Research

Energy issue

Unaware of how energy is spent

Energy monitoring systems

 Break down energy to provide more understandable feedback to users

 "translating energy data into meaningful information"

ALPS: Activity-Level Power Monitoring

Watching TV 200 Watts

Reading 100 Watts

Cooking 500 Watts

Closing the gap

low level energy data from power meters

high level energyconsuming activities

Outline

- System overview
- Experimentation
- Evaluation
- Energy Feedback
- Conclusion

Outline

- System overview
- Experimentation
- Evaluation
- Energy Feedback
- Conclusion

System Overview

Data Collection Module

Data Analysis Module

Microsoft Research Asia
Faculty Summit 2012

Data collection module

Data Collection Module

Data Analysis Module

Microsoft Research Asia Faculty Summit 2012

Data collection module

Home power-monitoring WSN

Data analysis module

Data Collection Module

Data Analysis Module

Microsoft Research Asia Faculty Summit 2012

1. User-defined activity-to-appliance associations

Each household labels their own activity-to-appliance associations

1. User-defined activity-to-appliance associations

- Label only Primary appliances
- Secondary appliances do not need to be labeled
- TV watching: {TV}

Primary appliance

Secondary appliance

Faculty Summit 2012

2. Rule-based activity detection

- Lookup table generate based on user-defined appliance-to-activity associations
- Cooking activity: {oven, rice cooker, microwave}

Appliance	e activation (1/	0 = on/off	Activities
Oven	Rice cooker	Microwave	
0	0	0	No-cooking
0	0	1	Cooking
0	1	0	Cooking
0	1	1	Cooking
1	0	0	Cooking
1	0	1	Cooking
1	1	0	Cooking
1	1	1	Cooking

3. Activity-to-appliance associations

Determine the full set of operating appliances when an activity occurs

3. Activity-to-appliance associations

Computer-related activity: { notebook, lamp }

Computer-related activity Showering activity

Microsoft Research Asia
Faculty Summit 2012

4. Per-activity Power Accounting

1) Activity duration resolution

 Determine activity duration from rule-based activity detection time series data

2) Power accounting

• From activity duration and activity-to-appliance associations, calculate activity power consumption

4. Per-activity Power Accounting 1) Activity duration resolution

- Determines the duration of an activity from activity time series data
- Apply sliding window to find boundaries(start/end time) of activity

4. Per-activity Power Accounting 2) Power accounting

Aggregate power consumption of associated appliances

Computer-related activity Showering activity

Microsoft Research Asia
Faculty Summit 2012

4. Per-activity Power Accounting 2) Power accounting

- Aggregate power consumption of associated appliances
- Computer-related activity power consumption

Microsoft Research Asia
Faculty Summit 2012

4. Per-activity Power Accounting 2) Power accounting

 For shared appliances, energy is split equally between activities

4. Per-activity Power Accounting 2) Power accounting

 Ceiling light is shared between "Computer-related activity" and "TV watching activity"

Outline

- System overview
- Experimentation
- Evaluation
- Energy Feedback
- Conclusion

Experimentation

- Real-world deployments in 3 homes
- 4 week duration
- Install 57 sensors
- Total 1,296 activities collected
- Ground truth:
 - Users label ground truth for evaluation purposes

Experimentation

	Home #1	Home #2	Home #3
Household size	1 man	3 men 1 woman	2 men 2 women
SIZE		i Wolliali	2 WOMEN
# of rooms	2 rooms	8 rooms	10 rooms
# appliances monitored	9	15	30

Microsoft Research Asia Faculty Summit 2012

Experimentation

Activity list

Home #1	Home #2	Home #3
5 activities	6 activities	9 activities

Microsoft Research Asia Faculty Summit 2012

Outline

- System overview
- Experimentation
- Evaluation
- Energy Feedback
- Conclusion

Evaluation

- Evaluation metrics
 - Activity recognition accuracy
 - Activity duration error
 - Activity power accounting error

Activity recognition accuracy

 Accuracy of rule-based activity-appliance detection in estimating user activity

	# of activities	Average F-measure (%)
Home #1	220	91.32
Home #2	286	96.01
Home #3	763	91.58
AVG	_	92.97

Activity recognition accuracy

• Detail of home #3

activity	# of activities	F-measure(%)
computer-related activity	65	95.20
cooking activity	106	91.89
eating activity	81	92.36
non-showering bathroom activities	311	90.94
recharging equipment activity	36	87.82
school-related activity	12	99.81
showering activity	63	82.34
TV watching	74	95.81
working activity	15	88.10
AVG.	-	91.58

Activity duration error

- Error in estimating the duration of an activity
- 80% of activities have error rate under 5.18%(home #1), 7.32%(home #2) and 3.06%(home #3)

Activity power accounting accuracy

	Average Accuracy (%)
Home #1	94.79
Home #2	96.50
Home #3	95.73
AVG	95.55

Activity power accounting accuracy

System estimated vs. ground truth power consumption for home #3

Activity power accounting accuracy

- Inaccuracies due to:
- (1) the detected activity durations have large estimation errors
- (2) human errors in labeling activity-appliance ground truth

Outline

- System overview
- Experimentation
- Evaluation
- Energy Feedback
- Conclusion

Energy feedback

Per-activity energy usage in home #3:

Participant A:

"We really ought to switch to shut-down mode when using the computer. I though [the computer] would just take up a little bit of energy when we just leave it there, but apparently not."

Energy feedback

Energy breakdown of activities in home #3

Showering activity

- Hairdryer consumes ~70%
- Participant A:

"This information helps me focus on quickly drying my hair instead of reducing the bathroom light usage, which helps me save more energy."

Work-from-home activity

- Lamp consumes ~60%
- Participant B:

"I ought to start switching off the lamp as soon as I leave the desk, [and change to] a more energy-efficient LED lamp"

working activity

Conclusion

- ALPS bridges the semantic gap between low-level power meter data and high-level everyday human activities
- Achieves 92.97% accuracy in activity-recognition and 95.55% accuracy in activity-level energy monitoring
- Future studies can use system output to design effective feedback mechanisms for motivating people to change their energy-consuming behaviors.

Research

Thank you!

