Context Dependent Recurrent Neural Network Language
M odel

Tomas Mikolov and Geoffrey Zweig
Microsoft Research Technical Report MSR-TR-2012-92
July 27h 2012

Abstract

Recurrent neural network language models (RNNLMs) haveri®e demonstrated state-of-the-art
performance across a variety of tasks. In this paper, weawgptheir performance by providing
a contextual real-valued input vector in association wiabheword. This vector is used to convey
contextual information about the sentence being modelggeBforming Latent Dirichlet Allocation
using a block of preceding text, we achieve a topic-cond@®RNNLM. This approach has the key
advantage of avoiding the data fragmentation associatéd wiilding multiple topic models on
different data subsets. We report perplexity results orPenen Treebank data, where we achieve a
new state-of-the-art. We further apply the model to the \8&iéet Journal speech recognition task,
where we observe improvements in word-error-rate.

Key words: Recurrent Neural Network, Language Modeling, Topic Mogdietgent Dirichlet Allo-
cation

1 Introduction

Recurrent neural network language models (RNNLMs) [1, eh@cently been shown to produce
state-of-the-art results in perplexity and word error i@&teoss a variety of tasks [3, 4]. These net-
works differ from classical feed-forward neural networkdaage models [5, 6, 7, 8] in that they
maintain a hidden-layer of neurons with recurrent conoestito their own previous values. This
recurrent property gives a RNNLM the potential to model l@pgn dependencies. However, the-
oretical analysis [9] indicates that the gradient compaitabecomes increasingly ill-behaved the
farther back in time an error signal must be propagated, lsaidierefore learning arbitrarily long-

span phenomena will not be possible. In practice, perfoomaomparisons with very long-span
feed-forward neural networks [10] indicate that the RNNL$/similar to a feedforward network

with eight or nine words of context.
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In the past, a a number of techniques have been used to briggsfwan and contextual infor-
mation to bear in conventional N-gram language models.dperthe simplest of these is the cache
language model [11] in which a language model score basedmalal trained on the lagt words is
interpolated with that from a general model. Similar in gp@ the cache based models are the latent
semantic analysis (LSA) based approaches of [12, 13]. Tineleods represent long-span history as
a vector in latent semantic space, and base LSA-estimatetiprobability on the cosine similarity
between a hypothesized word and the history. These sityilaaised probabilities are then interpo-
lated with N-gram probabilities. Topic-conditioned laage models , e.g. [14, 15], most frequently
work by partitioning the training data into subsets, witk tfoal of making subsets containing data
on only one topic. Separate language models are then traneldat runtime the most appropriate
one (or combination) is chosen. In a voice-search apptindti6], long span context was used in a
maximum-entropy N-gram model [17, 18] by creating feattioasdicate when a hypothesized word
appeared in a user’s history. Finally, in whole-sentenoguage models [19, 20], trigger features
based on the existence of widely separated word pairs atsadas long-span information.

In this paper, we study the use of long-span context in RNNL®T&e approach to increasing the
effective context is to improve the learning algorithm tmiavthe problem of vanishing gradients
identified in [9]. This is exemplified by recent work on Hessfaee optimization [21]. Another
is to modify the model itself, as in the Long Short-Term Megnoeural networks [22], which use
gating neurons to "latch” onto the error signal for multiplaesteps. In contrast to these approaches,
we have chosen to explicitly compute a context vector basetth® sentence history, and provide
it directly to the network as an additional input. This has #uvantage of allowing us to bring
sophisticated and pre-existing topic modeling technigodsear with little overhead, specifically
Latent Dirichlet Allocation (LDA) [23]. Moreover, it doesis in a way that in other applications
allows us to use context that is external to the text (e.g.céoveepresenting user-habits in voice
search). Chu and Mangu [24] also recently used Latent D@ickllocation to determine topics, but
performed a hard partitioning of the data and built a set gjbitit models.

This paper makes several contributions. First, we suggestde of context vectors to improve the
performance of a RNNLM. Secondly, we demonstrate perpléxiprovements over the previous
state-of-the-art for the Penn Treebank. Thirdly, we dgvelo efficient method for computing con-
text vectors when using a sliding window of context. Finalle evaluate our models by rescoring
N-best lists from a speech recognizer and observe improvestigere as well.

The remainder of this paper is structured as follows. SeQiaescribes the augmented RNN
model we use. Section 3 describes our method of constructingext vectors based on Latent
Dirichlet Allocation. Sections 4 and 5 present perplexigults on the Penn Treebank and word
error rates on the Wall Street Journal speech recognitil ¥/ provide some future directions
and concluding remarks in Section 6.

2 Model Structure

The simple recurrent neural network language model [1] isteef an input layer, a hidden layer
with recurrent connections that propagate time-delaygdass, and an output layer, plus the cor-
responding weight matrices. The input vecioft) represents input word at tinteencoded using

1-of-N coding (also called one-hot coding), and the outpyél produces a probability distribution
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over words. The hidden layer maintains a representatidmecéntence history. We extend this basic
model with an additionafleature layer f(t) that is connected to both the hidden and output layers,
as shown in Figure 1. The feature layer represents an exiem vector that should contain com-
plementary information to the input word vectwrt). In the rest of this paper, we will be using
features that represent topic information. Neverthelgsgjote that the external features can be any
information source such as part of speech tags, morphalbigiormation about the current word
w(t), or speaker-specific information in the context of ASR.

There are several possible advantages to using topic iattwmas additional input to the model,
instead of building many separate topic-specific submodedsnly, the training data will be less
fragmented. Also, by providing the topic information ditlg@t the input of the model, we elegantly
avoid the long-standing problem of training recurrent a¢uetworks to remember longer-term
information (usually referred to dke vanishing gradient problem, and addressed in [9, 22]).

The input vectow(t) and the output vector(t) have dimensionality of the vocabulary (later de-
noted as V). After the network is trained using stochast@zlgmt descent, the vectpft) represents
a probability distribution over words from the vocabulaiyem the previous wora(t), the context
vectors(t—1) and the feature vectd(t).

The values in the hidden and output layers are computed lasvfol

s(t) = f (Uw(t) + Ws(t—1) + Ff(t)) (1)
y(t) =g(Vs(t) + Gf(t)), 2)

where 1 o
f(z):re,z, 9(zm) = S e ©))

The training of neural network language models consistsalirig the weight matriced,V, W, F
andG such that the likelihood of the training data is maximizeke Teader is referred to [5, 25] for
further detail.

3 Latent Dirichlet Allocation for Context Modeling

We use Latent Dirichlet Allocation (LDA) [23] to achieve arapact vector-space representation of
long span context. This procedure maps a bag-of-words septation of a document into a low-
dimensional vector which is conventionally interprete@aspic representation. For our purposes, a
document will consist of a sentence or block of contiguousdsoEach induced topic has associated
with it a unigram distribution over words, and the colleatif distributions is denotefl. LDA is a
generative model of text, and the generation process of andewct goes as follows:

1. Decide on the document lendthby sampling from a Poisson distributioN:~ Poissorié ).

2. Decide on a multinomial distribution over topics for thecdment by sampling from a Dirichlet
distribution parameterized ly: © ~ Dir(a).

3. For each of th&l words to be generated, first decide on a topic to draw it frard,then on the
word itself:

e Choose the topiz, ~ Multinomial(©®).
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Fig. 1 Recurrent neural network based language model, with thitiankl feature layef(t) and the corresponding
weight matrices.

e Choose a worg, from the unigram distribution associated with the togiewn|z, ).

A key parameter in LDA isa, which controls the shape of the prior distribution overi¢spfor
individual documents. As is common, we used a fixedcross topics. Whea is less than 1, the
prior distribution is peaked, with most topics receiving/lprobability in any given documend. = 1
represents a uniform prior, arad > 1 penalizes distributions that assign a high probabilitang
one topic in a specific document. Blei et al. [23] describe #ha based on variational inference
for learning the model parameters from a collection of doents, and our experiments use their
implementationtit t p: / / ww. cs. pri ncet on. edu/ ~bl ei /| da- c/).

The result of LDA is a learned value far, and the set of topic distribution®. An inference
procedure can then be used to obtain the expected numberd$wocounted for by each topic in
any given text, and thus the topic distribution of the text.

In our experiments, we used topic distributions computedfa fixed-length block of words
preceding the current word. Thus, it is necessary to uptiatedntext vector after each word, which
is an expensive process to do exactly. Therefore, as desdrihe next section, we have developed
an efficient alternative method for computing context vestmsed on thg matrix output by LDA.
Note that this is not a modification of the LDA training or iréace procedures; instead, it is an
efficient technique for computing context as the RNN is beuny
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3.1 Fast Approximate Topic Representations

Empirically, it has been observed [23] that the runtime fB¥Linference isO(kN?) whereN is the
number of words, andl is the number of topics. Computing an LDA representatiorefech word
given its sentence prefix would thus requékN?) time, which is undesirably slow. The same holds
for computation over a sliding window of words. Therefore developed a more efficient method
for computing context. In this computation, we make contedtors directly during the training of
the RNN language model, using only tBematrix computed by the LDA. From th@ matrix, we
extract a continuous-space representation for each wonsing the normalized column vectors.
Since the that the topics are about equally represente@itrdining data training data, this results
in a vector of entriesl, representingP(tj|w;).

We found that it is possible to compute a reasonable topicilision for a block of wordsw
by multiplying individual distributions over topics for efa word fromw, and renormalizing the
resulting distribution:

1 K
f(t) = 7 [Ltw(tfi), (4)

wheret,) is the vector that represents the LDA topic distributionard w(t). For this approxi-
mation to work, it is important to smooth tifematrix by adding a small constant to avoid extremely
small probabilities.

As we see in Section 4, the procedure can be further improyedeiighting more recent words
higher than those in the more distant past. To do this, wednotre features with an exponential
decay, where we compute the feature vector as

1 1y
f(t) = Sf(t— DY, (5)
wherey controls the rate at which the topic vector can change - gatlmse to 1 will enforce the
feature vector to change slowly, while lower values wilballquick adaptation to topics.

While this procedure is not an approximation of the LDA irfiece procedure, we have found that
it nevertheless does a good job representing contextualrisind admits an incremental update,
reducing a factor o2 from the runtime. An empirical comparison to the use of LDpitoposteriors
is found in Section 4.

4 Penn Treebank Results

To maintain comparability with the previous research, R, 3], we chose to perform experiments
on the well-known Penn Treebank (PTB) [27] portion of the M#teet Journal corpus. This choice
also allows the fast evaluation of different models and jpeter settings. We used the same standard
preprocessing of the data as is common in previous resedtetords outside the 10K vocabulary
are mapped to theunk> token; sections 0-20 are used as the training set (930K $)ksections
21-22 as the validation set (74K tokens) and sections 232heatest set (82K tokens). Extensive
comparison of performance of advanced language modelamgigues on this setup is given in [3].
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Table 1 Perplexities on the Penn Treebank Corpus for RNN models bbé-based features, using 40 topics and a
sliding window of 50 previous words.

M odel Dev PPL |Test PPL
Kneser-Ney 5-gram, no count cutoffs| 148.0 | 141.2
10 neurons, no features 239.2 | 225.0
10 neurons, exact LDA features 197.3 187.4
10 neurons, approximate LDA featurgs 201.5 | 191.2
100 neurons, no features 150.1 142.1
100 neurons, exact LDA features 132.3 | 126.4
100 neurons, approximate LDA featured34.5 | 128.1

Table 2 Perplexities on the Penn Treebank Corpus with exponentieltaying features.

M odel Dev PPL |Test PPL
10 neurons, no featurps239.2 225.0
10 neuronsy =0 220.7 | 195.7

10 neuronsy = 0.9 201.4 | 190.5
10 neuronsy = 0.95 1985 | 1875
10 neuronsy = 0.98 199.8 | 190.1

To obtain additional features at every word position, wéngd a LDA model using documents
consisting of 10 sentence long non-overlapping blocks xifftem the PTB training data. We ex-
plored several configurations, and found that good resalisbe obtained with between 10 and 40
topics. Once the LDA model is trained, we can compute theadvidity distribution over topics for
any new document. After some experimentation, we usediaghwindow of the previous 50 words
to represent the history. While this often goes beyond seetboundaries, it makes sense because
the PTB reproduces news stories, in which adjacent sergemeeelated to each other. The resulting
probability distribution over topics is used directly asaditional feature input for the RNNLM.

Our initial experiments were performed using small RNN msdeth only 10 neurons. For
reduction of computational complexity, we used a factdiireof the output layer using 100 classes,
as described in [2]. After tuning hyper-parameters sucthasoptimal number of topics and the
size of the sliding window, we ran the same experiments wittNRnodels having 100 neurons.
The results are summarized in Table 1. As can be seen, thiepigyps reduced very significantly
for small models, and the improvements hold up with largedet® Moreover, the approximate
topic features of Section 3.1 work almost as well as the dx@étfeatures. Thus, in the subsequent
experiments on larger data sets we focused on the appraxiestires. Table 2 shows that for values
aroundy = 0.95, the approximate features with exponential decay ofdparthose computed with
an equally weighted window of the last 50 words (Table 1).

4.1 State-of-the-art Comparisons and Model Combination

In this section, we show that the improvements of a contersitive RNNLM hold up even in com-
bination with Kneser-Ney 5-grams, cache LMs, and other nsodéoreover, in combination with
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Table 3 Perplexities on the Penn Treebank Corpus for various netamodels, interpolated with the baseline 5-
gram and 5-gram+cache models. The RNN-LDA LM has 300 neurms uses 40-dimensional features computed
on a 50-words history (sliding window).

Model Individual | +K N5|+K N5+cache
KN5 141.2 - -
KN5 + cache 125.7

Feedforward NNLM 140.2 |116.7 106.6
Log-bilinear NNLM| 1445 |115.2 105.8
Syntactical NNLM 131.3 |110.0 101.5
Recurrent NNLM 124.7 |105.7 97.5
RNN-LDA LM 1141 | 98.7 93.3

Table 4 Perplexities on the Penn Treebank Corpus for model conbmasing linear interpolation.

Model Test PPL
Kneser-Ney 5-gram, no count cutgffs141.2
Model combination [25] 78.8

Combination of RNN-LDA models| 80.1
RNN-LDA models + KN5 + cache 78.1
Combination of ALL 74.1

our best previous results we advance the state-of-ther&%brelative. Table 3 presents results for
a RNN-LDA model with 300 neurons, and a set of previous mqd#h in isolation and when in-
terpolated with a Kneser-Ney 5-gram model and a cache modelRNN-LDA model outperforms
the other models significantly, even after they are combini¢ld the cache model. The description
of the compared models is given in [5, 7, 26, 25].

Next, we combine the new RNN-LDA model with the previous estat-the-art model combi-
nation on this task. This is important to establish that ttNNRLDA model provides truly new
information. The previous model combination achieved alesity 78.8 by combining many differ-
ent RNN LMs and other well-known language models such asdorarforest LM [28], a structured
language model [29], a class-based LM and other models [f28]these combination experiments,
we trained 8 RNN-LDA models with different configurationp@@ 400 neurons and 40 dimensional
LDA). The results are presented in Table 4. It can be seeritibdinal combination is significantly
better than the best previous result. In addition, when vegrgse the interpolation weights, the vast
majority of weight is assigned to the RNN-LDA models. The gielRNN models are the second
most important group, and small contribution still comesirthe 5-gram KN model with cache.
Other techniques provide insignificant improvements.

5 Wall Street Journal ASR Results

In this section, we use a RNN-LDA model for N-best rescorim@ ispeech recognition setting. We
used the medium-sized Wall Street Journal automatic spesgnition task, with around 37M
tokens in the LM training data. To handle the computatiowahlexity associated with applying
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RNNSs to larger data sets, a number of computational effi@sriave been developed [4], which are
adopted here. The most useful techniques for complexityataoh are:

e factorization of the output layer using simple frequenagdd classes to avoid expensive normal-
ization over the full vocabulary

e training the neural net jointly with a simple maximum entyapodel with N-gram features, to
avoid huge hidden layers (denoted as RNNME model)

For the following experiments, we used lattices generatiéld the Kaldi speech recognition
toolkit [30]. To allow comparability with previous work, ¢h100-best lists used in this work are
the same as those used in [25]. The triphone GMM acoustic lmedse trained on the SI-84 data
further described in [31]. We tested with the 20k open-votaly task. Note that while we do not
use advanced acoustic modeling techniques such as SGMWari@2peaker adaptation, the base-
line system achieves comparable results as is common iratlgeiage modeling research [33] and
is sufficient for comparison of advanced language mode&ogriques.

The ASR system produced lattices using a pruned trigram hwaitte Good-Turing smoothing,
from which we generated the 100-best lists that are usedeirrgbcoring. The baseline N-gram
language models used for rescoring are a modified Knesershgram (KN5) [34] (denoted as
KN5) with singleton cutoffs, and a KN5 model without any Nagr cutoffs.

Next, we trained a RNNME model with 10 hidden neurons and Mp@rameters for a concur-
rent hash-based ME model using 4-gram features. We used&€X®s in the output layer. Next, we
trained RNNME models with the same configuration and withitamithl features that represent the
topic information in the current sentence and with expoilaédecayy = 0.9. We reset the feature
vector at the beginning of each new sentence, thus the &satapresent only the topic of the cur-
rent sentence. This places fewer constraints on the tgaenial test phases (the order of sentences
can be random). Results are presented in Table 5, where iecaaen that the topic information is
very useful and leads to 0.4% - 0.6% WER reduction. Moredvem a purely language modeling
perspective, we obtain perplexity improvements in this dionas well.

We trained additional RNNME models with 200 hidden neurams with 40 LDA features, to
see the potential of topic information in larger models. Aa be seen in Table 5, we obtain similar
reductions in perplexity as with the smaller models; nénadgss, it is harder to obtain improvements
in word-error-rate over the large RNNME-200 model. We haxgl@ed several scenarios includ-
ing combination with the KN5 model, always obtaining impeawvents of 0.1% - 0.2%. Still, the
perplexity of the RNNME-200+LDA-40 model is by more than 58akr than of the RNNME-200
model; thus in this task the improvements are sometimed duadlways consistent across metrics
and setups.

6 Conclusion

In this paper, we introduced the use of context dependeutnett neural network language models.
The main idea is to condition the hidden and output vectors continuous space representation of
the previous words and sentences. Using a representated loa Latent Dirichlet Allocation, we
are able to avoid the data fragmentation associated withréld@ional process of building multiple
topic-specific language models. We further develop a fagtagimate context-updating technique
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Table5 Perplexities, and word error rates for WSJ 100-best listomesg with RNNME and RNNME-LDA models.

PPLX|WER |WER
Model Dev IDev |Test
KN5 121 |12.5%16.6%
KNS5, no count cutoffs 113 | 12.0| 16.6
RNNME-10 110 | 11.7 | 16.2
RNNME-10+LDA-5 105 | 11.1| 15.9
RNNME-10+LDA-20 103 | 11.1| 15.8
RNNME-200 89 9.9 | 14.7
RNNME-200+LDA-40 84 9.9 | 146
KN5+RNNME-200 87 9.9 | 146
KN5+RNNME-200+LDA-4Q 82 9.7 | 145

which allows us to efficiently compute context vectors wittliding window. The use of these mod-
els results in the lowest published perplexity on the Peeefdank data, and in WER improvements
for the Wall Street Journal task.

In the future, we are interested in applying our approacteveragesxternal information that
is not present in the text. For example, in the machine taiosl setting, to use a source-language
representation to condition the target-side language moden a voice-search setting to use a
contextual vector representing a users interests.
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