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Abstract

In this paper, we present strategies to incorporate long context information directly during the first pass decoding and also for the
second pass lattice re-scoring in speech recognition systems. Long-span language models that capture complex syntactic and/or semantic
information are seldom used in the first pass of large vocabulary continuous speech recognition systems due to the prohibitive increase in
the size of the sentence-hypotheses search space. Typically, n-gram language models are used in the first pass to produce N-best lists,
which are then re-scored using long-span models. Such a pipeline produces biased first pass output, resulting in sub-optimal performance
during re-scoring. In this paper we show that computationally tractable variational approximations of the long-span and complex lan-

guage models are a better choice than the standard n-gram model for the first pass decoding and also for lattice re-scoring.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In state-of-the-art recognition systems today, language
model (LM) is still restricted to a simple #-gram like model,
where the distribution of the predicted word depends on
the previous (n — 1) words. i.e. if w; is the hypothesized
word, then its probability given the past is approximated
by P(Wi|wi_1,...,Wi_s41)- A major reason for using such
simple LMs, besides the ease of estimating them from
text, is computational efficiency. The search space (time)
in large vocabulary continuous speech recognition
(LVCSR) decoding is governed by the number of distinct
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“equivalent” histories, i.e. the number of unique probabil-
ity distributions needed to account for all possible histories,
and it grows nearly exponentially with n-gram order. So it
is customary to limit n to 3 or 4.

Long-span LMs, capturing syntactic, semantic, dis-
course or other long-distance dependencies, are much more
powerful than low order n-gram LMs and will hopefully
outperform the latter models in terms of metrics such as
perplexity and word error rate. However, incorporating
long-span LMs for decoding is a computationally challeng-
ing problem. Hence the standard practice is to carry out a
first pass of decoding using, say, a 3-gram LM to generate
a lattice, and to rescore only the hypotheses in the lattice
with a higher order LM, such as a 4- or 5-gram. But even
the search space defined by a lattice is intractable for many
long-span LMs. In such cases, only the N-best full-utterance
hypotheses from the lattice are extracted for evaluation by
the long-span LM. Typically, N is a few thousand, if not
a few hundred.
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Using an n-gram LM in the first pass however produces
hypotheses more representative of such a model. If the gap
between the starting n-gram LM and the long-span LM is
large then typically re-scoring of these first pass N-best
hypotheses can lead to sub-optimal performance. The
n-gram LM may assign such a low score to good hypothe-
ses that they fail to appear among the N-best. If such
hypotheses would have eventually surfaced to the top due
to the long-span LM, their loss is attributable to the “bias”
of the N-best list towards the first pass LM. For this
reason, we seek ways to incorporate information from
long-span LMs directly into first pass decoding as well as
during lattice re-scoring.

We propose to approximate the long-span model using
variational approximation techniques. Given a long-span
model P, possibly a sophisticated LM with complex statis-
tical dependencies, we will seek a simple and computation-
ally tractable model Q" that will be a good surrogate for P.
Specifically, among all models Q of a chosen family Q of
tractable models, we will seek the one that minimizes the
Kullback—Leibler divergence (Cover and Thomas, 1991)
from P. We will use this model for first pass decoding,
which in turn produces richer lattices and faithful N-best
lists. We then either rescore these lattices with bigger mod-
els or deploy the full blown model on the N-best lists
extracted from the first pass recognition. Thus the N-best
lists that are extracted from the first pass decoding are no
more biased towards the weaker baseline model.! They
are in-fact biased towards the model with which we wish
to do the re-scoring. This technique thus helps to produce
a refined and less biased search space for second pass
decoding such that re-scoring on it becomes much more
effective.

Examples of P include computationally powerful LMs
outside the family of finite state machines, such as recur-
rent neural network language models (Mikolov et al.,
2010), random forests (Xu, 2005) and structured language
models (Chelba and Jelinek, 2000; Roark, 2001). We will
approximate P with a Q" from the family Q of finite state
machines, mainly comprising of n-grams.” The choice of
@ is driven by decoding capabilities.

Previously, researchers have addressed the problem of
approximating stochastic context free grammar (SCFG)
by probabilistic finite state automaton (PFA) for the use
in speech recognition systems. For instance, Stolcke and
Segal (1994) demonstrated how one could precisely com-
pute bi-gram probabilities from a SCFG for use in the
speech recognition systems. It has, however, been difficult
to find out how well the resulting models approximate
the SCFGs and more importantly, what should be the cor-
rect measure? Nederhof and Satta, 2004 argued that the
right way to obtain an approximate PFA from SCFG

! Here we are referring to a weak n-gram LM which is used in the
decoder to produce word lattices.

2 See (Allauzen et al., 2003) for a representation of n-gram LM as a finite
state machine (FSM).

would be to explicitly minimize the Kullback—Leibler
divergence (KLD) between the two probability distribu-
tions (i.e. SCFG and PFA), as KLD is a natural distance
metric between any two probability distribution functions.
In their later work (Nederhof, 2005) they showed how one
could also search for a PFA such that the KLD with SCFG
would be minimal over all possible PFAs. They, however,
did not report any results.

The theoretical foundation of our work is similar in
spirit to the ones mentioned above. In our work, we, how-
ever, show for the first time that using Monte Carlo tech-
niques, it is possible to approximate near Turing machine
like models (Elman, 1990) with higher order PFAs and
use them directly in the first pass speech recognition sys-
tems and/or re-scoring the word lattices. We show how
the approximated PFAs are better than the PFAs estimated
from the training data, thus improving the overall speech
recognition performance. We demonstrate the working of
our proposed idea on many state-of-the-art large vocabu-
lary continuous speech recognition setups and find out
some very interesting statistics about the novel n-grams
learnt during the approximation process.

In our other work (Deoras and Jelinek, 2009; Deoras
et al., 2011a; Deoras, 2011, chap. 4), we have proposed iter-
ative decoding, a hill climbing technique to tackle the prob-
lem of incorporating long span language models for
recognition. In it we have proposed to replace the global
search problem (search for the most likely hypothesis
under long-context LMs) by series of many convenient
local search problems. Local search problems were defined
so that long span models could be deployed without need-
ing to approximate the models. Such a method thus
approximates the search space (word lattices) but keeps
the re-scoring model (long-span models) intact. In this
paper, we propose to approximate the model instead and
keep the search space intact. Thus these two methods offer
two complementary approaches to solve an important
problem of incorporating long-context LM for decoding.

The rest of the paper is organized as follows. Section 2
provides details about the proposed methodology for lan-
guage modeling using ideas from variational approxima-
tion. Section 3 discusses some of the complex long span
LMs and Section 3.1 briefly describes our candidate LM —
recurrent neural network language model. Section 4
describes our experimental setup and presents a number
of results. Finally, a summary of the paper with some
remarks is presented in Section 5. Sample simulations of
text corpus obtained using our proposed technique is shown
in Appendix A.

2. Variational approximation of a model

There are many popular methods of approximate infer-
ence, among which variational inference has gained popu-
larity due to its simplicity (Jordon, 1998, pp. 105-162).
Such methods are necessary when exact inference is intrac-
table. In wvariational inference, a surrogate model
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characterized by the distribution O € Q is chosen to replace
a complex model, characterized by the distribution P, such
that inference under Q becomes much more tractable. O
should be found out such that it is closest to P in some
sense. Since these models are probability distributions, a
very natural choice of distance metric is Kullback—Leibler
divergence (KLD). The surrogate® model Q is thus chosen
such that among all the distributions in the family of the
chosen parameterization, Q, it has the minimum KLD with
the complex distribution P. Thus if we decide on a family
of distributions, Q, then the surrogate distribution is found
out by solving the following optimization problem (Eq. 1):

. . B . T PO
o = angerng(PHQ) = argerngP( )In o0)
= arglréaxZP() InO(+) (1)

where D(p[lq) = > . .,p(x) ln% is the KL Divergence be-
tween the probability mass functions p and g¢.

In our work, we choose Q to be the family of distribu-
tions parameterized by n-grams* i.e. we want to learn a
model, Q, parameterized by n-grams, that is closest to P
in the sense of Kullback-Leibler divergence. Under some
mild conditions, Q" is the n-dimensional marginal of P.

A natural question is whether Q" is simply the n-gram
model M estimated from the same (LM training) text that
P was estimated from. Not surprisingly, the answer is neg-
ative. For one, even if both P and M were estimated from
the same text, P may have been estimated with a different
criterion than maximum likelihood (ML), so that its
n-gram marginals may not agree with M, even after differ-
ences due to smoothing are ignored. Even if P is the ML
estimate from a rich family P that contain Q as a subset,
additional assumptions must hold about P for Q" to be
the same as M.

Fig. 1 illustrates the idea pictorially. P is the family of
distributions which make the problem of decoding in
ASR, computationally challenging, while Q is the family
of distributions which make the same problem tractable.
Choosing any Q € Q can although make the decoding
problem a tractable one, we are, however, interested in
the model QF, which not only lies in Q, but is also closest
to P(€ P). In our work, Q is the family of all n-gram lan-
guage models. Model M is the maximum likelihood n-gram
model, estimated from the same training data from which
P is built.

But if P is indeed a long-span LM, then computing its n-
dimensional marginal could also be computationally pro-
hibitive. Often, and for our choice of P in Section 3.1, it
is impossible to do so. This is mainly due to the intractable
summation over all the words of the vocabulary for all
those positions in the history, which fall outside the chosen

3 We use P and Q interchangeably for the model or the distribution.
4 All the distributions in this family have the same order i.e. choice of n
and this is dependent on the decoding capabilities.

Fig. 1. Pictorial representation of family of distributions. P is the family
of distributions such that under any distribution (language model)
possible in this family, the ASR decoding problem becomes computa-
tionally challenging (a x symbol in the figure connotes this notion), while
Q is the family of distributions such that under any distribution possible in
this family, the ASR decoding problem becomes tractable (a / symbol in
the figure connotes this notion). In our work, Q is the family of all n-gram
language models. Model M is the maximum likelihood n-gram model,
estimated from the same training data from which P is built. The task then
is to find Q" such that it is closest to P.

n-gram window. So how does one proceed? For any P that
is a generative model of text, the minimizer of (1) may be
approximated via sampling (Geman and Geman, 1984;
Bishop, 2006, p. 542). Thus by treating P as the generative
model, we generate huge samples of data and then estimate
a maximum likelihood based n-gram model. As we will
show, such a model will minimize the KL Divergence with
the long-span model and hence will be the faithful model in
the chosen family of distributions. Details about this proce-
dure follows in Section 2.1.

In our work, we call the technique of building an n-gram
model from the data generated under some long span
model as variational approximation mainly because the
resulting approximate model, under certain conditions,
minimizes the KL Divergence with the long-span model.
This idea of finding a surrogate tractable model by mini-
mizing the KL Divergence with the intractable parent
model is similar in spirit to the variational inference idea
used in machine learning, hence the choice of the terms var-
iational approximation in our paper.

At this point, we can motivate the basic idea behind
sampling for obtaining a tractable model from the long
span language model. Let us say that in our training data
we observe following two sentences:

e I go to work on tuesday
e [ go to work on wednesday

and let us say that we also see the following sentence

e today is tuesday

Please cite this article in press as: Deoras, A. et al., Approximate inference: A sampling based modeling technique to capture complex dependencies in a
language model, Speech Comm. (2012), http://dx.doi.org/10.1016/j.specom.2012.08.004



http://dx.doi.org/10.1016/j.specom.2012.08.004

4 A. Deoras et al. | Speech Communication xxx (2012) xxx—xxx

but we do not see the sentence:
e today is wednesday

If such is our setup then the probability of the word
wednesday given the context today is will not be
robustly estimated (by the conventional n-gram LM) due
to lack of observation in the training data. However, if
some complex language model is able to cluster the words
tuesday and wednesday based on the fact that they fol-
low the same context i.e. I go to work on, then it is likely
that such a model would predict both tuesday and
wednesday given the context today is. If such a com-
plex model is now used as a generative model, then it would
possibly generate not only tuesday but also wednesday
given the context of words today is. Thus such a tech-
nique would increase the coverage of n-grams and essen-
tially improve the performance of language models in
speech recognition systems.

Samples of some simulations that were produced for our
experiments can be seen in Appendix A. In this Appendix
we have contrasted the samples produced by a long span
language model viz. recurrent neural network LM, with
that by a short span language model, viz. an n-gram lan-
guage model. It is interesting to see that for the same initial
prefix, the samples produced by long span language model
are more plausible than that by its short span counterpart.

2.1. Monte Carlo sampling

We simulate text using the distribution P, the one which
underlies any generative long span language model. Given
the start-of-sentence symbol <s>, we sample the next word
from the probability distribution conditioned on <s>, and
continue generating words conditioned on already gener-
ated words, i.e. given the sequence wyw, ... w;_; of words
so far, the /th word is sampled from P(-|wy,...,w;_1), con-
ditioned on the entire past.

At any stage, for some context /4, generated so far, we
query our long span LM to output a probability distribu-
tion, P(w|h), over all the words w in the vocabulary
Vipips, .- py- We then form cumulative distribution
from the probability masses over all the words of the
vocabulary. Cumulative distribution groups the words in
bins taking values between 0 and 1. Thus the first word
of the vocabulary falls between 0 and p,, second word falls
between p; and p; + p,, so on and so forth. The last word
falls between py;_; and 1. Once the words are binned, we
randomly generate a real number between 0 and 1 using
a uniform random generator. Depending upon the value
generated, we find out the bin it belongs to and output
the corresponding word. It should be clear that the proba-
bility of selecting any word in this sampling procedure, is
equal to the probability of its occurrence given the context
(according to the LM). The sampled word then forms part
of the predicting history and a new word is sampled. The
procedure is carried out until the sampled corpus size

reaches a predetermined value.’ In the special case of
RNN-LMs which use class hierarchy in the output layer
(Mikolov et al., 2011c), we first sample the classes given
the history using the above sampling procedure and then
given the sampled class, we sample the words. Since the
number of classes are much smaller than the total vocabu-
lary, sampling words from a class based language model is
much faster. N

Our estimate of Q" is simply an n-gram model Q* based
on this synthetically generated text.

If P is stationary and ergodic,’® then the simulated cor-
pus, L, will have the underlying distribution P, and then
from the consistency of the maximum likelihood estimator
(Bickel and Doksum, 1977), we can show that by solving
(1), we essentially find out the maximum likelihood esti-
mate, Q*, in the n-gram family, based on the simulated cor-
pus as shown below:

O = argen;inD(PHQ) = argégin);(P(X) ln%
= argmaxZP(X) In Q(X)
0€Q  Xxex

L
1
= argmax lim —lo X
gm, HC,ZI:L g0(X))

L
= argmax lim Z log O(X) (2)
0co  Lmeoim

Here for the sake of keeping the equations easy to fol-
low, the input alphabet is denoted by X to mean words
in the vocabulary of our language. The distributions under
consideration are essentially conditional probability masses
conditioned on the same lexical context. Note that Eq. (2)
is essentially a maximum likelihood solution. Thus minimi-
zation of KL divergence boils down to finding maximum
likelihood solution on the simulated corpus. The ML solu-
tion can be found out using n-gram models.

In the context of our problem, in the limit, as the sam-
pled text size increases to countably infinite, any distribu-
tion, Q*, maximizing the likelihood of this sampled text
will have 0 KL Divergence with P, provided this distribu-
tion also predicts the next word given all the previous con-
text,” i.e. that:

lim limKL(P||0*) = 0, (3)

n—ooL—00

5 While implementing this idea practically, we chop the word segments
at the end of every end-of-sentence marker — </s>. Note that since </s>
is treated as a regular word in our model (i.e. RNN-LMs) and it gets
generated which in turn allows the generative model to generate new
words when also conditioned on this word token. This, however, may not
be true for other long span models and hence for such other models it
might be necessary to re-start the generation process afresh from the start
of the sentence token — <s>.

¢ Which is true for language models.

7 We are assuming that we have sampled sufficiently enough times for
Maximum Likelihood estimate to be as close to the underlying zrue (but
known) distribution as possible.
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where L is the size of the simulated corpus and 7 the order
of the Markov approximation.

In practice, however, we choose n such that first pass
decoding is tractable; L is chosen as large as possible, sub-
ject to memory constraints and diminishing returns in
LVCSR performance. Since L is finite, for pragmatic pur-
poses, smoothing of n-gram probability distribution (for
modeling Q) allows us to approximate the maximum like-
lihood probability had we seen an infinite corpus
(L — o0) generated by P, thus we obtain the solution using
the following approximation of Eq. (2):

L
0" ~ argmaxz log O(X)) (4)

oeQ 4

where L < K and Q is chosen to be some finite order n-
gram family and K is some threshold deciding the size of
the corpus to be simulated.

But now the question is whether among all the finite
order n-gram models with fixed », the maximum likelihood
finite order n-gram model estimated from the simulated
corpus is closest to the generating model? The answer is
yes and it is clear from Eq. (2) when the family of distribu-
tions, Q, is restricted to be of order n.

In any case we do not know the true distribution gener-
ating the true text. However, with our approach, we can at
least come close to the generative model of our choice
(since we now have control on the amount of data gener-
ated under the model of our choice). If that generative
model happens to be better than all the other competing
generative models, then our approximated model would
best imitate it and hopefully be better than the n-gram
LM built from the training data using ML principles.

3. Long-span language models

It is well known that humans can exploit longer context
with great success in guessing the next word in a sentence
(Shannon, 1951). It seems natural therefore to construct
LMs that implicitly capture temporal information of arbi-
trary length. There have been many successful attempts at
capturing such long-span information in a language model.
Some of these LMs that have shown a great promise in cap-
turing long span information for better prediction are: (a)
structured LM of Chelba and Jelinek (2000) which condi-
tions the prediction of next word not only on the previous
few lexical tokens, but also on the exposed head words as
given by the dependency parse tree of the incomplete sen-
tence under consideration. Such a technique is useful in cap-
turing long-distance dependencies in a natural language; (b)
decision Tree based LM of Xu (2005) which asks series of
questions of the history for better clustering of the context.
Such clustering of the history fights data sparsity problem
when the length of the context is increased, thus allowing
the model to ask question about distant past for better pre-
diction; (c) recurrent neural network LM (RNN-LM) of
Mikolov et al. (2010) which projects the entire context into

some lower dimensional space and implicitly clusters “simi-
lar” histories for better prediction especially in instances
when the lexical pattern (history followed by the predicted
word) is not observed during training time. Interested read-
ers can find detailed comparison of advanced language mod-
eling techniques in (Mikolov et al., 2011a).

All of the above, and many other complex LMs, aim to
capture long-span information. However, the quality of the
model comes at a price: computational complexity in the
decoder of speech recognition. Our goal in this paper is
to demonstrate that using the proposed variational approx-
imation technique, we can not only incorporate such long-
span information available through these models but also
make the decoding problem a tractable one.

To illustrate our technique, we have chosen recurrent
neural network LM as the candidate long-span LM. It
should be, however, noted that our technique is general
enough and can be applied to other complex long span lan-
guage models. Below, we describe in brief the model struc-
ture of RNN-LM

3.1. A recurrent neural net language model

In our recent work with a RNN-LM (Mikolov et al.,
2010, 2011a,b,c), we showed remarkable improvements in
perplexity over n-gram LMs, along with improvement in
recognition accuracy. RNN-LMs were also shown to out-
perform some combinations of syntactic and n-gram mod-
els (see Deoras et al., 2010; Mikolov et al., 2011a). We
therefore have chosen RNN-LM as our candidate long-
span model, which we will try to approximate via n-grams
using the proposed technique.

The network has an input layer x, a hidden layer s (also
called state or context layer) and an output layer y. Input
to the network at time ¢ is denoted x(¢), output y(¢), and
the hidden state s(¢). The input x(¢) is formed by concate-
nating a vector w(¢), which represents the current word,
with output from the context layer s(¢— 1) to capture
long-span dependencies. Fig. 2 shows the schematic repre-
sentation of such a network.

T

x(t) = [w(t)'s(t = 1)"] (5)
5;(t) —f(in(f)“ﬁ) (6)

3

s(t)

i
1l

v
\
/

~ e | e—
(delayed)

Fig. 2. Schematic representation of recurrent neural network language
model. The network has an input layer w, a hidden layer s and an output
layer y. Matrices U and V represent synapses.
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yi(t) = g< _ Sj(l)vkj) (7)

(®)

and g(z,,) is a softmax function (to make sure that the out-
puts form a valid probability distribution, i.e. all outputs
are greater than 0 and their sum is 1):

ezm

g(zn) = S ©)

The recurrent architecture of the neural network based
language model can be trained by the back-propagation
algorithms (BP). However, for better performance, the
so-called back-propagation through time (BPTT) algo-
rithm can be used to train the recurrent architectures. With
simple BP, the recurrent model can perform poorly in some
cases. The BPTT algorithm is also described in (Rumelhart
et al., 1986), and a good description for a practical imple-
mentation is in (Boden, 2002). The training algorithm is
on-line gradient descent, thus the weights are updated after
propagating every example. The cross entropy criterion is
used to obtain an error vector in the output layer, which
is then back propagated to the hidden layer etc. The train-
ing algorithm uses validation data for early stopping and to
control the learning rate. Training iterates over all the
training data in several epochs before convergence is
achieved — usually 8-20 epochs are needed. We refer the
interested readers to (Mikolov et al., 2010; Mikolov
et al., 2011b,c) for more details.

4. Experiments, results and discussion

We report experimental results on four corpora. Per-
plexity measurements on the Penn WSJ Tree-Bank show
that a variational 5-gram is competitive with the best
reported results for syntactic LMs. Word error rate
(WER) reduction in adapting a Broadcast News language
model to the MIT Lectures data is shown next. WER
reductions are demonstrated on the NIST 2007 Meeting
Recognition (rt07s) and the NIST 2001 Conversational
Telephone Recognition (eval0l) test sets in the following
experimental setup. Finally, improvements are also shown
on a very competitive setup of Broadcast News — rt04.

4.1. Perplexity experiments on WSJ

We trained n-gram and RNN-LMs on Sections 0-20
(1M words) of the Penn Tree-Bank corpus, and measured
their perplexity on Sections 23 and 24 (0.1M words). Sec-
tions 21 and 22 were used as a held out set for parameter
tuning.

Baselines: We used interpolated Kneser—Ney smoothing
to build 3-gram and 5-gram LMs (containing 0.86M and
2M unique n-gram entries respectively); we will call them

the KN models. We also trained an RNN-LM, which we
will call RNN-Full. To obtain an alternative long-span
model we also trained a cache LM from the same training
data.

For all models, the vocabulary comprised the 10K most
frequent words in Sections 0-20.

Variational approximations: we simulate text using the
distribution RNN-Full using the sampling procedure
described in Section 2.1.

We sampled about 300M word tokens using RNN-Full
as a generative model. From this sampled corpus, we esti-
mated a 3-gram and 5-gram Kneser—Ney smoothed LMs.
These LMs contained 35M and 42M unique n-gram entries
respectively. We pruned these LMs using entropy-pruning
(Stolcke et al., 1998) resulting in models with 4.4M and
5.4M n-grams respectively (see Table 1 for the effect of
pruning thresholds on the perplexity). We will call them
the VarApxRNN models. Each of these n-gram approxi-
mations were also interpolated with the corresponding -
gram LMs estimated from (only) the original LM training
corpus; these interpolated LMs will be called the Var-
Apx+KN models.

The first column of Table 2 shows that VarApxRNN
performs as well as the KN model of the same n-gram
order, and their interpolation, VarApx+KN, outperforms
both of them. Since the VarApxRNN model is trained on
only the simulated text, interpolating it with KN introduces
the knowledge present in the original training data (Sec-
tions 0-20) bringing the simulated statistics closer to the
true distribution. To our knowledge, the perplexity of the
RNN-full model is significantly lower than any n-gram
model reported in the literature.

Fig. 3 empirically supports the asymptotic validity of (3)
in the size L of the simulated corpus and model order 7.

Comparison with variational approximation of n-gram
model: Before we compare the performance of VarApx
models with other state-of-the-art language models, it is
important to see how does variational model of a KN
smoothed n-gram model perform in comparison to the var-
iational model of RNNs. In order to carry out this investi-
gation, we sampled 300M word tokens from KN (5g)
model and estimated a 5-gram KN smoothed language
model from this sampled data. We will refer to this model
as VarApxNgram model. Fig. 4 shows the performance (in
terms of perplexity) of variational model of long span

Table 1
The effect of pruning the VarApxRNN (5g) model on the perplexity on
Penn Tree-Bank Sections 23 and 24. Pruning the model with 1e-08
threshold reduces the model size seven times increasing the perplexity only
slightly.

Pruning thresholds # n-Grams in LM PPL
0 42M 139.2
le-08 5.4M 140.0
le-07 0.8M 152.1
le-06 0.15M 186.3
le-05 27K 270.0
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Table 2

LM perplexity on Penn Tree-Bank Sections 23 and 24. These results
suggest that RNN-Full is a good approximation to the true distribution of
the WSJ text. As a result, VarApx+KN (5g) does exceedingly well in
comparison to more complex models which suffer higher variance due to
the limited (1M words) text corpus.

Setup PPL Setup PPL
KN (3g) 148 Random forest (Xu) 132
VarApxRNN (3g) 152 -

VarApx+KN (3g) 124 - -
KN (5g) 141 SLM (Chelba) 149
VarApxRNN (5g) 140 SLM (Roark) 137
VarApx+KN (5g) 120 SLM (Filimonov) 125
VarApx+KN + Cache 111 X-sent (Momtazi) 118
RNN-Full 102 - -

RNN-LM versus variational model of n-gram language
model as a function of the size of their corresponding sim-
ulated data. It is interesting to see that although VarApxN-
gram model start out with a lower perplexity, with more
data, VarApxRNN model outperforms VarApxNgram
model by 13 perplexity points.

Table 3 shows the performance of variational approxi-
mation of RNN and n-gram models with and without
interpolation with their corresponding full models. It can
be seen that sampling data from n-gram models does not
add too much complementary information. It is thus inter-
esting to see that although long span models, such as
RNNSs, are estimated from the same training data, due to
their complex architecture compared to n-gram models,
they learn internal representation of the data very well
and hence sampling data from such models result in diver-
sity and building a model on top of it reduces the perplexity
to a great extent. This also results in improved recognition
performance (we show experiments in the later se ctions to
support this claim).

Comparison with other long-span LMs: an advantage of
choosing the Penn Tree-Bank corpus and the particular

PPL v/s size of sampled corpus
230

220

210

200

190

180

170

160

150

140

Perplexity (under VarApxRNN) on sections 23-24

1300 100 200

Num word tokens (in Millions)

300

training/test partition is that several other researchers have
reported perplexity on this setup using various long-span
LMs. The second column of Table 2 collects a few such
results.

e The random forest language model (RFLM) of Xu
(2005) asks questions of only the tri-gram history, and
is therefore comparable with VarApxRNN (3g) and
VarApx+KN (3g). The RFLM estimates a better 3-
gram model from existing text; by contrast, Var-
ApxRNN performs simple estimation from simulated
text. It appears that VarApx+KN (3g), which combines
simulation with the original text, is better.

e Structured language models have been proposed
by Chelba and Jelinek (2000), Roark (2001) and
Filimonov and Harper (2009) to exploit within sentence
long-span dependencies. Table 2 suggests that they are
outperformed by VarApx+KN (5g), i.e. by simulating
text with RNN-Full and estimating KN 5-gram
models.

e Across-sentence dependencies are exploited in the model
of Momtazi et al. (2010). This performance is nearly
matched by VarApx+KN (5g), which only uses the 5-
gram context. Moreover, the across-sentence model is
a complex interpolation of many word and class models
with regular and skip n-grams. The interpolation of Var-
Apx+KN (5g) with another tractable long-span LM,
namely the cache LM, outperforms the across-sentence
model.

These results suggest that RNN-Full is actually a good
approximation to the true distribution of the WSJ text,
and the reduction in variance by simulating 300M words
of text offsets the bias of the n-gram LM estimated from
it. As a result, VarApx+KN (5g) outperforms more sophis-
ticated models that have smaller bias, but suffer higher var-
iance due to the limited (1M words) text corpus.

PPL v/s order of VarApxRNN

Perplexity (under VarApxRNN) on sections 23-24

1201 2 3 4 5

Order of VarApxRNN n—-gram LM

Fig. 3. The perplexity of Sections 23 and 24 as a function of (left) the size L of the simulated corpus for model order n = 5 and (right) the order n of the
model for corpus size L = 300M. These results support (3), but also suggest that VarApxRNN (5g) is still far from the RNN-LM, whose perplexity is 102.
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PPL v/s size of sampled corpus
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VarApxRNN
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Perplexity on sections 23-24
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Num word tokens (in Millions)

Fig. 4. The perplexity of Sections 23 and 24 computed under
VarApxRNN (5g) and VarApxNgram (5g) models, as a function of the
size L of the simulated corpus (generated under RNN-Full and KN (5g)
respectively).

Table 4 below shows how many novel n-grams were
introduced by the variational model. It can be seen that
out of a total of 82,430 5-grams that can be extracted from
the evaluation section of the Penn Corpus Sections 23 and
24, the variational model needs to back-off for nearly 89%
of the 5-grams while the standard baseline model needs to
back off for nearly 95% of the 5-grams. The variational
model thus creates many new and relevant 5-grams which
helps in doing a much better prediction of the text data.
It can also be seen that the variational model backs-off to
relatively higher order models much more frequently than
the baseline model. The baseline model backs-off all the
way to uni-gram models for about 19% of the 5-grams,
while the variational model backs-off to uni-gram model
for only about 3.5% of 5-grams. We have observed that
most of the speech recognition errors contributed by lan-
guage model are due to backing-off to lower order models.
Lower the order the language model backs-off to, more are
the errors induced. The variational model generates novel
and relevant n-grams of varying order and reduces the need
to back-off to weaker lower order models. This not only
helps in reducing the perplexity but also word error rate,
as will be seen in the next few experiments.

Table 3

LM perplexity on Penn Tree-Bank Sections 23
and 24 under variational approximation of RNN
and Ngram model before and after interpolation
with their corresponding full models.

Setup PPL
KN (5g) 141
VarApxNgram (5g) 153
VarApxNgram+KN (5g) 139
RNN-Full 102
VarApxRNN (5g) 140
VarApx(RNN)+KN (5g) 120

Table 4
Back-off hit ratios for baseline and proposed models (evaluated on a total
of 82430 5-grams found in the evaluation set). Richness of variational
model can be seen by noting that relatively fewer number of 5-grams in the
evaluation section of the Penn Corpus had to back off to lower order
models.

# of 5-grams in eval section s.t. KN (5g) (%) VarApx+KN (5g) (%)

No backing off 4.90 10.97
Backing off to 4-grams 6.24 15.83
Backing off to 3-grams 19.53 35.97
Backing off to 2-grams 50.41 33.80
Backing off to 1-grams 18.92 343

But now the question is whether all of the generated n-
grams are relevant? Since the sampling procedure does
not filter out bad histories, it is likely that the model may
produce non-sensical n-grams. In order to test how many
n-grams are really relevant, we scour the world wide web
(WWW) data. Although a language model built from the
web may not be a good one (mainly due to poor normali-
zation across domains and genres), the web will at least be
a good corpus to test if a sub sequence appeared anywhere
or not. Using innovative web scouring tools developed by
Google and Hopkins scientists (Lin et al., 2010), we take
each n-gram as produced by variational model and check
if such a pattern exists in the web. However, before we
carry out such a study, it becomes necessary to establish
a baseline. We hence take valid n-grams from the language
model trained on the original training data (Sections 0-20)
and scour the web for each of them. Table 5 below shows
the coverage of n-grams when checked against the web
data. The n-grams that were used to query the web were
filtered of those n-grams which carried <unk>, <s> and
</s>. The n-grams of the variational model were further
filtered of those n-grams which were present in the baseline
model. Thus the n-grams corresponding to the variational
model were purely synthetic. We used about SM 5-grams
from the full blown variational model for this study.

From Table 5 we can see that the variational model not
only generates many novel n-grams but about 70% of them
are in fact found in the web implying that these n-grams are
not some random non-sensical patterns. Eighty-five per-
cent of the regular n-grams (as seen in the original training
data) are seen in the web implying that the remaining 15%
of the n-grams are corpus specific. It is hence reasonable to
assume that out of the remaining 28% of the synthetic

Table 5

Coverage of n-grams as checked against the web data World Wide Web
(WWW). It can be seen that around 72% of the n-grams produced by the
variational model are found on the web.

Model # of n-grams # n-grams found Coverage (%)
queried in web

KN (5g) 50,073 42,824 85.5

VarApx (5g) 5,779,012 4,160,889 72
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n-grams, many n-grams may still be comprehensible and
reasonable but probably too corpus specific.

4.2. Domain adaptation experiments on MIT lectures

We performed recognition on the MIT lectures corpus
(Glass et al., 2007) using state-of-the-art acoustic models
trained on the English Broadcast News (BN) corpus
(430 hours of audio), provided to us by IBM (Chen et al.,
2009). IBM also provided us its state-of-the-art speech rec-
ognizer, Attila (Soltau et al., 2010) and two LMs contain-
ing 54M and 4.7M n-grams (n < 4) that were trained on
BN text (400M word tokens). Another 150K words of
MIT lecture transcripts were provided as in-domain text.

Interpolated Kneser—-Ney smoothed n-gram models
built with the 150K word in-domain corpus were interpo-
lated with corresponding n-gram LMs from IBM. We,
however, used only 4.7M n-gram LM for interpolation as
54M n-gram LM did not provide us any extra benefit.
We will call this interpolated model as KN:MIT+BN
(interpolation of MIT LM and IBM’s 4.7M n-gram
LM.). The order of the language model used in first pass
decoding was 3, while the order of the LM used for lattice
re-scoring was 4. The tri-gram KN:MIT+BN language
model contained 4M unique n-grams while 4-gram
KN:MIT+BN model contained 4.8M unique n-gram
entries. We did not prune the in-domain language model
and hence the size of the models were the biggest we could
obtain from the available training data. The RNN-LM
trained on the 150K words (only) will be called RNN-Full
as before. We set the size of the hidden layer to 100.

We simulated text (30M word tokens) using RNN-Full,
and estimated n-gram LM from it, which we will again call
VarApxRNN. Models resulting from the interpolation of
VarApxRNN and KN:MIT+BN #n-gram LMs of the same
order will be called VarApx+KN. We pruned Var-
ApxRNN model using entropy-pruning (Stolcke et al.,
1998) so as to be able to use it in first pass decoder and lat-
tice re-scoring. Thus the tri-gram VarApxRNN language
model contained 4.4M unique n-grams while 4-gram Var-
ApxRNN model contained 8.0M unique n-gram entries.

It should be noted that although we synthesized nearly
30 times more data than what the original training corpus
already had, the size of the variational model was nearly
the same as that of its maximum likelihood model counter-
part, at-least for the first pass.

We followed IBM’s multi-pass decoding recipe (Soltau
et al., 2010) using 3- and 4-gram LMs in the first pass, gen-
erated word lattice and N-best list, and rescored them with
bigger n-gram models and RNN-Full. Table 6 shows the
WER for different decoding configurations, contrasting
standard n-gram LMs with the corresponding Var-
Apx+KN LMs. Note that since our re-scoring model was
a long span model, it was infeasible to carry out exact
lattice re-scoring and hence instead we extracted N best
lists. We also made use of Iterative Decoding techniques

Table 6

Performance (%WER) on the MIT Lectures data set. Decoding with
VarApx+KN consistently produces lattices with lower oracle WER
compared to lattices produced by standard n-gram models. The 1-best
output with VarApx+KN also is better than its standard n-gram
counterpart.

Setup Set 1 Set 2
KN:MIT+BN (3g) decoding 24.8 224
+KN:MIT+BN (4g) lattice re-scoring 24.8 224
+RNN-Full re-scoring (100 best) 24.1 22.4
+RNN-Full re-scoring (2000 best) 23.8 21.6
+VarApx+KN (4g) lattice re-scoring 24.2 21.7
Oracle (2000 best) 17.9 15.5
VarApx+KN (3g) decoding 244 222
+VarApx+KN (4g) lattice re-scoring 24.1 21.7
+RNN-Full re-scoring (100 best) 23.8 21.7
+RNN-Full re-scoring (2000 best) 23.6 21.5
Oracle (2000 best) 17.5 15.1

(Deoras et al., 2011a) for re-scoring word lattices directly,
whenever N-best list decoding yielded sub-optimal results.

We used two sets for decoding. The audio for each set
was about 2.1 hours long.

From Table 6, we can see that decoding with Var-
Apx+KN consistently produces lattices with lower oracle
WER compared to lattices produced by standard n-gram
models. The 1-best output with VarApx+KN also is better
than its standard n-gram counterpart. In order to see the
effect of variational models in isolation i.e. without interpo-
lating them with their maximum likelihood n-gram coun-
terparts, we took VarApxRNN model and interpolated
them with just BN models i.e. out-of-domain model —
IBM’s 4.7M n-gram language model. We will refer to this
model as VarApx+KN(-MIT) (3g) and VarApx+KN(-MIT)
(4g). ‘-MIT" signifies that these models were not interpo-
lated with n-gram LMs built from in-domain MIT lecture
data. Thus these models capture information available
only in the form of in-domain simulated data and out-
of-domain BN data. The original in-domain training data
is ignored completely. Table 7 compares and contrasts per-
formance under various configuration of language models.
If we look at 4-gram models, we can see that variational
models interpolated with BN models but without MIT n-
gram counterparts — VarApx+KN(-MIT) (4g), perform
slightly worse than interpolation of MIT and BN language
models — KN:MIT+BN (4g) (24.8% — 25.0%) suggesting

Table 7
Performance (%WER) on the MIT Lectures data set when different
models are used directly in the first pass decoding or for lattice re-scoring.

Setup Set 1 Set 2
KN:MIT+BN (3g) decoding 24.8 22.4
+KN:MIT+BN (4g) lattice re-scoring 24.8 224
VarApx+KN (3g) decoding 24.4 222
+VarApx+KN (4g) lattice re-scoring 24.1 21.7
VarApx+KN(-MIT) (3g) decoding 25.1 22.5
+VarApx+KN(-MIT) (4g) lattice re-scoring 25.0 22.3
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that simulated data has nearly the same information con-
tent as the original training data, however, superior perfor-
mance of VarApx+KN (4g) model (24.1%) suggests that
the information is complementary and hence interpolating
model built on original training data and simulated data
improves the performance of speech recognition system.

In the perplexity based experiments we saw that many
synthetic n-grams are actually seen elsewhere in web imply-
ing that quite a lot of them are comprehensible and reason-
able. From the speech experiments we can see that an
increased coverage also brings down the word error rate.
For the first set of the above setup, we found out the n-
gram instances in the reference transcripts such that the
nth word was either substituted by some other word or
was deleted during the automatic transcription. For
instance in the toy reference and aligned hypothesis shown
below, we can see that the word for was erroneously
substituted by the word four and the word us got deleted.
We do not consider false insertions in hypotheses because
this information cannot be obtained from reference tran-
scripts alone and in this analysis we care only about clean
n-grams in the reference transcripts such that the predicted
word does not get transcribed correctly.

RETF: today is a holiday for us
HYP: today is a day four ok

For each such word in the reference transcript, we
extracted the n-grams (tri-grams corresponding to the
words for and us will be a holiday for and holiday
for us). We then found the coverage of such n-grams in
the language model. For the hypotheses generated under
the baseline models i.e. KN:MIT+BN (4g) model, Table 8
summarizes the findings:

From Table 8§ we observe that out of 3204 total n-grams
such that the nth word is falsely recognized by the model
using KN:MIT+BN (4g) models, only 19.81% of these
were found in this LM. As against that, if we search these
n-grams in the VarApx+KN (4g) model, we see that
34.86% of them are found. While an improved coverage
does not necessarily mean that the WER will be reduced
too,® but at-least the variational model is able to predict
these n-grams while the baseline model does not even have
them and a prediction for such n-grams would require them
to backoff to poor lower order models.

Similarly, we extract the n-grams from the reference with
respect to the hypotheses generated under the variational
model. Table 9 summarizes the findings.

Although the coverage in percentage seems to be the
same for both Tables 8 and 9, it should be noted that there
are fewer errors in the output of the variational model and
the total number of n-grams seen in the variational model is
also small in the latter case. This may imply that an

8 The LM may have an entry for a particular n-gram, but if it is assigned
a very low probability, then probably the recognizer wont be able to
produce it.

Table 8

Coverage of falsely recognized (wrt baseline model) n-grams as checked
against the language models. It can be seen that the baseline model has a
very poor coverage while the variational model has nearly double
coverage. Increasing the coverage is likely to improve the performance
of the speech recognition system.

Model # of n-grams  # n-grams found  Coverage (%)
queried in LM

KN:MIT+BN (4g) 3204 635 19.81

VarApx+KN (4g) 3204 1117 34.86

Table 9

Coverage of falsely recognized (wrt. variational model) n-grams as
checked against the language models. The absolute number of n-grams
covered by the language models are less than that in Table 8 implying that
an improved coverage of n-grams influences reduction of WER to a large
extent.

Model # of n-grams  # n-grams found  Coverage (%)
queried in LM

KN:MIT+BN (4g) 3141 600 19.10

VarApx+KN (4g) 3141 1067 33.97

improved coverage of n-grams influences reduction of
WER to a large extent.

4.3. Conversational speech recognition experiments

We demonstrate WER improvements on two conversa-
tional speech recognition tasks: the transcription of multi
party meetings, and of conversational telephone speech
(rt05s, rt07s respectively). Two system setups were used
for meeting and telephone speech data respectively. Brno’s
variant of the AMI system, developed for the NIST Meet-
ing Transcription evaluation (Hain, 2005), was used for the
former, and the Brno conversational telephone speech
(CTS) system for the latter.

The AMI recognizer used fast speaker adaptation
(HLDA, CMLLR and VTLN); it processed PLP+NN-pos-
terior features extracted from 16 kHz audio with SAT
models trained on 200 hours of meeting data. The CTS rec-
ognizer used an initial decoding pass for VTLN and
MLLR, and processed PLP features extracted from
8 kHz audio with SAT models trained on 270 hours of
telephone speech. All acoustic models were trained
using the MPE criterion and used cross-word tied-state
tri-phones, and both setups produced bi-gram lattices using
a 2-gram LM trained using Good-Turing discounting,
which were subsequently expanded to 5-gram lattices using
a modified Kneser—Ney smoothed LM.

5SM words of Fisher CTS transcripts were used as train-
ing text for three LMs: two n-grams and an RNN. We call
the 2-gram model with Good-Turing discounting GT (2g).
GT (2g) contained 1M unique n-gram entries. The 5-gram
model and the RNN model are called KN (5g) and
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Table 10

Performance (%WER) on conversational speech data sets. VarApx+KN
reduces the WER by 0.7-0.8% over a 5-gram model on both telephone
speech (eval01) and meetings (rt07s).

Setup eval0l rt07s
GT (2g) decoding 30.3 33.7
+KN (5g) lattice re-scoring 28.0 324
+RNN-Full re-scoring (100 best) 27.1 30.8
+RNN-Full re-scoring (1000 best) 26.5 30.5
+VarApx+KN (5g) lattice re-scoring 27.3 31.9
Oracle (1000 best) 19.5 21.3
VarApx+GT (2g) decoding 30.1 333
+VarApx+KN (5g) lattice re-scoring 27.2 31.7
+RNN-Full re-scoring (100 best) 27.0 30.6
+RNN-Full re-scoring (1000 best) 26.5 30.4
Oracle (1000 best) 19.5 21.0

RNN-Full, as before. KN (5g) model contained 3M unique
n-gram entries. 400M words of text generated from RNN-
Full LM via Monte Carlo sampling were used to estimate
additional n-gram LMs, which we again call VarApxRNN.
The VarApxRNN after interpolation with their full z-gram
counterpart will be called VarApx+GT (2g) and Var-
Apx+KN (5g) model respectively. We pruned Var-
ApxRNN model before using them in any recognition
experiment. Thus VarApxRNN (2g) and VarApxRNN
(5g) model contained 2.6M and 9M unique n-gram entries
respectively. Since the LMs were trained on CTS tran-
scripts, they are in-domain for conversation telephone rec-
ognition (eval0l), but out-of-domain for meeting
recognition (rt07s).

The four LMs were applied to rt07s and evalOl, and the
WERs are reported in Table 10. The table also illustrates
the WER when N-best list re-scoring with RNN-Full is
performed.

From Table 10, we can again see that the variational
models reduce the WER significantly over the conventional
n-gram models. Re-scoring of lattices (output by conven-
tional first pass n-gram models), with variational models
achieve similar performance improvements, further sug-
gesting that variational models can also be used for lattice
re-scoring stages instead of first pass decoding. Such a
setup is favorable in any real world setting where changing
the decoder parameters and models is very costly.

4.4. Broadcast news speech recognition experiments

An interesting question that lingers in mind is what hap-
pens when the original training data itself is huge. By huge
we mean number of word tokens in hundreds of millions.
To answer this question, we tested the proposed technique
on a very competitive setup of Broadcast news. The setup
details and results are presented next:

We performed recognition on the Broadcast News (BN)
rt04 task using state-of-the-art acoustic models trained on
the English Broadcast News (BN) corpus (430 hours of

audio) provided to us by IBM (Chen et al., 2009). IBM also
provided us its state-of-the-art speech recognizer, Attila
(Soltau et al., 2010) and two Kneser—Ney smoothed back-
off n-gram LMs containing 4.7M n-grams (n < 4) and 54M
n-grams (n < 4) were trained. We will refer to them as
KN:BN-Small and KN:BN-Big respectively. The LM
training text consists of 400M words from the following
data sources: 1996 CSR Hub4 Language Model data,
EARS BNO3 closed captions, GALE Phase 2 Distillation
GNG Evaluation Supplemental Multilingual data, Hub4
acoustic model training transcripts, TDT4 closed captions,
TDT4 newswire, and GALE Broadcast Conversations and
GALE Broadcast News.

We trained an RNN based language models, denoted
further as RNN-Full, on the entire broadcast news training
data (400M word tokens). We used interpolation of 3
RNNs with 320, 480 and 640 neurons in the hidden layer
respectively.

From the generative model — RNN-Full, we generated
data of varying sizes containing 160M, 500M, 1B and
2.5B word tokens. We estimated Good-Turing (GT)
smoothed 4-gram language models referred to as Var-
Apx-160M, VarApx-500M, VarApx-1B and VarApx-2.5B
respectively.” As we will show later, its our observation
that models built on bigger data sets and then later pruned
result in better performance than similar sized full blown
models built, however, on small data sets. We hence use
VarApx-2.5B with varying pruning and use it either for
first pass or re-scoring with and without interpolating it
with KN:BN-Big, depending upon the experimental setup.
Detailed information about various variational models and
the effect of size of simulated data and pruning of models
on the performance is reported in Tables 12-14. Interpola-
tion of VarApx-2.5B, containing 50M rn-grams (obtained
after pruning with le-09 threshold) and KN:BN-Big will
be referred to as VarApx+KN-Big. We pruned VarApx-
2.5B further to bring it to the size roughly equivalent to
KN:BN-Small. We, however, do not interpolate it and this
model becomes our choice for the first pass decoding. We
will refer to this model simply by VarApx-Small. This
model contained as little as 3.5M n-grams. VarApx-Small
is thus comparable to KN:BN-Small in terms of size. The
interpolation of VarApx-Small and KN:BN-Small will be
referred as VarApx+KN-Small.

Following table summarizes the WER of various models
on the evaluation set rt04.

From Table 11, we can see that VarApx-Small reduces
the WER by 0.5% absolute over a 4-gram model when used
directly in the first pass decoding. VarApx+KN-Small
decoding reduces the WER by 0.8% absolute over KN-
BN:Small decoding. Re-scoring lattices, output by either
methods, with VarApx+KN-Big improves the perfor-
mance further. These numbers are very encouraging as this

® We found that Good-Turing smoothing works better for models
estimated from large amount of sampled data than modified Kneser—Ney
smoothing.
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Table 11

Performance (%WER) on Broadcast News speech data set (rt04).
VarApx-Small reduces the WER by 0.5% absolute over a regular 4-gram
model when used directly in the first pass decoding. Re-scoring lattices,
output by either methods, with VarApx+KN-Big improves the perfor-
mance further. VarApx+KN-Small improves the performance over
KN:BN-Small decoding by 0.8% absolute.

Setup rt04
KN:BN-Small decoding 14.1
+KN:BN-Big lattice re-scoring 13.1
+VarApx+KN-Big lattice re-scoring 12.8
+RNN-Full re-scoring 11.7
VarApx-Small decoding 13.6
+VarApx+KN-Big lattice re-scoring 12.8
+RNN-Full re-scoring 11.7
VarApx+KN-Small decoding 13.3

setup is very competitive and the original training data
itself is huge. So the performance improvements over the
state-of-the-art n-gram language model is very interesting.

It is interesting to see how the performance of varia-
tional models change when they are built on data of grad-
ually increasing size. Table 12 shows that the performance
of the variational model with and without KN:BN-Big
interpolation, becomes better when more sampled data is
used to train these models. In this table, we consistently
used le-10 as the threshold to prune the full blown models,
eventually resulting in the number of unique n-grams as
reported. Table 13 shows the performance of the models
when trained on the original BN training data.

The immediate conclusion from Table 12 is that with
more sampled data, the performance of the variational
model and in combination with KN:BN-Big improves the
performance leading to a 0.3% absolute WER reduction
over that of re-scoring with KN:BN-Big model. Varia-
tional model by itself outperforms KN:BN-Big model by
0.1% absolute WER.

Usually the size of the n-gram model is correlated with
the size of the data from which it is estimated. Hence with
more sampled data, the size of the variational model also

Table 12

Perplexity and re-scoring results on dev04f and rt04 data respectively as a
function of the size of the sampled data. Models trained on the sampled
data (always pruned with le-10 threshold) is evaluated with and without
interpolating with KN:BN-Big (referred to as BN-Big in the table to save
space). KN:BN-Small was used in first pass to produce lattices. With more
sampled data, the performance of individual model and in combination
with KN:BN-Big improves the performance leading to a 0.3% absolute
WER reduction over that of re-scoring with KN:BN-Big model.

# words/# PPL WER

n-grams w/o BN-Big w/ BN-Big  w/o BN-Big  w/ BN-Big
160M/33M  189.7 137 13.52 13.03
500M/89M 175 134.4 13.35 13.00
1B/109M 164 132.3 13.21 12.93
2.5B/223M  159.4 130.1 13.03 12.82

Table 13
Perplexity and WER on dev04f and rt04 data respectively for the models:
KN:BN-Small and KN:BN-Big trained on original BN training data.

# words/# n-grams PPL WER
(KN:BN-Small) 400M/4.7M 180.3 14.14
(KN:BN-Big) 400M/54M 144 13.11
Table 14

Perplexity and re-scoring results on dev04f and rt04 data respectively as a
function of the size of the model estimated from 2.5B word token sampled
corpus. Pruning the model with 1e-09 threshold, makes the model
considerably smaller with respect to the model obtained with le-10
pruning, but resulting in almost same performance. Such models become
feasible to be used in any practical speech recognition setups.

# n-grams/# PPL WER
pruning thresholds o/ "N Bis w/ BN-Big w/o BN-Big w/ BN-Big

223M/1e-10 159.4 130.1 13.03 12.82
50M/1e-09 159.6 130.9 13.04 12.84
8M/1e-08 173.6 135.2 13.36 12.94
1.4M/1e-07 209.3 141.6 13.90 13.10

increases. This can potentially be a bottleneck for first pass
decoding and even for re-scoring the lattices. We hence
investigated the effect of pruning the models on the perfor-
mance (both, perplexity and word error rate). We take 2.5B
word token sampled corpus and build models with varying
pruning thresholds. Table 14 shows that even with aggres-
sive pruning, the model performance does not degrade
much. On the other hand, the size of the model reduces
considerably with pruning. The variational model contain-
ing 50M n-grams is thus comparable to KN:BN-Big in
terms of size. By itself, this model outperforms KN:BN-
Big. Interpolation with KN:BN-Big reduces the WER by
0.3% absolute, which is significant.

4.5. Analysis and discussion of LVCSR results

From Table 6 it is clear that using VarApx+KN during
decoding consistently produces lattices with a 0.5% lower
oracle WER compared to lattices produced by standard
n-gram models. The first pass output from decoding with
VarApx+KN also has 0.2-0.4% lower WER than from
decoding with their standard r-gram counterparts. How-
ever re-scoring with language models with 4-gram order
produces even better results. We can see 0.7% absolute
reduction after the application of 4-gram LMs on the lat-
tices produced by the corresponding 3-gram LMs. It seems
fair to conclude that VarApx+KN is a better n-gram model
than a standard n-gram model estimated with Kneser—Ney
smoothing. Unlike RNN-Full, it can be incorporated into
the decoder, bringing some of the benefits of RNN-Full
to first pass decoding. The complementarity of the VarApx
model to KN models is further evident from the fact that
re-scoring the lattices (produced under standard KN
smoothed models) with VarApx+KN model reduces the
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WER by as
22.4% — 21.7%).

Note further from the upper half of Table 6 that 2000-
best re-scoring with RNN-Full reduces WER over a stan-
dard 3-gram by 0.8%-0.9%. In the lower half, using Var-
Apx+KN in decoding shows a different benefit: if
VarApx+KN is used for generating the N-best list, the
same WER reduction is available at 100-best re-scoring.
If 2000-best re-scoring is undertaken, an additional small
gain of 0.2% is obtained.

Fig. 5 shows that even when the search space size is
increased beyond 2000 best, there still remains the gap
between the oracle WER of the baseline approach i.e.
KN:MIT+BN model and the proposed approach i.e. Var-
Apx+KN model. These experiments show that variational
model produces richer search spaces so that even a sub-
optimal search (via N-best) produces much better results
during re-scoring with a full blown model.

The benefits of decoding and lattice re-scoring with the
variational approximation of RNN-Full are even more
evident from Table 10, where VarApx+KN reduces
WER by 0.7-0.8% over a 5-gram on both CTS and meet-
ing transcription (28.0% — 27.2% and 32.4% — 31.7%
respectively). Similar to results on MIT corpus, here
too, we can see that re-scoring lattices produced under
KN smoothed models with VarApx+KN model reduces
the WER by as much as 0.7% for eval0l and 0.5% for
rt07s (28.0% — 27.3% and 32.4% — 31.9% respectively)
further validating the complementarity of the VarApx
models.

A final observation from Table 10 is that there still
remains a gap between decoding with VarApx+KN and
re-scoring with RNN-Full. The latter reduces WER by
almost 2% (absolute) over the standard 5-gram, compared

much as 0.6% (24.8% — 24.2% and

Oracle WER versus size of N best list
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Fig. 5. Plot of Oracle WER versus the size of the search space in terms of

number of hypotheses in N-best list. It can be seen that although the

Oracle accuracy increases with an increase in the search space, there still

remains a gap in the performance of the baseline and proposed approach,

with the latter consistently better.

to 0.7-0.8% by the former. This suggests that when the
RNN is trained on more data (5M words in Table 10 vs.
IM words in Table 2), it improves even further over a 4-
or 5-gram model.

Results on larger data-set are very encouraging too and
are in line with the conclusions and intuitions from our pre-
vious experiments. Table 11 shows the improvements in
performance when VarApx-Small is used directly in the
first pass decoding. VarApx-Small reduces the WER by
0.5% absolute over a 4-gram model - KN:BN-Small when
used directly in the first pass decoding. Interpolation of
VarApx-Small and KN:BN-Small in the first pass decoding
reduces the WER by 0.8% absolute over KN:B-Small
decoding. Re-scoring lattices, output by either models
(VarApx-Small or KN:BN-Small), with VarApx+KN-Big
improves the performance by 0.3% absolute over
KN:BN-Big re-scoring. Previously we saw that for moder-
ately sized training corpora, in order to obtain competitive
variational models, we had to generate sometimes as much
as 30 times more data. However, an interesting observation
from the large data BN experiment is that if the original
training data is huge to begin with, the generative model
generalizes the data so well that simulating even three or
four times synthetic data suffices. Table 12 shows perfor-
mance of the model as a function of the size of the simu-
lated data. The size of the n-gram models is correlated
closely with the size of the data from which they are built.
However, we observed that aggressively pruning the varia-
tional models, not only bring down the models to a more
manageable and realistic sizes but also result in very little
degradation in performance. See Table 14 for the perfor-
mance of variational models as a function of the size of
the models. We are thus able to create comparable sized
models, sometimes two or three times smaller (comparable
to models built on original training data) and result in bet-
ter performance. See Tables 13 and 14 to compare the per-
formance of the regular and variational model as a size of
their corresponding training data.

All our n-gram decoding results, in all the setups used,
are statistically significant (with a p < 0.001). We used
NIST’s sclite toolkit for computing statistical significance
using MAPSSWE significance tests.

Given the strong positive improvements using varia-
tional models, either for first pass decoding or for lattice
re-scoring, we propose the following two recipes for decod-
ing and re-scoring:

1. First pass decoding

(a) Build as good a complex & long span language
model as possible.

(b) Sample as much text data as possible from this
‘generative’ model.

(c) Build n-gram model based on the sampled data.

(d) Prune it down to some reasonable size.

(e) Interpolate it with the baseline model i.e. n-gram
model estimated on training data.

(f) Do first pass decoding with the resulting model.
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2. Re-scoring word lattices
(a) Carry out steps 1(a), 1(b) and 1(c) as above.
(b) Interpolate the n-gram based on sampled data with
the n-gram model estimated from training data.
(c) Produce lattices with baseline n-gram model or
with the model in step 1(e) above and rescore them
with the model obtained in step 2(b) above.

5. Conclusion

In this paper, we have shown that certain long span and
complex language models can be successfully approxi-
mated by simple n-gram models. In our work, we approx-
imated a near Turing machine model — recurrent neural
network based language model. Our method allows easy
integration of such complex models into speech recognition
or machine translation systems. We have validated our
claim on various speech recognition data-sets of varying
complexities. We conclude from our experiments that with
large amounts of simulated data, the variational model
becomes better, resulting in improved performance over
conventional n-gram models estimated from the original
training data. More importantly, pruning such models
result in more manageable and realistic n-gram models
without any significant loss of accuracy or performance.
The variational models, by themselves, are good substitutes
for the regular n-gram first pass decoding models.

Another interesting conclusion from our experiments is
that variational models are better choices even for re-scor-
ing i.e. we may not even have to touch the first pass decod-
ing at all. Re-scoring lattices (output by regular n-gram
models) with variational n-gram re-scoring models, result
in improvements similar to when the first pass uses varia-
tional models in conjunction with re-scoring the output lat-
tices with bigger variational models. Thus in situations
where it is expensive to change decoder models and param-
eters, we can use the variational substitutes and achieve
improved performance by just re-scoring the first pass
lattices.

From the perspective of machine learning (Bengio,
2007), we can say that we approximate deep architectures
(such as recurrent neural network model) by a shallow
architecture (n-gram model). This approximation comes
at a cost of additional memory complexity — we basically
store huge database of pre-computed results. As deep
architectures are increasingly more popular among speech
recognition community (Deng, 2011), we hope that our
work will provide more insight into capabilities and limita-
tions of n-gram models, and possibly provide inspiration
for related work even in other ASR fields.
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Appendix A. Simulations under RNNs and 4-gram LMs

In this appendix, we present some sample simulations
from RNN and 4-gram LM. We provided a common prefix
to both type of language models and then generated the
remaining text. We have used TYPEWRITERITALICS
font to indicate that the simulations are from RNN and
TYPEWRITER REGULAR font to indicate that the simula-
tions are from 4-gram LM. Below we show simulations
from the LMs trained on Broadcast News corpus and Penn
Tree Bank corpus respectively.

A.1. Broadcast news corpus

<s> IT WAS DOUBTFUL THAT HE WOULD ALWAYS
SAY HE THINKS DOCTOR GUNN COULD BREAK
THE DEATH SENTENCE ESPECIALLY FOR THOSE
WHO WERE EXECUTED </s>

<g> IT WAS DOUBTFUL THAT YOU CAN NEWT GING-
RICH IS REPORTS A DAILY POUNDS AS SOMEONE ELSE
THERE ARE NOT MANY GRAY OF ROSEANNE WE DO NOT
HAVE A PIT BULL </s>

<s> SENATOR BIDEN ALSO SAID THAT MANY
ACTION ON CRIME SHE ARGUED WERE ASCEND-
ING TO THEIR RIGHTS SPAWNS </s>

<s> SENATOR BIDEN ALSO SAID IF THIS IS SEEN
IN THIS COUNTRY AFTER THE GOVERNMENT TO SHAKE
HIM POCKETS A DIVERSITY RINGING THE WEIGHT IN
BELGIUM HOW THAT’S YESTERDAY ONE STRAIGHT
VISITING ICELAND RESPONSIBILITY RACES FISH
</s>

<s> WHEN IT COMES TO JUVENILE JUSTICE SYS-
TEM HIS PRACTICALITY AND THE WAY TO HOLD
HIM CAN EH THE REALLY CATCH AND SUSPI-
CION THAT WHEN THE DISTRICT ATTORNEY IS
SUBJECT TO A CRIME BILL WE'RE GOING TO GO
TO A DISGRACEFUL SECRET FROM THE D.C. <[s>

<s> WHEN IT COMES TO JUVENILE VERY ILLEGI-
BLE CARRIED THE HAMPTONS THIRTIES APPROVAL
FOR A STILL WORKING INDEPENDENTLY </s>

<s> THE U. N. SECRETARY GENERAL KOFI ANNAN
IS ACCUSED OF ENDORSING DENNIS LI FOR
ORDER TO TRY TO GIVE THAT THE DOCUMENT
TO REINFORCE AND DEMANDING A CEASE FIRE
BUT THE ISRAELIS HAVE DECLARED SOME
THREE HUNDRED AND TRAVELING EIGHT BIL-
LION DOLLARS THIS YEAR AND THAT COULD
REVOLUTIONARY PUTIN <[s>

<s> THE U. N. SECRETARY GENERAL METHOTREX-
ATE HOSPITALS WOULD TYPICALLY INADVERTENTLY
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HIT THAT THE OIL FIELDS FOR GARY CONDIT HAM
JORDAN WHO IS INVOLVED IN ALL GROUPS </s>

<s> AND I’M SORRY I NEVER SAW ANYTHING
FLOWING TO ME <[s>

<s> AND I’M SORRY I REACHED MY UNCLE’S
ANSWER WHETHER MONDRAGON AND LIFE AS SOON AS
THEY KIRK LYONS A RESOUNDING HOWEVER AND THEN
SOME </s>

A.2. Penn tree bank corpus

<g> IN ADDITION THE CHARGE FOR WHITES
WERE STRONGER IN THE SUSAN SECTOR <[s>

<g> IN ADDITION THE CHARGE <UNK> THEIR IN
PRISON AFTER IT COULD TONY MAKER </s>

<s> NONETHELESS MR. BROWN SAID THEIR OPER-
ATING A RESULT OF SHAREHOLDERS WAS
BELOW THE CONTRACTS <[s>

<s> NONETHELESS MR. BROWN SAID NET OF $§ N
MILLION </s>

<s> BUT RESEARCHERS STARTED TO MEET THE
ACTIONS WILL RANGE AT FLY </s>

<g> BUT RESEARCHERS STARTED TO BECOME AND
NOW THAT THEY O’KICKI UNEXPECTEDLY WIVES
WHETHER WORKING CAPITAL THERE HAS BEEN FILI-
PINO MOST PEOPLE AND INDUSTRIAL PRODUCTION
OF LARGE SIZE INCLUDING FINANCING </s>

<g> SOUTH AFRICA ’S SECOND-LARGEST BUSI-
NESS STAYED FIRMED N AT LARGE CONSECU-
TIVE FOUR MONTHS AND HAD DROPPED TO $ N
<[s>

<g> SOUTH AFRICA ’S SECOND-LARGEST PROD-
UCTS SHELVES SPRING RETINOBLASTOMA DISCOVERY
WILL LAUNCH EXPERIENCE TO SEE A WITHOUT <UNK>
</s>

<s> ESTIMATED EARNINGS SAID NET INCOME
THE DECLINE IN INCOME ROSE N N TO $ N BIL-
LION FROM $ N BILLION </s>

<g> ESTIMATED EARNINGS SAID NET INCOME N.V.
NETHERLANDS </s>

References

Allauzen, C., Mohri, M., Roark, B., 2003. Generalized Algorithms for
constructing statistical language models. In: Proc. of Association of
Computational Linguistics (ACL).

Bengio, Y., LeCun, Y., 2007. Scaling Learning Algorithms Towards Al.
MIT Press, Large-Scale Kernel Machines.

Bickel, P.J., Doksum, K.A., 1977. Mathematical Statistics: Basic Ideas
and Selected Topics. Holden-Day Inc., Oakland, CA.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Boden, M., 2002. A Guide to Recurrent Neural Networks and Back
Propagation. Dallas Project.

Chelba, C., Jelinek, F., 2000. Structured language modeling. Comput.
Speech Language 14, 283-332.

Chen, S.F., Mangu, L., Ramabhadran, B., Sarikaya, R., Sethy, A., 2009.
Scaling shrinkage-based language models. In: Proc. IEEE Workshop

on Automatic Speech Recognition and Understanding (ASRU), pp.
299-304.

Cover, T., Thomas, J., 1991. Elements of Information Theory. John Wiley
and Sons Inc., NY.

Deng, L., 2011. An overview of deep-structured learning for information
processing. In: Proc. Asian-Pacific Signal and Information Processing
— Annual Summit and Conference (APSIPA-ASC).

Deoras, A., 2011. Search and decoding strategies for complex lexical
modeling in LVCSR. PhD thesis, The Johns Hopkins University.
Deoras, A., Jelinek, F., 2009. Iterative decoding: A novel re-scoring
framework for confusion networks. In: Proc. IEEE Workshop on
Automatic Speech Recognition Understanding (ASRU), pp. 282—

286.

Deoras, A., Filimonov, D., Harper, M., Jelinek, F., 2010. Model
combination for speech recognition using empirical bayes risk mini-
mization. In: Proc. IEEE-Spoken Language Technologies.

Deoras, A., Mikolov, T., Church, K., 2011a. A fast re-scoring technique to
capture long distance dependencies. In: Proc. 2011 Conf. on Empirical
Methods in Natural Language Processing (EMNLP).

Deoras, A., Mikolov, T., Kombrink, S., Karafiat, M., Khudanpur, S.,
2011b. Variational Approximation of Long-Span Language Models
for LVCSR, in: Proc. IEEE Internat. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP).

Elman, J., 1990. Finding structure in time. Cognit. Sci. 14 (2), 179-211.

Filimonov, D., Harper, M., 2009. A joint language model with fine-grain
syntactic tags. In: Proc. 2009 Conf. on Empirical Methods in Natural
Language Processing (EMNLP).

Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Trans. Pattern Anal.
Machine Intell. 6, 721-741.

Glass, J., Hazen, T., Cyphers, S., Malioutov, I., Huynh, D., Barzilay, R.,
2007. Recent progress in MIT spoken lecture processing project. In:
Proc. ICSLP-Interspeech.

Hain, T., 2005. The 2005 AMI system for the transcription of speech in
meetings. In: Proc. Rich Transcription 2005 Spring Meeting Recog-
nition Evaluation Workshop, UK.

Jordon, M.I., 1998. Learning in Graphical Models. The MIT Press,
Cambridge, MA.

Lin, D., Church, K., Ji, H., Sekine, S., Yarowsky, D., Bergsma, S., Patil,
K., Pitler, E., Lathbury, R., Rao, V., Dalwani, K., Narsale, S., 2010.
New tools for web-scale n-grams. In: Chair, N.C.C., Choukri, K.,
Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias,
D. (Eds.), Proc. Seventh Conf. on International Language Resources
and Evaluation (LREC’10). European Language Resources Associa-
tion (ELRA), Valletta, Malta.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., Cernock}?, JH.,
2011a. Empirical Evaluation and Combination of Advanced Language
Modeling Techniques, in: Proc. of ICSLP Interspeech.

Mikolov, T., Deoras, A., Povey, D., Burget, L., Cernocky, J.H., 2011b.
Strategies for training large scale neural network language models. In:
Proc. IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU).

Mikolov, T., Kombrink, S., Burget, L., Cernock}?, J.H., Khudanpur, S.,
2011c. Extensions of recurrent neural network language model. In:
Proc. IEEE Internat. Conf. on Acoustics, Speech, and Signal Process-
ing (ICASSP).

Mikolov, T., Karafiat, M., Burget, L., Cernock;’/, J.H., Khudanpur, S.,
2010. Recurrent neural network based language model. In: Proc.
ICSLP-Interspeech.

Momtazi, S., Faubel, F., Klakow, D., 2010. Within and across sentence
boundary language model. In: Proc. ICSLP-Interspeech.

Nederhof, M.-J., 2005. A general technique to train language models on
language models. In: Proc. Association of Computational Linguistics
(ACL).

Nederhof, M.-J., Satta, G., 2004. Kullback—Leibler distance between
probabilistic context-free grammars and probabilistic finite automata.
In: Proc. Association of Computational Linguistics (ACL).

Please cite this article in press as: Deoras, A. et al., Approximate inference: A sampling based modeling technique to capture complex dependencies in a
language model, Speech Comm. (2012), http://dx.doi.org/10.1016/j.specom.2012.08.004



http://dx.doi.org/10.1016/j.specom.2012.08.004

16 A. Deoras et al. | Speech Communication xxx (2012) xxx—xxx

Roark, B., 2001. Probabilistic top-down parsing and language modeling.
Comput. Linguist. 27, 249-276.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal
representations by error propagation. In: Computational Models of
Cognition And Perception Series, MIT Press, pp. 318-362.

Shannon, C., 1951. Prediction and entropy of printed English. Bell Syst.
Tech. J. 30, 50-64.

Soltau, H., Saon, G., Kingsbury, B., 2010. The IBM Attila speech
recognition toolkit. In: Proc. IEEE Workshop on Spoken Language
Technology.

Stolcke, A., 1998. Entropy-based pruning of backoff language models. In:
Proc. DARPA Broadcast News Transcription and Understanding
Workshop, pp. 8-11.

Stolcke, A., Segal, J.,1994. Precise n-gram probabilities from stochastic
context-free grammars. In:Proc. Association of Computational Lin-
guistics (ACL).

Xu, P., 2005. Random forests and the data sparseness problem in language
modeling. PhD thesis, Johns Hopkins University.

Please cite this article in press as: Deoras, A. et al., Approximate inference: A sampling based modeling technique to capture complex dependencies in a
language model, Speech Comm. (2012), http://dx.doi.org/10.1016/j.specom.2012.08.004



http://dx.doi.org/10.1016/j.specom.2012.08.004

	Approximate inference: A sampling based modeling technique  to capture complex dependencies in a language model
	1 Introduction
	2 Variational approximation of a model
	2.1 Monte Carlo sampling

	3 Long-span language models
	3.1 A recurrent neural net language model

	4 Experiments, results and discussion
	4.1 Perplexity experiments on WSJ
	4.2 Domain adaptation experiments on MIT lectures
	4.3 Conversational speech recognition experiments
	4.4 Broadcast news speech recognition experiments
	4.5 Analysis and discussion of LVCSR results

	5 Conclusion
	Acknowledgements
	Appendix A Simulations under RNNs and 4-gram LMs
	A.1 Broadcast news corpus
	A.2 Penn tree bank corpus

	References


