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Participation in existing Crowdsourcing
Mobile Sensor System drains Smartphone

Batteries
Collect GPS Traces from Traffic

Build WiFi Localization Maps

[ .. .
I Even an hour or two of participation can reduce :
[

I battery life by 10+ stand-by hours or more
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Being Opportunistic Saves Energy

60
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Energy consumption (Joule)

Camera Microphone

1 Sensing energy savings as much as 33%, 50%, 100% =ch
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Application
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Computation and Time/Location
Sensor Sampling Planner J;L
Time
App!ic.:ation Application Location . Application
U“Cloltty/ Prediction f( Context ) — App Duration
° Model Phone State

Estimation

* Online version of Naive Bayes

Model
e Incrementally learn per—user
pat t erns Microsoft’

e Operating with low—cost %é@ﬁf@b
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Evaluation Methodology

Questions Answered
1. How well can we predict application usage?

2. How much additional data can OCS collect?
. Comparison to alternative approaches

3. If we embed OCS into an existing Crowdsourcing App - Indoor
WiFi mapping - what is performance w.r.t :
. Energy Saving
. Impact on Accuracy

Experiment Data

Simulation (questions 1 & 2)

— App Trace of Smartphone Usage - 1320 Users Worldwide [AppJoy
Project |

— Fine—grain measurements of App and Sensor energy costs

Case Study (question 3)

— 20 users — 3 weeks - MSRA building. Mﬁosé);earch



Low—cost Online Per—-User Prediction of
Application Usage
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Application Prediction Accuracy

Improves over Time
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OCS collects more data across various
crowdsourcing scenarios

Periodic
Energy Budget 1% 2%
( % of phone battery)
Microphone / Speech 319% 270%
7Recognition
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OCS collects more data across various
crowdsourcing scenarios

Periodic App—Driven
Microphone / Speech 319% 270% 168% 139%
Recognition
Camera / No computation 145% 167% 81% 68%
GPS / No computation 293% 252% 53% 43%

Experiment Parameters
— Assumed Fixed Energy Budget (approx. 1 - 2 % of daily battery
life)
— Ignores Uploading Cost (assumed to occur overnight during
recharge)
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OCS collects more data across various
crowdsourcing scenarios

Periodic App-Driven Context-Driven
Energy Budget 1% 1% A 1% 2%
( % of phone battery)
Microphone / Speech 319% 270% 168% 139% 142% 110%
Recognition
Camera / No computation 145% 167% 81% 68% 73% 68%
GPS / No computation 293% 252% 53% 43% 103% 94%

Experiment Parameters
— Assumed Fixed Energy Budget (approx. 1 - 2 % of daily battery
life)
.fa.l&um;rnchhaLmauiinn.fkw:t.lafuuuned.Ji;.Geciu;mayeﬂumtﬁhi.fhxminpi...l

[
: On average OCS collects 48% more data across all :
[

tested scenarios assuming the same energy budget 1

r

Microsoft:

Research



OCS results in personalized Sensing
Schedules

Weekday Weekend

Users
Users

3a.m. 6a.m. 9a.m. 12p.m.3p.m. 6p.m. 9p.m. 3a.m. 6a.m. 9a.m. 12p.m.3p.m. 6p.m. 9p.m.

Time Time

OCS maximizes the unique app—usage based

|
|
| opportunities to sense w.r.t to crowdsourcing needs I

I—————————————————————————————————-R———l
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Case Study
LLow Energy WiFi Maps for Indoor

LOC al 1 7 at 1 on collaboration with Chunshui Zhao and Jacky Shen

Methodology

e 13%h floor of MSRA building

e Intern data collection, replicate typical
mobility patterns

* Measure sensor quality and cost w.r.t the
location accuracy and the default data
collection application

e Prediction model trained from large—scale App]J
dataset

e Simplified version of indoor navigation code
e For example: No personalization

e Ground—truth: Basic corner—detection + IMU ste
detection during map construction
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Significant energy savings with

acceptable accuracy reductions
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Significant energy savings with
acceptable accuracy reductions
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Significant energy savings with
acceptable accuracy reductions
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Conclusion

Low—Energy Opportunistic CrowdSensing

— [Insight’ Low—energy sensing opportunities presented by app
usage

— O0CS framework provides a sensing decision engine that makes
the most of limited app opportunities.

— Systematic evaluation and case study (WiFi localization)

On—going Agenda examining Opportunistic Crowdsensing

Characterlzlng Places A\
g e Understandlng Users and égh

Lowering Energy Consumed
by Participation
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