Microsoft Research Asia Update

Hsiao-Wuen Hon

Managing Director, Microsoft Research Asia

MSRA Overview

- People & Organization
- Research
- Products & Technology Transfer
- External Collaboration

Microsoft Research

Research lab locations

Redmond, Washington

Cambridge, UK

Beijing, China

Silicon Valley, California

Bangalore, India

Boston, MA

New York City

(Sep, 1991)

(July, 1997)

(Nov, 1998)

(July, 2001)

(Jan, 2005)

(Sep, 2008)

(May, 2012)

Asia

India Research

People

- New Hires
 - Jiang BIAN, Yahoo Research
 - Karlsson BORJE, Nokia
 - Xun GUO, MediaTek
 - Kwantaek KIM, LG
 - Zhuang LI, MSR SVC
 - Xin LIU, UC Davis
 - Tim PAN, GEMFOR Tech
 - Takaaki SHIRATORI, CMU/Disney
 - Hong TAN, Purdue Haptics & HCl
 - Yingcai WU, UC Davis
 - Oversea Ph.D's
 - Liang CHEN (UC San Diego), Koji YATANI(Univ. of Toronto),
 - 15 domestic Ph.D's & Masters

People and Research Areas

Hsiao-Wuen HON

HCI Hong TAN

Speech Frank SOONG

Innovation Engineering
Jonathan TIEN

Technology Strategy **Eric CHANG**

Baining GUO

Visual Computing - Yi MA

Graphics - Baining GUO

Multimedia - Shipeng LI, Feng WU

Theory - Baining GUO

Wei-Ying MA

Web/Data Search & Mining – Jirong WEN, Haixun WANG
Natural Language Processing – Ming ZHOU
Multimedia Search & Mining – Lei ZHANG
Knowledge Mining – Yong RUI, Chin-Yew LIN
Internet Economics – Tie-Yan LIU
Machine Learning – Zheng CHEN

Feng ZHAO

System - Zheng ZHANG, Lidong ZHOU
Network & Wireless - Yongguang ZHANG
Hardware - Feng-Hsiung HSU
Software Analytics - Dongmei ZHANG
Mobile & Sensing – Feng ZHAO

MSRA Focus Areas

Data-Intensive Computing

Natural User Interface Multimedia

Search and Online Ads

CS Fundamentals

Research

Research Groups

Hardware Computing

Human Computer Interaction

Internet Graphics

Internet Media

Knowledge Mining

Machine Learning

Media Computing

Mobile and Sensing Systems

Innovation Engineering Group

Data Management,
Analytics and Services

Multimedia Search and Mining

Nature Language Computing

Software Analytics

Speech

System

Theory

Visual Computing

Web Search and Mining

Wireless and Networking

Internet Economics and Computational Advertising

Academic Impact

Publications:

CVPR 2012/11/10/09/08/07

SIGIR 2012/11/10/09/08/07

SIGGRAPH 2012/11/10/09/08/07

WWW 2012/11/10/09/08/07

ACL 2012/11/10/09/08/07

SIGKDD 2012/10/09

ACM Multimedia 2011/10/09/08/07

SIGMOD 2012/11/10

UbiComp 2012/11

CHI 2012/11

SODA 2013/12/11

AAAI 2012/11

VLDB 2012/11

OSDI 2012/SOSP 2011

NSDI 201/11

ICSE 2012

FSE 2012

26/13/18/8/15/16 papers

6/8/5/8/8/7 papers

9/4/7/6/8/7 papers

3/3/6/9/8/6 papers

7/5/4/6/5/4 papers

8/3/7 papers

15/7/6/8/8 papers

3/2/5 papers

2/4 papers

7/5 papers

2/3/3 papers

3/4 papers

4/3 papers

1/1 paper

2/1 papers

2 papers

1 paper

Best papers - Ubicomp 2012, ICIMCS 2012, Pervasive 2012, Eurosys 2012, MobileHCI 2012, PhoneSense 2011, NSDI 2011, IEEE CSVT 2011, CoNEXT 2010, ISSAC 2010, AIRS 2010, UIC 2010,

Best student Paper Awards – PODC 2012, ECML PKDD 2010

Best demos – Sensys 2011, ACM-MM 2010, SIGCOMM 2010, MMM 2010

Research

Research Updates

Natural User Interface

- Kinect User Identity
- Kinect Object Digitalization
- Avatar Kinect
 - Kinect Head Pose & Face tracking
- Kinect Body Gesture Recognition

Kinect based Object Digitization

Play with your own gadgets in games

Share your buddy with others

Natural UI Interaction w/ Virtual Objects

Kinect based Object Digitization

Simple inputs

Front and back snapshots of objects

Smooth 3D reconstruction

Poisson surface reconstruction to fill holes and generate watertight smooth surface

Fast speed

Parallel octree construction using both CPU and GPU

Comparisons

35,862 Triangles
36MB Mem
20 Seconds

33,263 Triangles28MB Mem5.6 Seconds

7,662 Triangles
20MB Mem
1.4 Seconds

Research

Comparisons

35,862 Triangles 36MB Mem 20 Seconds

33,263 Triangles 28MB Mem 5.6 Seconds

7,662 Triangles 20MB Mem 1.4 Seconds

Avatar Kinect

Facial expression tracking

3D head pose tracking

3D expression tracking

Capture subtle expression

Brow frown, mouth movement

Super Fast RGB + Depth sensing

Track 3D Pose

Avatar Kinect

Facial expression tracking
3D head pose tracking
3D expression tracking

Capture subtle expression

Brow frown, mouth movement, ...

Super Fast RGB + Depth sensing

Track 3D Expression

Gesture Recognition

- A lot of applications require accurate understanding of human gestures
 - Sign language reading and dancing
- Some tasks may require the detailed sequence of the gesture action
 - Kinect Sports
- We tackle the problem of gesture recognition + alignment

Xbox Kinect Pipeline: Skeleton Correction & Alignment

Depth Image

Background Removal

Skeleton Extraction Skeleton
Correction &
Alignment

Research

Skeleton/Gesture Recognition

Two key observations:

- (1) There are systematic errors which enable us to learn alignment function for the correction.
- (2) The alignments are nonlinear and non-deterministic.

Skeleton/Gesture Alignment

- The skeletons are aligned w/ numerical values
- •The numerical values are used to drive the avatar

A Hidden Markov Model

Aligned Values

Input Skeletons

Output Distribution Model

- Random forests
 - A collection of decision trees
 - Like mixture distribution to model player variation
 - Ensemble learning (voting) for robustness

- Decision tree
 - Leaf nodes model different poses

Demo

Ground-truth (blue), Input estimation (red), Corrected skeleton (grey)

Qualitative Results

PCA 0.99 nobucket 0.063947 0.007199 0.0810688 0.046536 2117.9KB 108.2KB 27.	
FCM 0.33 HONGOKEC 0.003347 0.007133 0.0010000 0.040330 2117.3KD 100.2KD 27.	7.58003035
PCA 0.99, 70/95 0.069329 0.008458 0.0979424 0.051021 1770.5KB 24.73KB 27.	7.42888109
PCA 0.99, 40/60 0.077407 0.009294 0.1018474 0.05586 658.9KB 8.9KB 22.	2.17762486
RFR 50 trees 0.045592 0.009073 0.0748388 0.027429 3778.8KB 13.2KB 42.	2.40323838
RFR 25 trees 0.046848 0.008629 0.0673977 0.032307 1692.4KB 7.51KB 41.	.99635189
RFR 10 trees 0.053246 0.008121 0.0702379 0.033958 676.3KB 3.46KB 39.).17118753

Research Updates

Multimedia

- Head Scanning
- Hair Modeling

Kinect Based 3D Face Avatar

3D face avatar based on Kinect input

- Simple capture 3 shots
- Good results & robust for different people
- Depth provide 3D shape of face, but noisy
 - modeling overall shape and nose
 - robust alignment and pose estimation against face model
- RGB
 - For texture details (skin color)
 - For modeling feature regions (mouth, eye)
 - Could use high-resolution RGB face shot from cameras

Kinect Based 3D Avatar

Research

Kinect Based 3D Face Avatar (Fang Yang will give me new one on Sat.)

Research

Hair in Real World

- Important appearance feature
- A lot of (~100k) thin fibers
- Diverse hairstyles
- Complex interaction and dynamics

Hair in Graphics

- Important applications
- Manual modeling is difficult
- Capturing is difficult too
- Impractical for normal users

Goal: 3D Hair from Single Image

Goal: 3D Hair from Single Image

- Detailed 3D geometry
- Visually plausible
- Simple user interaction
- Enable interesting apps

Result

Single portrait image + user strokes

Algorithm

Strand Tracing

3D Strands: depth estimation

Initial depth

w/o region structure w/ region structure

3D Strands: hair volume

Additional strands in the hair volume

Applications

- Portrait pop-up
- Hairstyle replacement
- Hairstyle editing

Portrait Pop-ups: layers completion

Portrait Pop-ups: more results

Hairstyle Replacement

- Build pop-up for source & target.
- Compensate for head's shape/pose

Hairstyle Replacement: more results

Original

Replaced

Hairstyle Replacement: more results

Research

Hairstyle Editing

Original image

Adjust smoothness

Add geometric noise Research

Limitations

Not a complete 3D model of the real hair

Extension to video would be ha

Lighting condition is ignored

Research

Single Image 3D Hair Modeling

3D Hair Replacement

3D Hair Replacement

Research Updates

Search and online Advertisement

- Large Scale Image Search through Query by Image
- Building Image Knowledge Base through Mining Billions of Web Images
- Keyword auction: Probabilistic Broad Match, Optimal Auction Learning, Bandit Algorithm for Bid Optimization
- Attribute based Image Search
- Lights!

Attribute based Image Search

What Are Attributes?

Linedrawing

What Are Attributes?

Screen Shot

Tiled Images

What Are Attributes?

Simple Background

Portrait

Attribute-based Search Framework

Search Tasks: Compare, Categorize, Rank, Filter, ...

- Advantages
 - Scalable
 - High precision
 - Used explicitly or implicitly

Color/Clipart/Linedrawing Filter

Intention Analysis (w/ Query Object)

Research

Intention Analysis (w/o Query Object)

Forest +

Our Solution

- Salient object detection
 - Check if an image contains a salient object
 - Discover the position of the object

Original Images

Salient Object Detection

Our Solution

- Salient object detection
 - Check if an image contains object
 - Discover the position of the object
- Learn to naming colors + context-aware color naming

Dominant Color Naming

Our Solution

- Salient object detection
 - Check if an image contains object
 - Discover the position of the object
- Learn to naming colors + context-aware color naming
- Textual adjustment
 - Promote images whose surrounding texts contain the color name (e.g., red,...)

Research

forest + yellow

Research

tulips + pink

Research

Examples of Cliparts

Important Filters

Usage on image search

rule based classifier

	Usepti-	560	Gids
20	7:95	147	11-11
1	6.00	6.01	w.m
W	8.401	16.421	7.9
100	mote:	113-1651	10-10
1	45-451	75.141	18-21
X:	40.00	161.781	21-19

Filter out complex background image and generate foreground mask

	Usepti-	540	Gids
20	7+95	147	11-11
1	6.07	6.01	40.00
W	6.40	16.421	7.8
ine.	11:10	113-1651	10-10
1	45-451	75.141	18-21
36.	40.00	161.181	21-19

of colors in the image border and corners

rule based classifier

Simple Background Filter:

Filter out complex background image and generate foreground mask

foreground mask shape features, like perimeter, area...

rule-based classifier

Research

Shape Filter:

Prefer images with simple shape

Web Images

rule-based classifier

Durie in Looking Memory

Shape Filter:Prefer images with simple shape

Shape Filter

pperel Size Chart				
	Usepti-	500	Gid	
	7:95	147	11-11	
	5.00	6.00	w.m.	
	8.401	16.421	7.9	
	mote:	113-1651	10-10	
	45-451	75.141	18-21	
6	465401	761791	21-19	

- 14	37 6		30	
	1	i di	6	
		m	Ch.	
20			31	
		002	-	

normalized edge pixel numbers

rule-based classifier

Texture Filter:

Prefer images without complex texture

100000		
	78)
-	1	
-	1000	
1:35	20	i

normalized edge pixel numbers

Web Images

Background Filter

Shape Filter

Texture Filter

rule-based classifier

Texture Filter:

Prefer images without complex texture

(December 29-39, 3006)

Web Images Background Filter Shape Filter Texture Filter

Photo Filter:Classify photo and cartoon style

- gradient strength histogram
- saturation histogram
- lighting histogram

Research random forest classifier

- gradient strength histogram
- saturation histogram
- lighting histogram

random forest

	Usepti-	540	Gride
20	7:95	1-0	11-11
1	6.00	6.01	w.m.
	8.401	16-121	7.9
100	mote:	11.0-18.01	19-10
1	45-311	19.141	18-21
X6.	40.00	161.781	21-19

	Usegth-	560	Gride
20 T+9.5	147	11-11	
1	6.07	6.01	w.m.
W	6.40	16.421	7.9
-	11:10	113-1651	10-10
1	45-481	19.141	18-21
X6.	40.00	161.181	21-19

Text Filter:

Text detection using gradient feature

	Usepti-	560	Gride
20	7:95	147	11-11
1	5.00	6.00	w.m.
W	8.401	16-121	7.9
*	mote:	113-1651	10-10
1	45-451	75.141	18-21
X:	40.00	161.781	21-19

Background Filter Shape Filter Texture Filter Photo Filter Text Filter

Web Images

Text detection using gradient feature

Cascaded Filtering

A problem with filtered results

The results are not always attractive!

Research

Relevance # Clipart Relevance

Ranking should be based on the relevance to query and clipart style, not only the query

Observation - Good clipart images often contain "clipart" or "cartoon" keywords

Solution: visual filter + clipart specific text ranker

Example

crab

keyword: crab
Visual attribute: clipart

keyword: crab

keyword: crab, clipart Visual attribute : clipart

Visual filter only

Visual + Text

Research

Results without Clipart Specific Text Ranker

ish

Results with Clipart Specific Text Ranker

fish

Results without Clipart Specific Text Ranker

<u>girl</u>

Results with Clipart Specific Text Ranker

girl

Bing Clipart Filter

Visual filter + clipart specific text ranker

Linedrawing Filter

Results

IMAGES VIDEOS MAPS MORE bing D sun Line drawing * Clear filters Safe Search: Moderate * 1.410,000 RESULTS Layout * Cartoon Images Of The Clipart Of The Tattoos Designs | Drawings Of The Photos Clip Art Tattoos Of The Layers Of The TRENDING IMAGE SEARCHES Supermoon Rocky Mountain goats The Avengers Kate Upton Cole Harnels Taylor Swift Largest truck in the world Miley Cyrus Liam Hemsworth Junior Seau Andre 3000

Cascaded Filtering

Web Images

of non black-white pixels in the image

rule based classifier

Color Image Filter:
Filter out non black-white images

Cascaded Filtering

Text Filter:

Filter out images with big text regions (share with clipart filter)

Attribute based Visual Quality Improvement

Motivation

Visual quality is important for user experience

Existing System

Text based information (text metawords):

- Word hit number
- Phrase exactly match number
- Static rank
- BM25
- •

Problem:

Only used text information, can not consider visual quality

Integrate Visual Features

Integrate Visual Features

People images

People related attributes (metawords)

just face

head and shoulder

human body

others

Object images

Object related attributes (metawords)

size: large

size: medium

size: small

position: center

position: off-center

position: edge

Image styles

186 this limits amount as discourance in the limits are state of the s

M. 10h Bot 't held gand to recome home on the field yearing the Alexbox at home has a in familia of the Recommonly Description & A hart fair Alexans to pile Technik from a case when he did Diffusion five presents (a) his drone piles can be any larger trade-

ten for "West of the Plant" (See Bases).
From July 11, 1840, General data West for a Galler 12, 1840, General data West for a Galleria data of the control of the Bases of the Galleria data of the Ga

Not prefer

Image style related attributes (metawords)

linedrawing

clipart

black-white

tiled image - scatter

tiled image - grid

General Photos

- Attributes (metawords) for general photos
 - Photo quality

fair quality

low quality

Image color entropy

Old results (query = bees)

Current results (query = bees) Research

Old results (query = Royal Wedding)

Research Updates

Data Intensive Computing

- Server (Software) Switch in DataCenter
 - NSDI 2011 best paper
- Real-time matrix computation & StreamInsight
 - Eurosys 2012 best paper
- Urban Computing
- Engkoo Pinyin IME Next generation cloud-based IME
 - Beta release: http://pinyin.engkoo.com/

URBAN COMPUTING

Urban Computing

Understanding

Urban computing is emerging as a concept where every sensor, device, person, vehicle, building, and street in the urban areas can be used to sense city dynamics to enable technologies to serve people in urban environment.

City Dynamics

- Scope
 - Traffic flow
 - Human mobility
 - Energy consumption
 - Environment
 - Economics
 - Population
 - ·····

Data available

- Mobile phone signal
- GPS traces of vehicles and people
- Ticketing data in public transportation systems
- User-generated content (Tweeter, Yelp)
- Map & POI data
- Transportation sensor networks
 - Camera and loop sensors
 - Parking lots
- Environmental sensor network
 - Air quality
 - Temperature
 - Radiation
- Real estate listings

...

Beijing Subway by 2015: The city with the longest distance of subway (561/Kes)

Two times longer than that of Paris(221.6KM)

Route Construction from Uncertain Trajectories

Finding Smart Driving Directions

Anomalous Events Detection

Passengers-Cabbie Recommender system

Urban Computing for Urban Planning

Discover Regions of Different Functions using Human Mobility and POIs

Goals

- Discover regions of different functions in urban areas
- Identify the kernel density of a functionality

Applications

- Calibrating urban planning
- Business planning
- Advertising

Motivation and Challenges

POIs indicate the function

- But not enough
 - Compound
 - Quality

- Human mobility
 - Differentiate between POIs of the same category
 - Indicates the function of a region

Methodology Overview

- Mapping from regions to documents
 - Regions \rightarrow Documents (R)
 - Functions \rightarrow Topics (K)
 - Mobility patterns

 Words (N)
 - POIs meta data like keywords and authors
- LDA(Latent Dirichlet Allocation)-variant topic model

Territory Identification

- Region aggregation
 - Cluster regions according to topic distributions
 - Aggregate individual regions into big territories

Annotation of Territories

Emerging residential areas

Regions under construction

Developed residential areas

Developed commercial areas

Areas of historic interests

Nature and parks

Education and science areas

Developing commercial areas

Diplomatic and embassy areas

Evaluation

2010 2011

Research Updates

CS Fundamentals

- Theory papers in SODA, STOC, FOCS, WINE, ...
- System & Networking paper in SOSP, SIGCOMM, NSDI, ICSE, Eurosys, Mobicom, Mobisys, Sensys, ...
- BSGP High-level GPU programming language
- Indoor Navigation

BSGP: Bulk-Synchronous GPU Programming

- High-level programming language
 - Hardware independent
 - Easy to write and maintain
 - Well optimized

Easy to debug

GPUs vs. Programmers

GPU architecture: stream/kernel

Programmer: data structure/algorithm

Bulk Synchronous Parallel (BSP)

- First proposed by Leslie G. Valiant (1990)
 - A bridging model for parallel computation
- First CPU implementation by Bill McColl (1997)
 - BSPlib: The BSP Programming Library
- Challenges on GPUs
 - Many-thread computational model on GPUs because of the stream-kernel architecture

Research on BSGP (2007~now)

- Compiler (ACM TOG 2008)
 - BSGP: Bulk-Synchronous GPU Programming
- Debugger (ACM TOG 2009)
 - Debugging GPU Stream Programs Through Automatic Dataflow Recording and Visualization
- Applications on GPUs (ACM TOG 2008~2012)
 - KD-tree construction
 - Micropolygon ray tracing
 - Hair modeling and rendering

Eating Our Own Dog Food (2007~now)

- 20+ new GPU algorithms
 - First KD-tree/Octree construction on GPUs
 - Neural network training
 - Optimization

- System
 - RenderAnts
 - About 50,000 lines of BSGP code, and compiled into about 2,000 CUDA kernels.

Contribution to Community

- BSGP download
 - Research.microsoft.com download site
 - http://research.microsoft.com/en-us/downloads/283bb827-8669-4a9f-9b8c-e5777f48f77b/default.aspx

Fast Bootstrapping of Indoor Localization Services

Motivation

- Growing demand for finegrained indoor localization
 - Indoor navigation
 - Mobile advertising
 - Mobile social network
 - **(a)**

Research

Overall System Architecture

Few indoor localization systems actually deployed!

Key Problem

How to efficiently build and maintain the location database?

- Challenges:
 - Data collection: high user involvement
 - Offline processing: noisy or bad data
 - Database maintenance: frequent environment change

Taxonomy of Data Collection Methods

- Supervised: Tap&Hold
 - Manually locate oneself on map and collect WiFi fingerprint for that spot
- Unsupervised: Walking-based
 - Walking with a survey plan
 - For vendors, may tapping at landmarks (e.g., turns)
 - Good for initial data collection
 - Freestyle walking
 - For ordinary users in their normal use
 - Good for database maintenance, via crowdsourcing

Enabling Walking-based Collection

- Inertial sensor based Dead-Reckoning
 - Robust step detector
 - Robust heading estimator
 - Accurate, personalized step length model

Walking with a Survey Plan

- Problem: Noisy sensor data
- Solution: Robust turn detection algorithm

Accuracy of Turn Detection

Path/Trace list	# of Effective turns	# of Detected turns	Detected Turn Position Error (mean / min / max)
1 st	18	18	1.07 , 0.25, 2.24 (seconds)
2 nd	9	9	1.17 , 0.22, 2.38 (seconds)
3 rd	9	9	1.23 , 0.41, 2.50 (seconds)
4 th	4	4	0.91 , 0.58, 2.40 (seconds)

Average step position error: 1.1 m

Comparing Data Collection Methods: End-to-End Evaluation

- Training datasets
 - Tap & hold
 - ▶ 45 points in 35 minutes
 - Walking
 - ▶ 1809 points in 35 minutes
- Test data set
 - 3288 points

End-to-end Evaluation*

Plain walking outperforms Tap&Hold, with much less user effort and much higher data yield.

Data Collection with Freestyle Walking

- Challenges
 - Unplanned paths: requiring path detection
 - Phone usage diversity: error-prone DR results
- Solutions:
 - Trace-back via backward propagation in PF
 - Location refinement via overall trace rectification
 - Match traces to map, by landmarks (e.g., turns)

An Illustrative Example

Accuracy under Freestyle Walking

Conclusion

- MSRA follows the same missions after 14 yrs
 - Advance the state of the art
- We are expanding our research areas
 - Systems & networking, HCI, Haptics,...
- We love to collaborate with you as usual
 - Please visit us often & give us feedback
- Let's work together

THANK YOU