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Participation in existing Crowdsourcing 
Mobile Sensor System drains Smartphone 
Batteries
Collect GPS Traces from Traffic 

Build WiFi Localization Maps

Even an hour or two of participation can reduce 
battery life by 10+ stand-by hours or more 



Opportunistic CrowdSensing (OCS)

Approach: Sense When Users Perform a Phone Task



Being Opportunistic Saves Energy

Sensing energy savings as much as 33%, 50%, 100%



Opportunistic CrowdSensing
Framework



External Crowdsourcing App [ sensor type, computation, sample rate, …]
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• Online version of Naïve Bayes 
Model

• Incrementally learn per-user 
patterns

• Operating with low-cost features 
is challenging
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Evaluation



Questions Answered

1. How well can we predict application usage?

2. How much additional data can OCS collect? 
• Comparison to alternative approaches

3. If we embed OCS into an existing Crowdsourcing App – Indoor 
WiFi mapping – what is performance w.r.t :

• Energy Saving
• Impact on Accuracy

Evaluation Methodology

Experiment Data

Simulation (questions 1 & 2)
- App Trace of Smartphone Usage – 1320 Users Worldwide [AppJoy
Project ]
- Fine-grain measurements of App and Sensor energy costs

Case Study (question 3)
- 20 users - 3 weeks – MSRA building.



Low-cost Online Per-User Prediction of 
Application Usage 
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Top-3Top-1



Application Prediction Accuracy
Improves over Time

Top-3

Top-5

Top-1
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OCS collects more data across various 
crowdsourcing scenarios

Energy Budget 
( % of phone battery)

1% 2% 1% 2% 1% 2%

Microphone / Speech 
Recognition

319% 270% 168% 139% 142% 110%

Camera / No computation 145% 167% 81% 68% 73% 68%

GPS / No computation 293% 252% 53% 43% 103% 94%

Periodic App-Driven Context-Driven

Experiment Parameters
- Assumed Fixed Energy Budget (approx. 1 – 2 % of daily battery 
life)
- Ignores Uploading Cost (assumed to occur overnight during 
recharge)On average OCS collects 48% more data across all 
tested scenarios assuming the same energy budget



OCS results in personalized Sensing 
Schedules

Weekday Weekend

OCS maximizes the unique app-usage based 
opportunities to sense w.r.t to crowdsourcing needs



Case Study 
Low Energy WiFi Maps for Indoor 
Localization collaboration with  Chunshui Zhao and Jacky Shen

Methodology
• 13th floor of MSRA building
• Intern data collection, replicate typical 

mobility patterns
• Measure sensor quality and cost w.r.t the 

location accuracy and the default data 
collection application

• Prediction model trained from large-scale AppJoy
dataset

• Simplified version of indoor navigation code
• For example: No personalization

• Ground-truth: Basic corner-detection + IMU step 
detection during map construction
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- Insight: Low-energy sensing opportunities presented by app 
usage

- OCS framework provides a sensing decision engine that makes 
the most of limited app opportunities.

- Systematic evaluation and case study (WiFi localization)

Conclusion

Characterizing Places 
(POIs) Understanding Users and 

Communities

Lowering Energy Consumed 
by Participation

Incentivizing Users to Participate

Low-Energy Opportunistic CrowdSensing

On-going Agenda examining Opportunistic Crowdsensing


