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ABSTRACT

Battery life is a critical performance and user experience metric on
mobile devices. However, it is difficult for app developers to mea-
sure the energy used by their apps, and to explore how energy use
might change with conditions that vary outside of the developer’s
control such as network congestion, choice of mobile operator, and
user settings for screen brightness. We present an energy emula-
tion tool that allows developers to estimate the energy use for their
mobile apps on their development workstation itself. The proposed
techniques scale the emulated resources including the processing
speed and network characteristics to match the app behavior to that
on a real mobile device. We also enable exploring multiple op-
erating conditions that the developers cannot easily reproduce in
their lab. The estimation of energy relies on power models for var-
ious components, and we also add new power models for compo-
nents not modeled in prior works such as AMOLED displays. We
also present a prototype implementation of this tool and evaluate it
through comparisons with real device energy measurements.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems;
D.2.2 [Software]: Software Engineering—Design Tools and Tech-
niques

General Terms

Algorithms, Experimentation, Measurement, Performance, Design

Keywords

energy efficiency, display power, developer tools

1. INTRODUCTION

Poorly written apps can sap 30 to 40% of a phone’s battery [10].
Battery lifetime is a common cause of frustration in smartphone
users. Several efforts in research and industry are investigating
techniques to improve the battery life, such as through use of higher
battery density, dedicated low power processors for offloading com-
putations from the application processor, or even off-loading to the
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cloud. However, such platform layer improvements do not suffice
by themselves since poorly written software can callously eat into
the resultant extra battery juice.

A significant portion of the battery is used when the phone is
actively used in interactive foreground apps. While OS designers
spend significant effort in optimizing the battery impact of back-
ground OS services, the foreground apps are largely controlled by
app developers. Very few tools are available for developers to im-
prove the energy efficiency of their apps. In fact, most developers
are not even aware of the amount of energy their app consumes un-
der a typical usage pattern. While they could use a power meter
to measure the energy draw for their app during test runs, such an
approach is not used in practice because it is tedious and expensive.
It is very difficult to perform these measurements for multiple de-
vices, network conditions, user settings for screen brightness, and
so on. Even if measurements are performed, they are biased to the
network conditions at the developer’s location. Measurements by
themselves do not give any insight into how much each component
(CPU, network, or display) contributed to battery drain, making it
harder to focus the optimization effort.

One alternative for developers is to use the “battery use” tool on
Android phones, the Nokia Energy Profiler (NEP) or power mod-
eling tools such as eProf [15]. While these tools can circumvent
the need for power metering equipment, they are still limited in
exploring multiple configurations, user settings, or network con-
ditions. The profiled behavior remains biased to conditions at the
developer’s location.

In this paper we present WattsOn, a system that allows a devel-
oper to estimate the energy consumed by her app in the develop-
ment environment itself. WattsOn can (i) identify energy hungry
segments during the app run, and (ii) determine which component
(display, network or CPU) consumes the most energy. For instance,
an developer may determine if the battery drain is dominated by the
download of a high resolution image is consuming more energy, the
app display using a white background, or the computation that the
app is doing. The developer may compare the energy impact of
design choices such as developing a portable browser based app
that downloads most content on the fly or a native app that only
downloads incremental updates.

Furthermore, WattsOn allows what-if analyses, to answer ques-
tions, such as: How much energy is consumed on a different phone
model? How does energy consumption change if the user has a 2G
or a 3G network? What if the brightness is set to high? or, What if
the app is used under a low signal strength area?

Our current WattsOn prototype emulates the power consumption
for the display, network, and CPU, since these are the dominant
energy consumers on a smartphone, consuming between 800mW
to 1500mW in their highest power states. Other components such



as the GPU (peaking to 250mW - 350mW) and A-GPS (160mW
- 350mW, across various chip sets), while significant, account for
a smaller fraction of the total power consumption for interactive
foreground apps. These components can be added to our frame-
work provided appropriate resource consumption counters, relevant
power models, and emulation strategies are available.

Specifically, we make the following contributions.

First, we present the first system that can estimate an appSs en-
ergy consumption in different operating conditions (carrier, signal
strength, brightness) without requiring expensive lab equipment
and explicit measurements with repeated runs for each operating
condition.

Second, we enable energy to be profiled within the development
environment without requiring a specific mobile device. To achieve
this, we scale the development machine’s resources including the
CPU and the network to match the characteristics of a real phone.
The app thus behaves as if on a real phone and its energy impact on
all components, such as idle display power-on time while waiting
for a download, is correctly emulated. The combination of power
modeling and resource scaling required for WattsOn design implies
that only those power models and scaling techniques can be ap-
plied that are mutually compatible. WattsOn allows the app to use
external resources such as web services from the Internet. These re-
quirements are in contrast to other energy emulators, such as Power
TOSSIM [22], based on event driven simulation, where all com-
municating nodes are within the simulator. Hence techniques such
as virtual clocks cannot be applied in WattsOn for resource scal-
ing. Processor power models based on architecture specific perfor-
mance counters are also not amenable to use with scaled resources.

Third, we expand the catalogue of power models available for
mobile devices. Power models for many components have been
established previously in [2,4,6,8,17,20] at varying levels of com-
plexity and accuracy. We use previously proposed models for CPU
and WiFi. For displays, while LCD and OLED displays have been
modeled in detail [5, 25], prior work did not provide a model for
AMOLED displays. Hence we develop a new power model for
AMOLED. For cellular networks, while the power model exists [18],
measurements for model parameters with varying signal strengths
and operators were not available in published literature. We per-
form new measurements to fill in some of the missing data.

Finally, we have validated WattsOn with multiple applications,
devices, network conditions, and carrier networks. Average energy
error varied from 4% to 9% across the apps tested. The accuracy
of energy estimation when compared with the variability in hard-
ware energy measurement for the same task over multiple runs indi-
cates that WattsOn can offer a better energy estimate by eliminating
several variable factors such as background activity on the mobile
device. We also show how the component energy break-down pro-
duced by WattsOn can help application designers.

While the concepts of power modeling and resource scaling have
been developed before, to the best of our knowledge, this is the
first work that investigates the suitable selection of modeling and
scaling techniques for development-time mobile app energy emu-
lation, and validates their use through fine grained hardware mea-
surements.

2. WattsOn SYSTEM DESIGN

Most mobile development toolchains provide an emulator to as-
sist in app development such as the Android Emulator, the i0S Sim-
ulator, or the Windows Phone Emulator. While the emulators do
not accurately reproduce all mobile device characteristics, the low
overhead of their use makes them very beneficial for a variety of

tests. WattsOn extends existing emulators to estimate app battery
consumption.

The two major techniques used in WattsOn design are power
modeling and resource scaling.

Power Modeling: One way to measure app energy is to use
power metering equipment [7]. However, requiring every app de-
veloper to install such equipment is an arduous ask. Also, measure-
ments have variability due to differences in network conditions,
background activities running on the phone, not all of which can
disabled by the developer. For instance, the measured energy after
an energy reducing change made by the developer may turn out to
be higher than before the change, due to degraded network quality
at the time of the new measurement. Further, the measurement does
not separate out the impact of display, network, and CPU that can
be important for the developer to make their optimization decisions.
To overcome these limitations, WattsOn computes energy from the
resource utilization counters using power models [2,4,6,8,17,20].

Resource Scaling: Resources consumed by the app on the de-
veloper’s workstation are very different from those on the phone.
This leads to two challenges. First, the resource counters measured
on the developer workstation cannot be fed directly into the phone
power models. Second, timing of events might be different when
running the app on the emulator than on the phone. Network pack-
ets may arrive much faster on the development machine, causing
the user clicks for the subsequent tasks to be occur sooner, drasti-
cally changing the time spent on application tasks. Resource scal-
ing addresses these challenges.

2.1 Design Overview

A block diagram of WattsOn is shown in Figure 1. The leftmost
blocks represent the measurement of real device power character-
istics required for power model generation'. These measurements
may be performed by the smartphone manufacturers, mobile OS
platform developers, or even volunteers using automated modeling
methods [6]. The mobile app developer simply downloads the ap-
propriate models.

On the developer machine, the app code for the mobile device
runs in a mobile device emulator. We insert resource scaling tech-
niques between the emulator and the actual hardware. As the app
is executed on the emulator, we monitor its resource consump-
tion using resource profiling methods available on the development
workstation. The resource consumption monitored on the scaled
resources is used in the energy calculation block to estimate the
app energy using power models.

We describe resource scaling and power modeling methods for
each of the modeled components below.

2.2 Cellular Network (3G)

The cellular network interface [17] consumes significant energy
and we emulate it as follows.

2.2.1 Resource Scaling

The goal of resource scaling is to obtain the network resource
consumption of the app as if executed on a real cellular data link.
Multiple scaling options may be considered:

Virtual Clock: Event driven simulators such as ns-3 and Power
TOSSIM [22] simply record time in ticks and the ticks can be
mapped to the real time for the network nodes of interest while they
may run much faster (or slower) on the simulation workstation.

"Power models may be developed for all mobile devices of interest;
the number of models required may be reduced by considering rep-
resentative devices in various device classes with different screen
sizes and cellular network types.
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Figure 1: Block diagram of WattsOn components. Blocks
shaded gray are used in existing systems; WattsOn adds the
other blocks for energy emulation.

This technique is not suitable for WattsOn because the emulated
app uses external resources such as web services on the Internet
that are not operating on simulated tick time.

Trace Stretching: Another possibility is to capture the packet
activity over the high speed network connection of the developer’s
machine and then stretch the timing characteristics to match those
on a lower speed link. For example, suppose a 10 second trace
would take 30 seconds over the cellular interface, one could multi-
ply all time intervals in the Ethernet packet trace by 3. One could
even replay the trace from the high speed interface on a lower speed
interface simulated using a fine grained packet level simulator, such
as QualNet or ns-3 and get more accurate stretching. However,
this technique has several drawbacks. A slower interface will af-
fect other parameters of the network flow, such as the TCP window
size, which are not captured by stretching the high speed packet
trace. Also, stretching the network trace alone will not produce the
corresponding impact on other resources such as the timing of user
clicks or other tasks in the app that depends on network activity.

Link Shaping: The approach we have taken is to shape the net-
work link bandwidth and latency such that the emulated network
activity in terms of packets sent and received is similar to the activ-
ity that would be observed on a cellular data link for the same task.
We introduce our resource scaling code at layer 2.5 in the network
stack, that is, between IP and the MAC layer. The delay, loss and
bandwidth parameters are chosen to mimic different network con-
ditions. The other components of the network remain the same as
used by the app on a real device.

The latency, bandwidth and loss parameters for cellular networks
have been studied in several prior works in wireless communica-
tions, and we rely on the existing literature to guide our choice
of these parameters. Using measured distribution based models,
rather than physical measurements, has the advantage that the esti-
mate is much more representative for a wide population of users.
It is not biased to the developer’s specific phone location, and does
not show uncontrolled fluctuations from measurement to measure-
ment. Parameter values may be updates as technology evolves. In
our prototype, we selected the parameter values as follows.

Latency: The measurement and modeling work in [9, 12] has
characterized the cellular data link latency for 3G networks using a
normal distribution (with mean = 200ms, and standard deviation =
100ms) and we use this characterization.

Bandwidth: We use the measurements from [23] that have ex-
perimentally characterized 3G HSDPA download and upload band-
widths. The bandwidth varies due to various reasons including
changes in network congestion, wireless channel quality at the phone

location, and other factors. To keep the number of varying condi-
tions manageable, we bin the network quality into three levels, de-
noted good, average, and poor, and based on [23], set the parameter
values as shown in Table 1.

Network quality Download (kbps) Upload (kbps)
Good 2500 1600
Average 1500 900
Poor 500 200

Table 1: Network scaling parameters for bandwidth.

Loss: We model losses using the well known Gilbert Elliot Chan-
nel Model and the corresponding parameters measured for 3G links
from [26]. According to this model, the network is assumed to be in
one of two states, denoted good and bad, each with a different loss
rate. The model also describes the transition probabilities between
the two states, that allows simulating the losses over time during an
emulation run.

In certain instances, when the developer is using a slow Inter-
net connection for their developer machine, such as a home Inter-
net connection, then the underlying network may itself have non-
negligible latency and losses. In this case, WattsOn should first
probe and estimate the network latency using known methods [11]
and then add on any additional resource scaling to the measured
characteristics.

2.2.2  Power Modeling

The power model for the 3G network must model not only the
active energy consumption when communicating data but also the
“tail” time, or the time for which the radio interface remains in a
higher power state after finishing the communication activity. Part
of the tail time is spent in the active state (DCH) itself, and part in
an intermediate state (FACH), where the radio power consumption
is reduced but any further communication requires a small channel
acquisition overhead. Some radios may have a second lower pow-
ered intermediate state (PCH). This model, called ARO model, was
studied in depth in [17, 18], and allows back-calculating the radio
power state from a network packet trace.

However, the number of mobile operators for which the model
parameters have been measured is limited [18]. Second, the en-
ergy consumed at varying received signal strengths has not been
reported for the ARO model, though dependence on signal strength
is well known [21]. To fill in the above gaps, we set up two experi-
ments (Figure 2).

Attenuator

Ericsson 3G chipset

Figure 2: Experimental setups for the network power measure-
ments.

Signal Strength. We used an Ericsson cellular data develop-
ment board that exposes the antenna ports and allows controlling
the received signal strength via an RF signal strength attenuator.
The setup was located where we typically observed good signal
strength. Measurements were performed on a weekend when the



network was lightly loaded. We varied the amount of data down-
loaded and uploaded at different signal strengths and measured
the DCH and FACH power and tail times. Since a developer will
likely only emulate their application with a small number of signal
strength variations, we discretize the signal strength to three levels
(Table 2). These power measurements are taken using a radio in-
terface board and not a phone, implying that the idle power of the
board can be different from that of the phone. However, the differ-
ences between the power levels at different signal strengths comes
primarily from the radio and can be used to adapt the power model
for varying signal strengths. The tail times for DCH and FACH did
not vary with signal strength.

Signal Strength DCH (mW) FACH (mW)
High 600 300
Medium 800 300
Low 1500 400

Table 2: Cellular interface power variation with signal strength
for the AT&T network.

Mobile Operators. The second setup uses a power meter at-
tached to the battery terminals of a smartphone to measure power.
We connected multiple devices from different mobile operators avail-
able in our region: AT&T (Samsung Focus), T-Mobile (HTC HD7),
Verizon (HTC Trophy), and Sprint (HTC Arrive). T-Mobile and
AT&T use GSM based networks with the UMTS standard from
3GPP for data. Verizon and Sprint use the Evolution-Data Op-
timized (EVDO) standard from the CDMA2000 family provided
by 3GPP2. A sample power trace for a download using Sprint’s
network is shown in Figure 3. As expected, the radio stays in a
high power state long after the data communication has completed.
Similar measurements were performed for other operators and all
measured tail times are listed in Table 3.

2500

2000}
1500
1000}

Power (mW)

500

0

0 5 10 15 20 25
Time (s)

Figure 3: Network tail energy measurement for Sprint. The

data communication ends near time = 7s along the x-axis but

the radio stays in a higher power state for an additional 10 sec-
onds after that.

2.3  WiFi Network

The resource scaling and power model methods for WiFi used
are as follows.

Resource Scaling: For cases where the developer machine is
connected to the Internet using WiFi (as is common for laptops),
resource scaling is not needed. Otherwise, resource scaling is per-
formed using the same layer 2.5 approach as for the cellular net-
work. The scaling parameters are based on well-studied WiFi char-
acteristics [1].

Operator DCH FACH PCH
AT&T (3G) 5s 12s 0
T-Mobile (3G) 5s 1s Is
T-Mobile (4G HSPA) 4s 2s Is
Verizon (3G) 6s 0 0
Sprint (3G) 10s 0 0

Table 3: Tail state times for different operators. SOme opera-
tors do not use all intermediate states resulting in zero tail times
in those states.

Power Model: The WiFi power model uses the PSM state model
described in [13]. The model uses four states - Deep Sleep (10mW),
Light Sleep (120mW), Idle (400mW), and High (600mW). The
power consumption is slightly different for transmit vs. receive but
since the difference is small and switching between these states is
very frequent, we use a common power value, denoted as the high
state.

When not communicating, the interface remains in Deep Sleep.
Brief power spikes of 250mW at intervals of 100ms are observed
in this state, corresponding to reception of beacons from an asso-
ciated AP. When a packet is to be transmitted, the interface moves
to the High state immediately. If a packet is to be received, the ra-
dio learns about it at the next beacon, and moves to the High power
state. Once the transfer is completed, the radio moves to Idle. From
Idle it can immediately move to High in case of a transmit or re-
ceive. If no network activity occurs in Idle state for 1s the radio
moves to the Light Sleep. The Light Sleep tail time is 500ms, after
which, if no network activity occurs, it falls back to Deep Sleep. If
network activity does occur in either the Idle or Light Sleep state,
the state changes to High. Both Idle and Light Sleep states also
have regular spikes of additional 250mW of power spaced at 100ms
to receive beacons.

The above power state transitions can be re-created, and energy
can hence be computed, using the (scaled) network packet trace
captured using a network sniffing library.

2.4 Display

As for other components we need to resource scale the display
and model its power consumption. Fortunately, existing mobile de-
vice emulators already perform resource scaling for the display:
the emulated app is provided only a small screen area representing
the mobile device display. The only scaling needed is that the em-
ulator window may be re-sized to a larger view by the developer,
changing the number of pixels in the display and to overcome this,
one may simply multiply the number of pixels by the appropriate
scaling ratio.

While the peak power of the display is similar to that of the CPU
and the network, the fraction of energy consumed by the display
can be much larger than the other components since the display is
constantly active throughout an application’s use. An accurate esti-
mation is thus important for this most dominant energy consumer.
The power model for the display depends on the display technology
used. Prior work has provided power models for LCD and OLED
displays [5,25]. However, several modern mobile devices use Ac-
tive Matrix OLED (AMOLED) displays, that do not fit existing
models.

The OLED power model shows linear and additive properties:
the energy consumption of the display as a whole is the sum of the
energy consumption of the R,G, and B components of the individ-
ual pixels. Further, the power model for the R,G, and B compo-
nents is linear, provided the colors are converted from the standard
RGB (sRGB) color space to linear RGB. This does not hold for



AMOLED. Figure 4 shows the power measured for the AMOLED
display (on a Samsung Focus smartphone) set to different colors.
The R,G and B components labeled are converted to linear RGB.
While the linear model holds at low magnitudes, it breaks down at
high magnitudes (the colors in the surface labeled B=255).

200
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300

Figure 4: Power measurements for different colors on an
AMOLED display.

Both the additive and linearity properties break down. As seen
in the figure, power can increase or decrease with increasing color
component values, implying that linearity does not hold. More
measurements reveal that the power consumed is not just a func-
tion the color of a pixel but also depends on the properties of the
other pixels in the image. Thus, the additivity does not hold ei-
ther. Figure 5 shows the power consumption at varying fractions
of the screen set to white. The graph shows the power predicted
using the additive OLED model where the power would increase
linearly with the area, as well as the observed ground truth. Power
decreases when a greater portion of the screen is emitting brighter
light levels.
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Figure 5: AMOLED power changes as the fraction of white
colored pixels changes.

Further measurements reveal that reduction in power compared
to the OLED model not only depends on the area but varies by
color. Figure 6 shows an example measurement for two colors,
compared with the OLED model based predicted values. While the
predicted values are different for the two colors, what is important
to note is that the difference between the measured and predicted

values is also different for the two colors: s2 is significantly greater
than s1.
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Figure 6: Change in power with color.

With display technologies being highly proprietary, the exact
mechanisms used to control power are not widely available. Given
the dependence on color and lack of explicit knowledge of the
underlying power optimizations, the AMOLED power model be-
comes difficult to parameterize. Thus, we use a lookup table span-
ning the entire R,G,B gamut of values, discretized to 16 color mag-
nitudes per component, yielding a table with 16 x 16 x 16 = 4096
entries. The entries of this table contain the power value measured
if the entire screen was set to that color, and in effect models the
power scale down compared to the additive model at 100% area
coverage for that color. The lookup table cannot be used directly
however because the power value does not follow the lookup ta-
ble when a color occupies less than the entire screen, and then
its power consumption is closer to that predicted by the additive
OLED model. Rather than fitting 4096 individual curves to model
the area dependant power variation for the basis colors, we make a
simplifying approximation that is based on the observation that the
deviation from the OLED model is only significant for higher color
magnitudes. The deviation does become significant at different
threshold for different colors and we approximate that using four
different thresholds: one for R+G+B magnitude, and one each for
R+G, G+B, and B+R magnitudes, denoted TraB, TRG, Tap and
TBR respectively. The power scale down is assumed to be propor-
tional to the fraction of such high intensity pixels.

The final model is summarized as follows. Suppose the lookup
entry for a color indexed by [r, g, b] by finding the nearest index in
the lookup table is denoted [(r, g,b). Let the power consumption
of the entire screen, obtained by summing up the powers over all
pixels of a screen-shot s, be denoted L(s). Suppose the fraction of
pixels in s that exceed either of the thresholds Tra B, TR, TaB and
TR is denoted ((s). Also, suppose that the power consumption
for the display using the additive OLED power model is computed
as O(s). Then the power consumption when the screen display
matches s is computed as:

Paisplay = B(s) » L(s) + (1 = B(s)) » O(s) M

One further optimization to the above model is that instead of
considering all pixel values on the screen, we could randomly select
a smaller fraction of the pixels and use those as representative of the
entire screen. The accuracy of this model along with sub-sampling
is evaluated in Section 4.

From an implementation perspective, the pixel information of
the display is easy to obtain when an app is being emulated. We
simply capture the developer machine’s screen and extract the re-
gion corresponding to the emulator’s display area.



For completeness, we also measured the power consumption of
LCD displays with varying screen sizes at two different color levels
(Table 4). The LCD can be modeled using simply the brightness
level as the variation with color is not significant. As expected,
devices with different screen sizes do consume different amounts
of energy.

Brightness Color 3.6in 4.3in
Low Black 132 mW 294 mW
White 127 mW 330 mW
Medium Black 363 mW 557 mW
White 359 mW 573 mW
High Black 559 mW 778 mW
White 554 mW 790 mW

Table 4: Power measurements for LCD displays for HTC Ar-
rive (3.6in screen size) and HTC HD7 (4.3in screen size).

25 CPU

Mobile devices use much lower power processors due to their
battery constraints compared to the processors used on the devel-
oper workstations. The processor frequency, cache hierarchy, and
various computational units are different, resulting in very differ-
ent execution performance across the two processors for the same
computation. Since processor designs have been extensively stud-
ied, many techniques for emulating performance and power have
been developed for CPUs. We select resource scaling and power
modeling methods that are mutually compatible and work with the
full system app energy emulation constraints.

2.5.1 Resource Scaling

One approach to resource scaling would be to use a cycle-accurate
simulation of the processor. Detailed cycle-accurate simulation has
excessive computational overheads, and is impractical, especially
since it may not run in real time and result in inaccuracies and de-
lays in the timing of other components. The existing Android Emu-
lator uses instruction set simulation through binary translation, built
upon QEMU [16]. The Windows Phone Emulator similarly uses
processor virtualization with support for memory and GPU emula-
tion. While these lighter weight approaches followed by Android
and Windows Phone emulators allow capturing certain CPU char-
acteristics and memory limitations of the mobile device, they do not
preserve the timing characteristics and do not model the processor
architecture in sufficient detail to provide accurate resource coun-
ters. The Android Emulator allows for developer driven scaling of
speed through a delay parameter that can take values between 0 and
1000 to add a non-deterministic delay to the application execution.
However, the choice of the delay input is left to the developer.

In WattsOn, we scale down the performance of the emulated app
running on the development machine by restricting the number of
processor cycles available to the mobile device emulator. The goal
is primarily to preserve the timing characteristics on the CPU. This
is only an approximation because the nature of computation can af-
fect how the number of cycles on one processor map to the other
processor, given that the processor architectures are vastly different
and aside from the number of cycles, the size of processor caches,
accelerators and bus speeds will matter as well. We compare the ex-
ecution time on a mobile device processor (Samsung Focus with a
1GHz Scorpion CPU) and a development machine using a 2.7GHz
Intel Core-2 Quad-core processor for a few simply computational
tasks including floating point computations, fixed point computa-
tions, and memory intensive compute tasks. The slow-down in ex-

ecution time did not vary greatly across these tasks and for this pair
of processors, the slow down was a factor of 7.2, implying that a
100% CPU utilization on the phone processor can be approximated
using a 100/7.2 = 13.8% utilization of one core on the devel-
oper machine processor’. The emulator can now be restricted to
a fraction of the overall processor that yields the same slow down
in execution speed. The fraction of restricted cycles is not exactly
equal to the desired slow down ratio since the emulator may have
additional overheads other than the execution of the test app”.

The actual mechanism to restrict the number of cycles allocated
to the emulator depends on the operating system used on the de-
veloper’s workstation. For instance, in Linux, one may use the
cpulimit utility. In Windows the same can be achieved via re-
stricting the emulator to a virtual machine and restricting the CPU
fraction allocated to it.

2.5.2 Power Modeling

Power models for the CPU are available in the literature [20] and
we used a simple utilization based power model where the CPU
power is expressed as a linear function of the phone’s CPU utiliza-
tion:

Pcpu = QO * Ucpy (2)

Here, ucp., represents the phone CPU utilization and « is a power
model parameter. The CPU utilization measured by WattsOn for
the emulator process on the developer machine is scaled according
to the scaling factor in Section 2.5.1 to obtain ucpy.

We measured the value of o on the Samsung Focus device for
different computations. The above linear model being one of the
simplest CPU power models is not perfect, and actual power con-
sumption at the same peak utilization varied between 665mW to
781mW (a range of 16% w.r.t. the average) depending on type of
computation performed. However, this model has the advantage
that the scaling of the resource counter as described above works
directly.

Other processor power models that are more accurate than equa-
tion (2) are available in the literature. While they can be used for
run time energy profiling, their use in emulation is non-trivial be-
cause they require the use of multiple processor performance coun-
ters. Scaling all performance counters is challenging since most
of the additional counters are highly dependent on processor archi-
tectures that vary a great deal between the developer workstation
and the mobile device. For instance, the last level cache (LLC)
miss counter is often found useful to improve power model accu-
racy. However, given that the cache hierarchy varies drastically be-
tween the two processors, scaling the LLC miss counter becomes
impractical. Using the linear model from (2) enables a reasonable
approximation at emulation time.

GPU: Some of the other components are also significant from an
energy standpoint. The most notable one is the Graphics Processor
(GPU). The GPU is mostly hardware managed and no software ob-
servable metrics regarding its utilization level are easily available.
Power models for the GPU are thus not widely studied in the liter-
ature. Resource scaling for the GPU will also be non-trivial. We

The scaling factor can easily be adapted for a new developer ma-
chine by measuring the execution time for a known processing task
for which the phone size execution time is already known

3This approach assumes that the multi-threading characteristics of
the app are preserved across the phone and workstation processors,
i.e., if the app uses n threads on the phone, it will not use more
than n threads on the developer workstation and the slow down is
thus governed by the same bottleneck thread. The mobile device
emulator generally ensures that this is indeed the case, especially if
the instruction set of the phone processor is being simulated.



largely omit the GPU from our model. We measured the power
consumption on a mobile device for several video playback tests
and found that while some portion of the power measurement can
be explained using the CPU and display, a significant portion re-
mains attributable to the GPU: on an average 231mW across three
different videos. Thus, if the emulated app is detected to be playing
video, we can add this power value for the duration that the video
is played. Other uses of the GPU such as graphics intensive games,
are not covered by this approximation.

3. IMPLEMENTATION

Our implementation of WattsOn integrates the resource scaling
and power modeling techniques described above, with the Win-
dows Phone Emulator. Mobile emulators for other platforms such
as th Android and iOS also execute on the developer workstation
and most of our power models and network resource scaling tech-
niques apply to them as well. However, Android uses a different
CPU emulation strategy and preservation of timing characteristics
may require additional changes.

WattsOn also adds a graphical user interface that allows the de-
velopers to explore multiple operating conditions for the run, such
as network conditions (good, medium, bad), display brightness (low,
medium, high), phone brand and model, network carrier (AT&T,
Verizon, T-Mobile, or Sprint), and received signal strength. Since
display brightness and signal strength do not affect the timing of
the app execution, these parameters can even be changed after the
test run and the energy estimates are updated on the fly using a
previously obtained resource consumption trace.

The inputs to WattsOn include the power model parameters and
the resource scaling parameters, encapsulated for a specific device
into an XML file. Energy use across multiple devices may be em-
ulated by simply changing the parameter file, without requiring ac-
cess to a large number of physical devices.

The output of WattsOn includes: (i) a time series of power con-
sumed for every component, and (ii) the total energy consumed.
Using the battery capacity specification, we can also estimate how
long the battery would last if a user continuously ran the app on
her phone. A screenshot of WattsOn output is shown in Figure 7.
The Ul elements on the left allow the developer to change operating
conditions while the 4 graphs show the energy used on the network,
display, CPU, and the overall device respectively.
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Figure 7: WattsOn output showing energy data. The UI ele-
ments on the left allow varying emulated operating conditions
and technology characteristics.

While the prototype implementation includes power models for
various environmental conditions such as multiple network signal
strengths, user settings such as screen brightness, and also multi-
ple hardware technologies such as LCD and AMOLED, additional

configurations of test conditions are likely to emerge. The primary
overhead of including any new configurations is that a one time
measurement of that configuration must be performed with a hard-
ware power meter, and provided for download to all developers
using the tool.

4. PERFORMANCE EVALUATION

The accuracy of the energy estimate produced by WattsOn de-
pends both on the correctness of resource scaling as well as the
accuracy of the power models used. To evaluate the overall perfor-
mance, we compare the estimated energy use as well as the mea-
sured energy use for multiple tasks performed on the mobile device.
Since apps cannot be downloaded to the emulator from the app mar-
ketplace, we developed our own apps to perform these tests.

Application 1: Display only. We begin our evaluations with the
display power model. While the LCD and OLED power models
are available in prior work, the AMOLED model is new and we
evaluate its accuracy using an application that consumed energy
only in the display.

We first test the accuracy of our discretized lookup table that
only stored 4096 colors out of the possible 255 x 255 X 255 =
16581375, which is approximately only 0.024% of all possible
color values. This test is performed with 100 random colors that
are not in the lookup table, set to occupy 100% of the display area.
This tests the accuracy of the modified AMOLED model for color
dependent power scaling. Figure 8 shows both the estimated an the
measured power and suffers from very little error.
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Figure 8: Testing the AMOLED display power model with 100
random colors.

For a more realistic test, we use an application that simply dis-
plays a static image and performs no CPU or network activity.
Thirty different images encompassing various typical app displays
including simple GUISs to rich textures and photographic imagery
were included in this set. Figure 9 shows the measured and esti-
mated energy (using equation (1)) for all 30 images. The energy
estimated using 1% randomly selected pixels instead of consider-
ing all pixels is also shown. Again the model has very little error.

Another parameter worth exploring is the loss in accuracy suf-
fered if we sub-sample only a small fraction of the pixels rather
than recording all pixels. Sub-sampling can reduce the display trac-
ing data overhead and may be important for long running tests. We
report the incremental increase in error sub-sampling at 1% and
0.1% of the pixels in Figure 10. Reducing to 1% from 100% does
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Figure 9: Measured and emulated energy for Application 1,
with 30 different images. Images are sorted by the measured
energy used.

not degrade the accuracy significantly (the gray bars indicating the
loss in accuracy are very small).
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Figure 10: Display model error when all pixels are considered,
or only 1% or 0.1% of the pixels are considered.

Application 2: Local Computation. This test is designed to
model applications that use the processor and display, without net-
work use or heavy graphics. The test app has a simple GUIL and
user clicks perform computations executing over 5s to 20s. An ex-
ample power trace captured using the power meter is showed in
Figure 11(a). For the same task, the measured power trace aver-
aged over 1s intervals as well as power emulated using WattsOn
is shown in Figure 11(b). Power was measured with the mobile
device in the airplane mode to avoid cellular network background
activity. However, the device does have some background activity
as seen in the raw trace near time 13s, and such activity, being inde-
pendent of the app, should be excluded from consideration for the
app developer. This is difficult in the measured power but is easy
when using WattsOn.

Performing such an evaluation for the three different compute
units, the total energy consumed over a 30s period, as measured
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Figure 11: Comparing measured and emulated energy for Ap-
plication 2.

and emulated is shown in Figure 12. Each measurement is averaged
over 5 random runs and the standard deviations are shown as error
bars. Since the resource scaling can behave differently from one
run to another, the emulated energy can also vary slightly across
runs. Overall, the emulated energy is lower since certain back-
ground activities are absent from the emulated trace. The mean
error across all these runs is 9.3%. The primary factors leading
to the error include any errors in the power model, the fact that
background activities cause the measured energy to be artificially
higher, and the error in resource scaling that may cause the emu-
lated CPU usage to be different from measured.
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Figure 12: Experimental evaluation of emulation accuracy for
Application 2.

Application 3: Networked Apps. Next we consider applica-
tions that use the network in addition to the CPU and display. A
simple application is developed that can download files of different
sizes from a predetermined web server. A sample power measure-
ment is shown in Figure 13 and depicts the total power consumed
by the display, network and CPU during one run. Performing the
above test for different downloaded file sizes ranging from small to
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Figure 13: Example data capture for Application 3.

large, and repeating each test 5 times, the measured and estimated
energy use is shown in Figure 14. The emulation energy is close
enough for the developer to make the correct design choices based
on the estimates provided by WattsOn. Average error is 4.73%
across all tests.
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Figure 14: Estimated and measured energy for Application 3
with varying download sizes.

Application 4: Internet Browsing. This application downloads
a webpage and renders it on the display. We test emulation accuracy
over five different web pages (Table 5) differing in content size and
complexity. The web pages are chosen to be static pages without
variable advertisement content to make the experiment repeatable
across a real device and WattsOn.

Web page Size  Images
AMOLED Wiki Page 357kB 9
ACM 353kB 16
MSDN Mobile Apps  828kB 9
Google 117kB 4
NPS/Yose 532kB 14

Table 5: Webpages used for testing Application 4.

Energy is measured over a common session length of 50s for
each URL. A variable portion of the session is spent on fetching
the webpage for each case. There are variations across multiple
runs due to network and web server variability. The measured and
estimated energy is shown in Figure 15. The average error over all
these experiments is 4.64% which is very similar to the variability
in measurement one may observe even with real device measure-
ments due to changing network conditions and device background
activity.
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Figure 15: Accuracy evaluation for Application 4.

4.1 Case Study: Multi-Component
Optimization

Let us consider an application that uses multiple components
(CPU, network, display) and has design options to increase or re-
duce their use. A simple weather application suffices to demon-
strate the trade-offs involved. While the application is simple, it
allows illustrating how the break-down of energy use across multi-
ple components provided by WattsOn helps understand the design
choices more clearly.

The developer has multiple design decisions to make that may
impact energy use:

1. Portability: The app may always download the entire con-
tent to be displayed from the web. Such application de-
signs are sometimes referred to as hybrid apps and using
the HTMLS standard, such apps can operate seamlessly on
multiple platforms. Alternatively, the app may locally sup-
ply bulk of the content including weather images and only
download succinct weather data from its web server. The lat-
ter approach reduces the amount of data downloaded from
the Internet at run time but requires a platform specific app
implementation on each mobile platform of interest.

2. Rich Graphics: The app may use different images for de-
picting the same weather condition: a simple cloud icon (such
as Figure 16-(a)) only 18kB in file size, or a rich photo-
graphic cloud image which requires a larger 138kB file to
be stored or downloaded (Figure 16-(b)). Richer graphics
may allow for more sophisticated application UI designs but
at the cost of higher data sizes.

3. Animation: The developer could even use an animated im-
age of moving clouds to create a more engaging user expe-
rience, e.g., an animated image with two frames, one frame
shown in Figure 16-(c), using a 90kB file. Animation would
use up processor resources, and possibly require a larger im-
age file than a simpler icon.

A quantitative energy cost estimate for each of the above three
app features is necessary for the developer to determine whether to
include them, and WattsOn can provide that with very low devel-
opment overhead.

The decision depends on understanding energy consumption in
multiple dimensions. Simply optimizing the app for lower CPU
utilization will not necessarily reduce energy. Also, the display
power model depends on color implying that even two images that
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Figure 16: Sample images considered for an app.

appear similarly bright may consume different energy. Trying the
multiple options in the app and recording the WattsOn output, while
running the app for the same duration in each case, we obtain the
data summarized in Figure 17.
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Figure 17: Energy breakdown into multiple components.

Several facts become obvious from this data. First, even though
Image 1 is much simpler and has a smaller file size, it does not help
save any energy on the network. This happens because for such
small downloads the network energy is dominated by the tail states
of the radio. A related implication is that saving the images locally
and only downloading the text data related to weather will not help
save much energy. Hence, including rich graphics and designing
for portability has negligible energy overhead for this app.

Second, the display is consuming the largest fraction of the en-
ergy for this scenario. Clearly an image that saves energy on the
display is likely to be beneficial, and other factors are less impor-
tant to worry about during app energy optimization.

Third, looking in detail at the component breakdowns, one also
notices that the CPU energy consumption of the third image is the
highest. Looking at the emulation output from WattsOn (not shown
for brevity) also shows that, while for the first two images the CPU
energy is nearly zero, after the download completes, the CPU is
consuming an average of 150mW continually while Image 3 (ani-
mation) is displayed. Since WattsOn shows the exact overhead of
animation, the developer can determine if animation is important
for their app scenario or not. Armed with such data, the developer
can also decide if the app should highlight important information,
such as a hazardous weather alert, using brighter colors or anima-
tion.

S. RELATED WORK

WattsOn builds upon a large body of work on energy model-
ing for phones [3, 6,25]. The work in [3] focused specifically
on a Palm device and measured several components including the
CPU, LCD, device buttons, touch pen, and the serial link which
was the primary communication channel on that device. On similar

lines [25] is a more recent work that presents tools for automated
execution of test benchmarks and measurement of power, to enable
generation of power models for various components on the mo-
bile device. The modeling approach was enhanced further in [6] to
eliminate the need for external power measurement equipment, by
using the battery drain measurements available on the mobile de-
vice itself. Aside from full system models, specific models for key
components have also been studied in depth, including OLED dis-
plays [4], LCD displays [25], 3G cellular networks [17-19,21], and
WiFi networks [19]. We leverage these established power model-
ing techniques in our design, and where needed, expand the set of
models to cover additional technology variations.

Prior work has also looked at app energy accounting at run time.
A key challenge for run time methods is the attribution of energy
among multiple applications simultaneously using the device. In [24]
resource usage of each component is tracked per application, and
power models from the data sheet specs are used to estimate app
energy. PowerScope [7] tracks the application with the active con-
text on the processor (a single core CPU without hyper-threading
was used) and measures the power at fine time resolution. The total
power consumed when the application had active processor con-
text is attributed to that application. Another powerful modeling
approach, eProf [15], traces system calls made by applications and
uses power state models for various components to infer energy
used. It can incorporate tail-energy use, such as when a component
remains in a higher energy state after the application is closed. We
leverage similar power models but rather than profiling on a real
mobile device we extend the work to enable energy emulation on
the developer machine itself.

Energy emulation at development time has previously been de-
veloped in Power TOSSIM [22]. However, the event based simula-
tion approach used in that work does not directly apply to mobile
app emulation due to the interaction with external resources such
as web services and interdependence among the timing characteris-
tics of the network and other components. Different resource scal-
ing techniques and compatible power models are hence required
for WattsOn. Energy emulation methods using fine grained pro-
cessor architecture models have also been developed [2]. However,
such models are not available for all key mobile device components
and have an extremely high resource overhead. Their use for full
system emulation during app development with real time external
interactions remains an open problem.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a system to estimate the energy con-
sumption of apps during development. This enables app developers
to use this feedback to write more energy efficient code. WattsOn
scales down the emulation environment (network, CPU, display) to
mimic the phone and applies empirically-derived power models to
estimate app energy consumption. This approach gives us the flex-
ibility to test an app’s energy consumption under various scenarios
and operating conditions. While we leverage known power mod-
eling and resource scaling concepts, their combination for app en-
ergy emulation introduces certain constraints that requires a careful
selection of compatible modeling and scaling techniques. We dis-
cussed such suitable techniques and experimentally validated their
use.

We have prototyped WattsOn for the Windows Phone platform
and shown its effectiveness for a variety of apps. Moving forward,
WattsOn is just the first step in improving the energy efficiency of
apps. Other useful steps include obtaining energy measurements
from the wild to provide developer feedback based on real world
usage patterns. Techniques to augment power models with real



measurement data to overcome modeling limitations [14] are also
of interest. Together, we believe that these efforts will help de-
velopers produce apps that will significantly increase the battery
lifetime of mobile phones.
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