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Keio University
• Private comprehensive education institution

• 10 undergraduate faculties, 14 graduate schools 

and over 20 research centers

• 6 campuses across the greater Tokyo area

• University hospital, schools from elementary to 

high school levels
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Shinanomachi 
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Shonan Fujisawa

Campus

Shiba-Kyoritsu 
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Dependable Ubiquitous Nodes
Environmental Sensor Nodes

SS Lab., Smart Living, uPlatea

Service Platform: Smart Furniture, uTexture

uPhoto, @Reader, uTexture, InfoRod

photo-based Interaction, Gesture-based Interaction

Multi-display Interaction

MANET, Heterogeneous MANET
Ubiquitous Network Browser

Smart Spaces
Ubiquitous Service Platform (HW/SW)
HCI
Sensors and Dependable Ubiquitous Nodes
MANET and Heterogeneous MANET

Hide Tokuda Lab., Keio University
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http://www.xbow.jp/zigbee-smartdust.html
http://www.xbow.jp/zigbee-smartdust.html
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Recovering from 3.11 Disaster
Thank you for Supporting and Praying for Japan
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Recovering from 3.11 Disaster
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Recovering from 3.11Disaster (by ABC News)
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Recovering from 3.11Disaster (by ABC News)
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Urban Context Capturing
for Disaster Recovery
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Honda & Google Collaboration 
Passage Route Map (by HONDA)
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Yamamoto-town’s （山元町） Geiger Counter Map
by a community bus (by Ubiteq)
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 Summary



12

What are Ubiquitous Services
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Ubiquitous Services

 Service type: any3 vs. only3
 At anytime, anywhere, for anyone

 Only now, only here, only for me/us

 Ubiquitous Services
 Context-aware Services

 Context-aware Health Care

 Context-aware Information Services

 Presence Service for your friends (Real-Space SNS)

 Push-type information service

 Mobile e-Commerce with RFID tags

 and more…
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Cyber-Physical Coupling

Coupling = Sensing + Processing + Actuation
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Urban Context Capturing
Limitations: Useful and Harmful
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Context-awareness in Ubiquitous Services

 Personal Context
 e.g. sleeping, eating, standing, running, walking, moving, 

stopping, … etc.

 Group Context
 e.g. group meeting, discussion, sports, ad hoc chatting, 

lecture, … etc.

 Urban Context
 e.g. City-wide context

 blackout area, rain, hot spots, traffic jam, train accident, 
social events, … etc

 Nation-wide Context
 e.g. population distribution, power distribution, … etc
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My Sports Pals (www.mysportspals.com)
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SkyHook’s SpotRank
(http://www.skyhookwireless.com)



21

NTT DoCoMo (Mobile Space Statistics(2010))
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Mobile Space Statistics (2010)
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Limitations: Useful and Harmful

 Anonymity Set and Privacy Enhancement
 Visualization Problem: Density vs. Actual Data

 Sport Pals: No cycling path

 Small Anonymity Set Problem

 Data Accuracy
 Mobile Statistics/Skyhook

 Real-Time Sensing/Processing/Actuation
 Mobile Statistics

 Target Users
 City Planner vs. Individual
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Urban Context Capturing
Possibilities
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Weather News: Hybrid Sensing Model

Defense forces for Guerrilla Thunderstorm
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Weather News: Better Prediction
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Electricity Consumption: 
Improving Citizen’s awareness



28Visualization of Shinjuku City Park with Airy Notes 

uPart
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Heathlandscape (www.healthlandscape.org)
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Possibilities: Big Potentials  

 Improved Data Accuracy and Prediction
 Use of Physical Sensors with Human Sensors
 Hybrid Sensing Model with Crowdsourcing

 Human as a Sensor
 Crowdsourcing with Gamification

 Tweet as a Sensor
 Geo-tagged Tweets

 Real-Time Dynamic Event Analysis
 Prescheduled event vs. Dynamic Event

 Open data as a Sensor
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Detection, Classification and Visualization of Place-
triggered Geotagged Tweets

 Shinya Hiruta (1

 Takuro Yonezawa (1

 Marko Jurmu (1,2

 Hideyuki Tokuda (1


1 Keio University, 2 University of Oulu
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Background: Real World Event Detection 
with Location-Based Social Networks

 Real world event
 Structured as a collection of descriptive attributes

 e.g. Place, Time, Content, ...
 “Baseball game will be held at PNC park from 6:00 PM”

 However, attributes are often dynamic
 e.g. Baseball game that gets postponed because of rain

 e.g. A traffic accident occurring on a way and causing traffic congestion

 LBSN are suitable for extraction of dynamic information
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Motivation: 
Geotagged tweets are not always useful 
for real world event detection!

I’m at 

Convention Center

Pumpkin spice lattes at 

Starbucks. So good !

It’s about

to rain

@_BaracObama How are 

you today?

Useful Tweets

Unuseful Tweets

I want to watch today’s 

animation on TV !

I love Justin Bieber !

Content is related to 
the location

Content is NOT
related to the 

location
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Place-triggered Geotagged
Tweets

 Definition
 Tweets that have both: 

 Geotag metadata 

 Content relevant to the associated location

 Research Goal
 Detection

 Classification

 Application
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Detecting Place-triggered 
Geotagged Tweets

Without our system With our system
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Detecting Place-triggered 

Geotagged Tweets
Without our system With our system
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Detecting Place-triggered 

Geotagged Tweets
Without our system With our system
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Detecting Place-triggered 

Geotagged Tweets
Without our system With our system
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Detecting Place-triggered 

Geotagged Tweets
Without our system With our system
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Noise

Detecting Place-triggered 

Geotagged Tweets
Without our system With our system
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Related Work

 Earthquake shakes twitter users: Real-time event 
detection by social sensors.
 T. Sakaki, M. Okazaki, and Y. Matsuo. 
In Proceedings of the 19th International Conference on World 

Wide Web, pages 851–860, 2010.

 Measuring geographical regularities of crowd 
behaviors for twitter-based geo-social event 
detection. 

 R. Lee and K. Sumiya. 

In Proceedings of the 2nd ACM SIGSPATIAL International Workshop 
on Location Based Social Networks, pages 1–10, 2010.
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Comparison with Related Work

Existing Research Our Approach

e

Top-down process

TweetTweet TweetTweet

Specific Real World Event

Bottom-up process

Various Real World Event

x y z

TweetTweet TweetTweet

Place-triggered
Non

Place-triggered
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Preliminary Survey

 Geotagged tweets in Twitter around Japan

 Period: From 2011-11-21 to 2011-12-31

 Number of sample: 2,000

 Classified these tweets to certain types based on their content

Most of the tweets (42.5%) were classified as noise
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Classification of the Place-
triggered Geotagged Tweets

 Classified to Five types:

 Report of whereabouts

 A tweet that user refers to his/her current location

 Food

 A tweet where user shares information regarding current food or 
drink

 Weather

 A tweet about weather of the location

 Back at home

 A tweet where user reports the fact that he/she is back at home

 Earthquake

 A tweet in which user reports the feeling of the earthquake
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Approach

 How do we detect Place-triggered Geotagged 
Tweets?

 We started with straightforward approach
 Report of whereabouts

 Detecting checkin activity 
(Foursquare, Loctouch, Imakoko-now)

 Food, Weather, Back at home and Earthquake

 Naive keyword matching method with dictionary

 We assume that people tend to classify tweets mainly by 
distinctive keywords
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Design and Implementation
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Interactive Visualization of Place-
triggered Geotagged Tweets
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March 14, 2012 without Food Filter
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March 14, 2012 with Food Filter
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March 14, 2012 without Earthquake Filter



52

March 14, 2012 with Earthquake Filter
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Evaluation

 Methodology
 Creating Ground-truth

 Asked 18 third party people to classify tweets

 12 men in their 20s

 2 men in their 30s

 5 women in their 20s

 Dataset

 Geotagged tweets nearby Japan

 Period: From 2012-01-01 to 2012-03-31

 Total amount: 4,524,257

 Each participants reviewed 500 tweets which were randomly 
sampled from the dataset
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Evaluation Results

Type of Tweets Precision Recall F-measure

Report of whereabouts 93.18% 77.16% 84.42%

Food 53.6% 17.8% 26.7%

Weather 57% 21% 30%

Back at Home 54% 23% 32%

Earthquake 76% 66% 71%

Table 1. Classification result by the system

Positive Negative

TRUE 40.09% 15.84%

FALSE 2.18% 41.89%

Table 2. Accuracy rate of detecting place-triggered geotagged tweets

* Harmonic mean

False Negative

False Positive
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Future Work

 Expanding the classification
 Expand to other countries

 More complete categories

 Improving detection accuracy
 Linguistic analysis, slang

 Discovering real events
 Automatic event detection

 Temporal-spacial analysis should be investigated



56

Conclusion

 Capturing Urban Context
 Limitations: Useful and harmful

 Anonymity Set and Privacy Enhancement
 Visualization Problem
 Small Anonymity Set Problem

 Possibilities
 Hybrid Sensing Model
 Crowdsourcing and Gamification
 Real-Time Dynamic Event Analysis

 Place-triggered Geotagged Tweets Analysis

 Detecting Five types of  the place-triggered geotagged tweets

 Report of whereabouts, Food, Weather, Back at home and Earthquake

 Showed that the system can detect place-triggered geotagged tweets with an overall accuracy of 82%
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Thank you!
http://www.ht.sfc.keio.ac.jp/


