Surprisingly, Chunking
performs extremely well here for the BFS and DFS orders,
at 4.7% and 5.7% cut respectively. Translating into gain pro-
vides 94.7% and 93.3% of the optimal improvement. Chunk-
ing performs poorly on the Random order as expected. The
other heuristic that performs well is Greedy EvoCut, obtain-
ing 5.1% and 5% cuts for BFS and DFS respectively. Linear
Deterministic Greedy obtains 9.4%, 20.3%, and 30.6% cuts
for BFS, DFS and Random respectively. In fact, all of the
heuristics beyond Balanced and Hashing are vast improve-
ments. The BFS ordering is also a strict improvement for
all approaches over the DFS and Random orderings.

5.3 Performance on all graphs: discussion
We present the gain in the performance of each heuristic

in Table 2, averaged over all datasets from Table 1 (except
for LiveJournal and Twitter) and all runs, for each ordering.
The best heuristic is Linear Deterministic Greedy for all order-
ings, followed by Balance Big. Greedy EvoCut is also success-
ful on the BFS and DFS orderings, but is computationally
much more expensive than the other two approaches. Note
that Balance Big is a combination of the Greedy and Bal-
anced strategies, assigned based on node degree. There are
universally bad heuristics, namely Prefer Big and Avoid Big.
Both of these are significantly worse than Hashing.

We further restrict the results by type of graphs. As
stated earlier, FEMs have good balanced edge cuts. For
these types of graphs, no heuristic performed worse than
the Hashing approach, and most did significantly better. For
the BFS ordering, Linear Deterministic Greedy had an aver-
age 86.6% gain, with Deterministic Greedy closely behind at
84.2%. For the DFS ordering, the Greedy EvoCut approach
performed best at 78.8%, with all 3 deterministic greedy ap-
proaches closely behind at 74.9% (exp), 74.8% (unweighted)
and 75.8% (linear). Finally, as always, the Random order-
ing was the hardest, but Linear Deterministic Greedy was also
the best with 63% improvement. No other method achieved
more than 56%. The surprising result for FEMs is how well
the Chunking heuristic performed: an 80% improvement for

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1,000 10,000 20,000 30,000 50,000 100,000 200,000

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Dataset size

Heuristic performance over Watts-Strogatz Graphs

Figure 4: BFS with 4 partitions. Each line is a
heuristics performance over 7 sizes of WS graph.
The bottom line is METIS. The bottom purple line
is Linear Deterministic Greedy. Best viewed in color.

BFS and 72% for DFS. This is a huge improvement for such
a simple heuristic, although it is due to the topology of the
networks and the fact that BFS is used in partitioning algo-
rithms to find good cuts. When given a Random ordering,
Chunking had only a 0.2% average improvement.

The social networks results were more varied. Here, the
Prefer Big and Avoid Big both have large negative improve-
ments, meaning both should never be used for power law
degree networks with high expansion. For all three order-
ings, Linear Deterministic Greedy was clearly the superior ap-
proach with 71% improvement for BFSnd 70% for DFS. The
second best performance was from both Exponential Deter-
ministic Greedy and Deterministic Greedy at 60.5% for BFS
and 52.9% for DFS. Finally, for a Random ordering, Linear
Deterministic Greedy achieved a 64% improvement, with the
other greedy approaches at only 42%.

Given that the Linear Deterministic Greedy algorithm per-
formed so well, even compared with the other variants, one
may ask why. At a high level, the penalty functions form a
continuum. The unweighted version has a very strict cut-
off - the penalty only applies when the partition is full and
gives no indication that this restriction is approaching. The
exponential penalty function has similar performance to the
unweighted version because while the exponential function
does not indicate that the partition is nearly full until it
is very close to the limit. The linear weighting optimally
balances the greedy choices with preferring less loaded par-
titions. Since 1 − x ≈ e−x when 0 < x < 1, the linear
weighting can be seen as a normalized exponential weight-
ing. This normalization term allows the penalty to take
effect much earlier in the process and smooths the informa-
tion by preventing the size of the partition from affecting
the prediction. As this is a continuum, this parameter could
be further fine-tuned for different types of graphs. Addition-
ally, the implementation of the unweighted greedy algorithm
in this paper breaks ties lexicographically. Breaking ties by
load is equivalent to an indicator penalty function and its
performance is very close to the linear penalty function.

5.4 Scalability in the graph size
All of our datasets discussed so far are tiny when com-

pared with graphs used in practice. While the above results

are promising, it is important to understand whether the
heuristics scale with the size of the graph. We used the
synthetic datasets in order to control for the variance in dif-
ferent graphs. The key assumption is that using the same
generative model with similar parameter settings will guar-
antee similar graph statistics while allowing the number of
edges and nodes to vary. We began by looking at the re-
sults for the four generative models, BA, RMAT, WS, and
PL. For each of these we had 3 data points: 1,000 vertices,
10,000 vertices, and 50,000 vertices. In order to get a better
picture, we created additional graphs with 20,000, 30,000,
100,000 and 200,000 vertices. We will present only the re-
sults for the Watts-Strogatz graphs, but all other graphs ex-
hibit quite similar results. Note that these results will scale
to any size graph created by the same generative model be-
cause of the statistical properties of the generated graphs.

The labels in Figure 4 have been elided for clarity of the
image. The bottom black line is METIS. This shows that
our idea that the fraction of edges cut should scale with the
size of the graph holds - it is approximately 12% for each
graph. Next, there is clearly a best heuristic for this type of
graph, the purple line. It corresponds to the Linear Deter-
ministic Greedy heuristic. It has an average edge cut of 21%
over all sizes of the graphs. Finally, all of the lines are ap-
proximately constant. The noise in the performance of each
algorithm is due to the random nature of the orderings, and
would decrease with further trials.

5.5 Scalability in the number of partitions
The other question is how the partitioning quality scales

with the number of partitions. The fraction of edges cut
must necessarily increase as we increase the number of par-
titions. Also, we are not trying to find an optimal number
of partitions for the graph. As before, we only present data
on one graph in Figure 5, the 50,000 node PowerLaw Clus-
tered graph, but all graphs have similar characteristics. The
heuristics performance closely tracks that of METIS.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 E
dg

es
 C

ut

Log of Number of Partitions

Heuristic performance over the PL Graph with 50,000 nodes

Figure 5: BFS with 2-64 partitions. Each line con-
nects a heuristics performance over the 6 partition
sizes. The bottom line is METIS. The bottom pur-
ple line is Linear Deterministic Greedy.

6. RESULTS ON A REAL SYSTEM
After evaluating the performance of the partitioning al-

gorithms, we naturally ask whether the improvement in the

partitioning makes any measurable difference for real com-
putations. To evaluate our partitioning scheme in a clus-
ter application, we used an implementation of PageRank in
Spark [32], a cluster computing framework for iterative ap-
plications. Spark provides the ability to keep the working set
of the application (the graph topology and PageRank val-
ues) in memory across iterations, so the algorithm is primar-
ily limited by communication between nodes. Other recent
frameworks for large-scale graph processing, like Pregel [25]
and GraphLab [24], also keep data in memory and are ex-
pected to exhibit similar performance characteristics.

There are many graph algorithms implemented for the
Spark system, but we chose PageRank for two reasons. One
is the popularity of this specific algorithm, and the other is
its generality. PageRank is a specialized matrix multiplica-
tion, and many graph algorithms can be expressed similarly.
Additionally, Spark has two implementations of PageRank:
a näıve version that sends a message on the network for
each edge, and a more sophisticated combiner version that
aggregates all messages between each partition [31].

We used Linear Deterministic Greedy, as it performed best
in our previous experiments. We tried both a vertex bal-
anced version and an edge-balanced version. However, our
datasets are social networks and follow a power-law degree
distribution. For PageRank, the quantity that should be bal-
anced is the number of edges in each partition as this controls
the amount of computation performed in sparse matrix mul-
tiplication and we want this to be equal for all partitions.
The existence of very high degree nodes means that some
partitions contain many more edges than others, resulting in
unbalanced computation times between the different cluster
machines. We therefore modified Linear Deterministic Greedy
to use the number of edges in a partition for the weight
penalty. We used two datasets, LiveJournal [26] with 4.6
million nodes and 77.4 million edges, and Twitter [21] with
41.7 million nodes and 1.468 billion edges. While neither
are Internet scale, they are both realistic for medium sized
web systems and large enough to show the effects of reduced
communication on a distributed computation.

LiveJournal.
We used 100 partitions, with imbalance of 2% and the

stream order provided by the authors of the dataset which
is an unknown ordering. Linear Deterministic Greedy reduced
the number of edges cut to 47,361,254 edges compared with
76,234,872 for Hashing. We ran 5 iterations of both ver-
sions of PageRank, and repeated this experiment 5 times.
With the improved partitioning, näıve PageRank was 38.7%
faster than the hashed partitioning version.The timing in-
formation, along with standard deviations, is summarized in
Table 3. We used 10 “large” machines (7.5GB memory and
2 CPUS) on Amazon’s EC2. The combiner version with our
partitioning was 28.8% faster than the hashed version. This
reduction in computation time is obtained entirely by laying
out the data in a slightly smarter way.

Twitter.
We repeated the experiment for Twitter [21]. This graph

is one of the largest publicly available datasets. Twitter
was partitioned into 400 pieces with a maximum imbalance
of 2%. Linear Deterministic Greedy cut 1.341 billion edges,
while Hashing cut 1.464 billion. We used 50“large”machines
with 100 cores. The total computation time is much longer

LJ Hash LJ Streamed
Näıve PR Mean 296.2s 181.5s
Näıve PR STD 5.5 s 2.2 s

Combiner PR Mean 155.1 s 110.4 s
Combiner PR STD 1.5 s 0.8 s

Twitter Hash Twitter Streamed
Näıve PR Mean 1199.4 s 969.3 s
Näıve PR STD 81.2 s 16.9 s

Combiner PR Mean 599.4 s 486.8 s
Combiner PR STD 14.4 s 5.9 s

Table 3: Timing data (mean and standard devia-
tion) for 5 iterations of PageRank computation on
Spark for LiveJournal and Twitter graphs, Hashing
vs. Linear Deterministic Greedy.

due to the increase in size. The näıve PageRank was 19.1%
faster with our partitioning while the combiner version was
18.8% faster. For both graphs, there was additional time
associated with loading the graph, about 200 seconds for
Twitter and 80 seconds for LiveJournal, but this was not
affected by the partitioning method.

These results show that with very little engineering effort,
a simple preprocessing step that considers the graph edges
can yield a large improvement in the running time. The
best heuristic can be computed for each arriving node in
time that is linear in the number of edges, given access to the
distributed lookup table for the cluster and knowledge of the
current loads of the machines. The improvement in running
time is entirely due to the reduced network communication.

7. CONCLUSIONS AND FUTURE WORK
We have demonstrated that simple, one-pass streaming

graph partitioning heuristics can dramatically improve the
edge-cut in distributed graphs. Our best performing heuris-
tic is the linear weighted variant of the greedy algorithm.
This is a simple and effective preprocessing step for large
graph computation systems, as the data must be loaded
onto the cluster any way. One might need to perform a
full graph partitioning once the graph has been fully loaded,
however, as it will be re-partitioning an already partitioned
graph, there will be less communication cost and it poten-
tially may need to move fewer vertices, and will be faster.
Using our approach as preprocessing step can only benefit
any future computation while incurring only small cost.

There are several future directions for our work. First,
there is the theoretical work. A framework should be devel-
oped for proving the performance of these heuristics. The
main complications are the addition of the BFS and DFS
stream orderings, and the fact that the offline optimal so-
lution is NP-hard to compute. However, the best heuristic
also performed well on the Random ordering, so it may be
possible to prove a bound on its performance with additional
assumptions like the graph is generated by a specific model.

The second direction is to address using parallel loaders.
In reality, using a single machine to load terabytes of data
will be far too slow. We expect the performance of running
parallel loaders on independent portions of the graph stream
to be similar to our experiments, requiring only access to the
distributed lookup table.

8. REFERENCES
[1] http://facebook.com/press/info.php?statistics,

Jan 2012.

[2] http://pywebgraph.sourceforge.net.

[3] http://research.microsoft.com/ldg, Jan 2012.
[4] http://research.microsoft.com/trinity, Jan 2012.

[5] http://staffweb.cms.gre.ac.uk/~wc06/partition.

[6] K. Jin Ahn and S. Guha. Graph sparsification in the
semi-streaming model. ICALP, 2009.

[7] R. Alberich, J. Miro-Julia, and F. Rossello. Marvel universe
looks almost like a real social network. arXiv, 2002.

[8] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In FOCS, 2006.

[9] R. Andersen and Y. Peres. Finding sparse cuts locally using
evolving sets. In STOC, pages 235–244, 2009.

[10] K. Andreev and H. Racke. Balanced graph partitions.
Theory of Computing Systems, 39:929–939, 2006.

[11] S. Arora, S. Rao, and U. Vazirani. Expander flows, geo
-metric embeddings and graph partitioning. J.ACM, 2009.

[12] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental
and personalized pagerank. PVLDB, 4(3):173–184, 2010.

[13] A-L Barabasi and R Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[14] S. Barnard. PMRSB: Parallel multilevel recursive spectral
bisection. In Supercomputing, 1995.

[15] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and
J. Thelin. Orleans: Cloud computing for everyone. In ACM
Symposium on Cloud Computing, 2011.

[16] G. Even, J. Naor, S. Rao, and B. Schieber. Fast
approximate graph partitioning algorithms. SIAM J.
Comput, 28(6):2187–2214, 1999.

[17] B. Hendrickson and R. Leland. A multilevel algorithm for
partitioning graphs. In Supercomputing, 1995.

[18] P. Holme and B. J. Kim. Growing scale-free networks with
tunable clustering. Phys. Rev. E, 2002.

[19] G. Karypis and V. Kumar. Multilevel graph partitioning
schemes. In ICPP, pages 113–122, 1995.

[20] J. Kelner and A. Levin. Spectral sparsification in the
semi-streaming setting. STACS, pages 440–451, 2011.

[21] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a social network or a news media? In WWW, 2010.

[22] J. Leskovec. http://snap.stanford.edu/snap, 2012.
[23] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos,

and Z. Ghahramani. Kronecker graphs: An approach to
modeling networks. JMLR, 2010.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein. GraphLab: A new framework for
parallel machine learning. In UAI, 2010.

[25] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. PODC, 2009.

[26] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online
social networks. In ACM/USENIX IMC, 2007.

[27] M. E. J. Newman. The structure of scientific collaboration
networks. Natl Acad Sci, 98:404–9, 2001.

[28] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Sparse cut
projections in graph streams. In ESA, pages 480–491, 2009.

[29] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Estimating
pagerank on graph streams. J. ACM, 58(3):13, 2011.

[30] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M.J. Franklin, S. Shenker, , and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. NSDI, 2012.

[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
HotCloud, 2010.

[33] M. Zelke. Intractability of min- and max-cut in streaming
graphs. IPL, 111(3):145 – 150, 2011.

