Research

EVOLUTION TO 5G WIRELESS WITH MOBILE CLOUD APPLICATIONS

AN EFFICIENT MEET-UP MECHANISM BY MASHING-UP SOCIAL AND MOBILE CLOUDS

Li-Chun Wang 王蒞君 National Chiao Tung University, Taiwan

http://lichun.cm.nctu.edutw

lichun@cc.nctu.edu.tw

Generation Aspect of Cellular Mobile Systems

2G GSM:

3G WCDMA

3.5**G**

4G HSPA LTE/LTE-

14.4Kbps

2Mbps

14.4Mbps

~1Gbps

HSPA: High Speed Packet Access

LTE: Long Term Evolution

Key Features of IMT-Advanced

user equipment suitable for worldwide use;

• worldwide roaming capability;

- user-friendly applications, services and equipment;
- enhanced peak data rates to support advanced services and applications (100 Mbit/s for high and 1 Gbit/s for low mobility were established as targets for research).

- a high degree of commonality of functionality worldwide while retaining the flexibility to support a wide range of services and applications in a cost efficient manner;
- compatibility of services within IMT and with fixed networks;
- capability of interworking with other radio access systems;
- high quality mobile services;

Note: IMT = International Mobile Telecommunications

Drivers of 5G Wireless

Applications for 5G

Service Aspect for 5G Wireless

■Toward a human centric system

Microsoft Research Asia
Faculty Summit 29012

7 Source: Fujitsu

Adapted to user's environment

 User is supported in an unconscious manner

Dependable system

- operates on a non-stop basis
- System provides high security

Knowledge creation

 Create useful knowledge from abundant information

Intelligent Human Centric Society

New value creation through a human centric system

Terminal Aspect for 5G Wireless

- 2001
 - Single-mode
- 2005
 - Multi-mode
 - Open architecture
- 2010
 - Reconfigurability
 - Cognitive Radio or more?

Future Multiple-Sense Mobile Device

Massive scale computation (billion of simultaneous transactions) needed to mash up personal data, preference, real-world data, and device capability.

by mashing up massive personal data using sensors on smart phones.

Current Applications of Sensors in Smart Phones

- Motion and proximity sensors
 - detects the movement of the phone to your ear
 - automatically goes into speech recognition mode.
- Microphone
- Search databases + speech recognition database
 - the most frequent search terms in its database.
- Location sensors
 - A search for "pizza" returns the result you most likely want: the name, location, and contact information for the three nearest pizza restaurants.

Mobile Augmented Reality

- Wikitude: travel guide application for Android
 - Point the phone's camera at a point of interest
 - GPS to superimpose distances to points of interest
 - Compass to keep track of where you're looking
 - The application looks up what it sees in its online database

MAR for Hearing-Impaired

Challenges and Opportunities for Smart Phones

Potentials of sensor-enabled smart phones have Not exploited yet!

• Smart Connectivity

- Connecting to heterogeneous wireless networks, 4G/B4G, WiFi, WiMAX, Bluetooth, NFC
- Smart Computing: context aware and low power
 - Visual: cameras
 - Audio: microphone, microphone array
 - Multi-touch
 - Location: GPS, compass
 - Motion: accelerometers, proximity sensors
 - Ambient: light, thermometers, humidity, pressure
 - Physiological: temperature, galvanic skin response (GSR), pulse, respiration
 - Chemical: electronic nose, electronic tongue

- Output
- Visual: HD display, pico-projectors
- Audio: speakers
- Vibrator
- **-** ...

What is the role of Smart Phones in cloud computing?

• Smartphones = gateway to the cloud, and the bridge of sensors

Are Current Smart Phones Smart Enough?

- No!
- Challenges:
 - APIs of sensors of current mobile phones are different and not standardized.
 - There is a gap between PaaS and SaaS . Programmers cannot easily use PaaS to develop new mobile applications
- A set of standardized APIs for multi-sensing platform is needed to create new cloud applications for smart phones.
- Domain-specific Platform as a Service (aPaaS) is needed.

Se-So-Mo-Lo (思索摸路) Project in NCTU

• Integrate Sensor + Social +Mobile + Local

• To provide human centric services from online to off-line

Sensor-Enabled Mobile Clouds

Service Cloud

Education Cloud

Emergency Cloud

Commerce Cloud

Multi-Sensing Platform

Multi-Sensed Cloud Devices

- 1. Mobile AR
- 2. Privacy Protection
- 3. Multi-sensor Fusion

Sensing Data

3G/WiFi

Key Elements

- 1. Search Engine
- 2. Location Tracking
- 3. Sensor data processing

Multi-Sensed Service Engine

Virtual
File
System

nmit 2012

dPaaS in Sensor-Enabled Mobile Clouds

Multi-Layer Data Dining for

Social Layer

- Purchase behavior analysis for a group of people

Attribute Layer

- Every transaction of a customer reflect his/her purchase behavior

Shop Layer

- Recommend related stores to potential customers

JOIN:

A mobile social network application

- Objective: Provide immediate and personalized LBS information for a group of users.
- Real-time meet-up activities for a group of mobile users
 - Integrating GPS, cloud computing, smart phone and wireless communications.
 - A on-line LBS service beyond the combination foursquares.com and

Mashup Clouds for Mobile Social Networks

Mobile Networks

Social Networks

System Components: Community Engine

Functions: 1. Group Event Announcement

2. Group Membership

Mobile Devices

Windows phone

NCTU Cloud Platforms

Cloud Platform: Hyper-v

Internet

System Components: JOIN Engine

Functions: 1. Mobile User Location Database

2. Area Interesting Events
Advertisement

4. Speech Recognition

JOIN Client Architecture

- Software Design and Using:
 - Android Developer
 - WP7
- Hardware Using:
 - Smart Phone
 - Location
 - GPS (satellite fix)
 - AGPS (base station fix)
 - Sensors
 - Communication devices:
 - WiFi
 - 3G / LTE

JOIN Cloud Architecture

NCTU Cloud Platforms

- JOIN engine:
 - Location database
 - Current and historical locations of each user
 - Dynamic calculation of distance among friends
 - Static locations of stores related to interested groups
 - Group membership and polling
 - Event Scheduling with data mining

Social Networks

- Community engine
 - Group Event Announcement
 - Group Scheduling

Distance Calculation Event Scheduling

Historical

Database

User

Information

Interest point

& Activities

Developed mechanisms for mobile meet-up

- Calendar Merge-Up Mechanism
- Meet-Up Voting
- Location Pushing-Up Mechanism
- Proximity-Based No-Touch Mechanism for voting

Calendar Merge-Up Mechanism

■ JOIN can search the common available time for each user in their calendar.

Allan

Sunday Monday Tuesday Wednesday 29 28 PDC2008 Meet-Up Election Day 12 Veteran's Day 18 19 Meet-Up Meet-Up 23

Babara

Calendar Merge-Up Mechanism (Cont.)

- Finding longest common subsequence(LCS) on MapReduce
- Mapper: Find LCS between two users
- Reducer: Combine the result

Map Reduce Technique

Windows Azure with MapReduce

Meet-Up Voting

- Users can hold a activity.
 - vote for destination and time.
- Server can also proactively schedule the Meet-Up activity.

Location Pushing-Up Mechanism

- Location Pushing
 - Destination is pushed to each user with route planning.
- Reservation
 - Tickets
 - Rooms
- Booking in personal Calendar
 - Reminder

Proximity-Based No-Touch Mechanism for Voting

- Using touch screens are not safe for mobile phone users.
- Applying proximity sensors to initiate mobile applications without the need of touching the screen
- Integrate with cloud speech recognition.

[1] C. Y. Lin Y. J. Chen L. C. Wang and Y. C. Tseng, "Proximity-Based Speech Recognition in Mobile Cloud Computing, Microsoft Research Asia of Workship of Workshi

[2] C. Y. Lin Y. J. Chen L. C. Wang and Y. C. Tseng, " A No-Touch Mechanism to Initiate Mobile Applications on Smart Phones," IEEE Vehicular Technology Conference (VTC2012-Fall), September 2012.

Proximity-Based No-Touch Mechanism for Voting(cont.)

- Body language Translator
- Waving hands testing mechanism (WTM)
 - A mechanism to differentiate taking phone from waving hand.

Performance Evaluation of Proximity-Based No-Touch Mechanism for Voting(cont.)

Sensor	Power consumption	
Orientation sensor	9.7 mA	
Magnetic field sensor	6.7 mA	
Accelerometer	3.0 mA	
Light sensor	0.5mA	
Proximity sensor	0.5 mA	

Mechanism	Testing Times	Error Times	Error Rate
Without using WTM	200 times	108 times	54%
Using WTM	200 times	2 times	1%

Enhanced Location Privacy

- Providing location security in LBS system with ODB service model
- IMSI-based pseudonym to secure the location data in JOIN services
 - Provable security
 - Less Power Consumption

IMSI+ Random Seed

Pseudonym

Coding

Used Techniques in Database

- Windows Azure Platform
 - Speech recognition server
 - Group scheduling server
- Network Coding for Location Privacy
 - IMSI-based JOIN secure mechanism
- VMs Load Balancing
 - Queuing theoretical resource prediction

JOINXTAIPEI

您的揪團資訊已經傳送給2位好友!

Conclusion

- Present enabling mechanisms of meet-up applications for mobile phones, consisting of
 - calendar merge-up and polling mechanism
 - route information pushing-up mechanism
 - proximity-based no-touch mechanism
- Provide immediate and personalized social LBS information to mobile phone customers.
- Smartphones = gateway to the cloud, and the bridge of sensors

Reference

- [1] Y. T. Lee, L. C. Wang, and R. Gau," Implementation Issues of Proactive Location-Based Group Scheduling for Cloud Applications", in IEEE VTS Asia Pacific Wireless Communications Symposium, 2010.
- [2] C. Y. Lin Y. J. Chen L. C. Wang and Y. C. Tseng, "Proximity-Based Speech Recognition in Mobile Cloud Computing, " 2nd International Workshop on Mobile Sensing (IPSN Workshop 2012)
- [3] C. Y. Lin Y. J. Chen L. C. Wang and Y. C. Tseng, "A No-Touch Mechanism to Initiate Mobile Applications on Smart Phones," IEEE Vehicular Technology Conference (VTC2012-Fall), September 2012.
- [4] Y. J. Chen and L. C. Wang, "A Security Framework of Group Location-Based Mobile Applications in Cloud Computing, "Third International Workshop on Security in Cloud Computing (CloudSec 2011)
- [5] http://msdn.microsoft.com/zh-tw/windowsazure/ff721941

Research

Thank you!

