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Abstract
Rivet is the first fully-featured, browser-agnostic re-

mote debugger for web applications. Using Rivet, de-
velopers can inspect and modify the state of live web
pages that are running inside unmodified end-user web
browsers. This allows developers to explore real applica-
tion bugs in the context of the actual machines on which
those bugs occur. To make an application Rivet-aware,
developers simply add the Rivet JavaScript library to the
client-side portion of the application. Later, when a user
detects a problem with the application, the user informs
Rivet; in turn, Rivet pauses the application and notifies
a remote debug server that a debuggable session is avail-
able. The server can launch an interactive debugger front-
end for a human developer, or use Rivet’s live patching
mechanism to automatically install a fix on the client or
run diagnostics for offline analysis. Experiments show
that Rivet imposes negligible overhead during normal ap-
plication operation. At debug time, Rivet’s network foot-
print is small, and Rivet is computationally fast enough to
support non-trivial diagnostics and live patches.

1 Introduction

As an application becomes more complex, it inevitably
accumulates more bugs, and a sophisticated debugging
framework becomes invaluable for understanding the ap-
plication’s behavior. With modern web browsers provid-
ing increasingly powerful programming abstractions like
threading [21] and bitmap rendering [9], web pages have
become more complex, and thus more difficult to de-
bug. Unfortunately, current debuggers for web applica-
tions have several limitations.

Although modern browsers ship with feature-rich
JavaScript debuggers, these debuggers can typically only
be used to examine pages running on the local browser.
This makes it impossible for developers to examine real
bugs from pages running on web browsers in the wild. A
few browsers do support an interface for remote debugger
attachment [4]; however, that interface is tied to a specific
browser engine, meaning that the remote debugger can-
not be used with other browser types. Given the empirical
diversity of the browsers used in the wild [20], and the in-
ability of web developers to dictate which browsers their
users will employ, remote debugging frameworks that are
tied to a particular browser engine will have poor cover-
age for exposing bugs in the wild. Indeed, the quirks of
individual browsers are important inducers of web appli-

cation bugs [13, 14]. Thus, an effective remote debugger
must be able to inspect pages that run inside arbitrary, un-
modified commodity browsers.

1.1 Our Solution: Rivet
In this paper, we introduce Rivet, a new framework

for remotely debugging web applications. Rivet lever-
ages JavaScript’s built-in reflection capabilities to provide
a browser-agnostic debugging system. To use Rivet, an
application includes the Rivet JavaScript library. When
the page loads, the Rivet library instruments the runtime,
tracking the creation of various types of state that the ap-
plication would otherwise be unable to explicitly enumer-
ate. Later, if the user detects a problem with the web
page, she can instruct the page to open a debugging ses-
sion with a remote developer. The developer-side debug-
ger communicates with the client-side Rivet framework
using standard HTTP requests. The debugger is fully-
featured and supports standard facilities like breakpoints,
stack traces, and dynamic variable modification.

Many laypeople users will not be interested in assist-
ing developers with long debugging sessions. Thus, Rivet
also supports an automated diagnostic mode. In this
mode, when the user or the application detects a prob-
lem, the debug server automatically pushes pre-generated
test scripts to the client. The client executes the scripts
and sends the results back to the server, where they can
be analyzed later. In this fashion, Rivet supports the gen-
eration of quick error reports for live application deploy-
ments. This mechanism also facilitates the distribution of
live patches to client machines.

1.2 Contributions
In summary, Rivet is the first fully-featured, browser-

agnostic remote debugger for web applications. Rivet of-
fers several advantages beyond its browser agnosticism.
With respect to security, Rivet only allows a remote de-
veloper to debug pages from her origin; in contrast, prior
(browser-specific) remote debuggers allow a developer to
inspect any page in any browser tab. With respect to us-
ability, Rivet does not require end-users to reconfigure
their browsers or manage other client-side debugging in-
frastructure. This is important, since widely deployed ap-
plications are primarily used by non-technical laypeople
who lack the sophistication to configure network ports or
attach their browser to a remote debugging server. Prior
remote debuggers require end users to perform such con-
figuration tasks.
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Figure 1: Example of a Rivet web page with three frames.

Rivet hides configuration details from the user by im-
plementing its client-side component totally in JavaScript.
This gives the web developer complete control over the
client-side debugging settings, while restricting the de-
veloper to accessing content from that developer’s ori-
gin. Rivet’s client-side library is partially inspired by
Mugshot [14], a logging-and-replay framework for web
applications that also leverages JavaScript reflection to
work on unmodified browsers. However, as we describe
in Section 5, Rivet has three significant advantages over
Mugshot. First, Rivet does not require developers to de-
ploy a proxy web server to assist with application intro-
spection; such proxies may be expensive in both cost and
performance. Second, Rivet allows developers to explore
bugs on the actual end-user browsers in which those bugs
occur. This in-situ perspective increases Rivet’s bug cov-
erage relative to Mugshot—Mugshot tries to recreate bugs
on the developer-side, but it cannot reliably replay bugs
which depend on client-side state that resides beneath the
JavaScript layer. Third, Rivet performs less runtime inter-
positioning than Mugshot. Since browser interposition-
ing can be fragile [13], this makes Rivet more robust than
Mugshot.

Our evaluation shows that, through careful design, stan-
dard HTTP connections can support a fast, interactive re-
mote debugging protocol. We also show that Rivet intro-
duces negligible client-side overhead during normal ap-
plication operation. Thus, Rivet is performant enough to
ship inside real application deployments.

2 Architecture

Figure 1 depicts the architecture of a Rivet-enabled web
application. The client portion of the application runs in-
side an unmodified commodity browser. The application
consists of one or more event contexts. An event context is
either an iframe or a web worker [21], a constrained type

of threading context that we discuss in more detail below.
JavaScript is an event-driven language, and each frame or
web worker has its own event dispatch loop. Each context
also has its own JavaScript namespace.

In a Rivet-enabled application, each event context con-
tains its own copy of the Rivet library. When the appli-
cation loads, each instance of the library will instrument
its local JavaScript runtime. Later, at debug time, these
modules will coordinate to pause the application, com-
municate with the remote debug server, and examine local
state on behalf of that server.

On the developer side, the debug server may be con-
nected to a front-end debugging GUI that allows the de-
veloper to interactively examine the client portion of the
application. Alternatively, the developer can configure the
debug server to run automated diagnostics on a misbehav-
ing web page. The latter facility is useful for debugging
widely deployed applications in which most users are not
professional testers and lack an interest in actively assist-
ing the developer in her debugging efforts. For a popular
web page, the debug server may interface with a larger
distributed system that collates and analyzes massive sets
of error reports [10].

2.1 Exposing Application State
The purpose of the client-side Rivet library is to com-

municate with a remote debugger and give that debugger
a way to inspect the client-side state. In particular, Rivet
must allow the debugger to walk the JavaScript object
graph that represents the application’s state. Each event
context has its own JavaScript namespace and possesses
one or more partially overlapping object graphs. Below,
we describe each type of object graph and how Rivet
provides an introspection framework for that graph.

The global namespace forest: JavaScript supports a
powerful reflection model. By calling the built-in
Object.getOwnPropertyNames() method, an ap-
plication can discover all of the properties defined on
an object. 1 JavaScript also makes the global names-
pace explicitly accessible via the special window object.
Thus, at debugging time, Rivet can discover the current
set of global variables by enumerating the properties of
the window variable. Rivet can then recursively reflect
over the properties of each global variable, mapping the
entire object tree rooted at each global.

The Document Object Model (DOM) is a browser-
neutral API for exposing browser state to JavaScript
programs [24]. With some notable exceptions that we

1JavaScript uses a prototype-based object model (§2.5), and
Object.getOwnPropertyNames() only enumerates properties
found directly on the object. Thus, to discover an object’s full prop-
erty list, Rivet must call Object.getOwnPropertyNames() on
the object itself and on each object in the prototype chain.



function closureGenerator(obj){
var y = 41;
function closure(){

//closure() binds to non-local
//variables obj and y . . .
return obj.x + y;

}
return closure;

}
var globalObj = {x: 1}; //Create object literal
var c = closureGenerator(globalObj);
alert(c()); //Displays 42

Figure 2: Example of a JavaScript closure.

function closureGenerator(obj){
var y = 41;
function closure(){

return obj.x + y;
}
closure.__getScope__ = function(){

return {"obj": obj, "y": y};
};
closure.__evalInScope__ = function(src){

return eval(src);
};
return closure;

}

Figure 3: Rivet rewrites the closure from Figure 2 to sup-
port exploration by remote debuggers.

describe below, all DOM state is accessible via prop-
erties on the window object. For example, persistent
local storage areas like cookies and DOM storage [25]
are exposed via window.document.cookie and
window.localStorage, respectively. For DOM
state that is not explicitly accessible in this way, Rivet
instruments the runtime to expose the state to remote
debuggers.

Closure state: Many JavaScript applications make heavy
use of closures. A closure is a function that remembers
the values of non-local variables in the enclosing scopes.
Figure 2 provides an example of a closure.

The global JavaScript namespace is explicitly bound to
the window variable. In contrast, a closure namespace
is not bound to an explicit namespace object. Thus, in
Figure 2, once closureGenerator(1) returns, nei-
ther the returned closure nor any other code can explicitly
refer to the bound closure scope—only the closure itself
can access the bound variables obj and y. This is un-
fortunate from the perspective of debugging, since know-
ing the values of closure variables can greatly assist the
debugging of closure functions. Some closure variables
may be aliased by global variables, or reachable from the

object graph rooted in a global variable; unfortunately, in
non-trivial programs, it is difficult or impossible for a de-
veloper (or static code analysis) to identify such aliasing
relationships. Furthermore, some closure variables are
completely unreachable from the global namespace; in
Figure 2, y is such a variable.

In JavaScript, all functions, including closures, are
first-class objects. To expose closure state to remote de-
buggers, Rivet uses a JavaScript rewriter to associate each
closure with two diagnostic functions that expose the nor-
mally hidden scope. Figure 3 shows how Rivet rewrites
the closure from Figure 2. The getScope () func-
tion returns an object whose properties reference the clo-
sure variables. Note that getScope () is itself a
closure, which lets it access the protected scope of the
application-defined closure. When the remote debugger
calls getScope (), it can use standard JavaScript re-
flection to enumerate the returned object’s properties and
read the closure variables.

Rivet adds a second diagnostic method to each clo-
sure called evalInScope (). This method al-
lows a remote debugger to dynamically evaluate a piece
of JavaScript code within the closure function’s scope
chain. This allows the debugger to modify the value
of a closure variable (or any other variable within
the function’s scope). As we explain in Section 2.5,
evalInScope () also allows the debugger to dy-

namically generate a new function that is bound to a clo-
sure’s hidden scope. This is useful in several scenarios,
e.g., when introducing a new debugging version of a clo-
sure that automatically produces diagnostic messages.

Note that getScope () and
evalInScope () are only invoked during a

debugging session, so rewritten closures incur no perfor-
mance penalty during normal application execution. Also
note that the closure rewriter can be implemented in a
variety of ways. For example, a developer-side IDE can
automatically rewrite JavaScript files. Alternatively, the
client-side Rivet library can dynamically rewrite script
code by interposing on eval() and DOM-mediated
injection points for generating script code [15].

Importantly, Rivet will not break if some or all of an
application’s closures are not rewritten. However, Rivet
will not be able to dynamically modify those closure func-
tions. This will prevent Rivet from inserting dynamic
breakpoints into them (§2.3) or otherwise live-patching
them. Rivet can use lexical analysis to identify closures
and prevent the developer from issuing forbidden opera-
tions on non-rewritten closures. This is an important fea-
ture, since an application may import external JavaScript
that the developer does not control (and thus cannot en-
sure will be rewritten).

In JavaScript, calling a function’s toString()
method conveniently returns the source code for that



var button = document.getElementById("clicker");
button.onclick = function(){

alert("DOM 0 handler!");
};
button.addEventListener("onclick",

function(){
alert("DOM 2 handler!");

});

Figure 4: Registering GUI callbacks using the DOM 0
model and the DOM 2 model.

var req = new XMLHttpRequest();
req.open(’GET’, "http://foo.com");
req.onReadyStateChange = function(){

if(req.readyState == 4){
alert(req.responseText);

}
}
req.send();

Figure 5: An AJAX callback.

function. Thus, Rivet does not need to maintain extra
metadata to store function source for subsequent inspec-
tion by the remote debugger.

Event handler state: JavaScript applications can define
three types of callback functions.
• Timer callbacks execute after a specified pe-

riod of time has elapsed. Callbacks regis-
tered via setTimeout(f, waitMs) only ex-
ecute once, whereas callbacks registered via
setInterval(f, periodMs) fire once every
periodMs milliseconds.

• To respond to user input, applications define GUI
callbacks on DOM nodes (each DOM node is
the JavaScript representation of an HTML tag in the
web page). Modern web browsers support two dif-
ferent registration models for GUI events [7]. The
“DOM 0” model allows an application to register
at most one handler for a given DOM node/event
type pair. Using the “DOM 2” model, an applica-
tion can register multiple event handlers for a given
DOM node/event type pair. A node can simultane-
ously have a DOM 0 handler and one or more DOM
2 handlers. Figure 4 provides an example of the two
registration models.

• To asynchronously fetch new web data, an applica-
tion creates an XMLHttpRequest object and de-
fines an AJAX callback for the object [7]. The
browser will fire this callback whenever it receives
bytes from the remote web server. Figure 5 provides
an example.

The client-side Rivet framework must ensure that the

remote debugger can enumerate the application-defined
callbacks. Thus, when the Rivet library first loads,
it wraps setTimeout(), setInterval(), and
the AJAX object in logging code that records the
application-defined handlers that are passed through
the aforementioned interfaces. The wrapper code
is similar to that used by the Mugshot logging and
replay service [14]. Later, at debug time, the de-
bugger can access the timer callbacks by examining
the special lists Rivet.timeoutCallbacks,
Rivet.intervalCallbacks, and
Rivet.AJAXCallbacks.

Rivet does not need to do anything to expose DOM
0 handlers to the remote debugger—these handlers are
attached to enumerable properties of the DOM nodes.
In contrast, DOM 2 handlers are not discoverable by
reflection, so Rivet modifies the class definition for DOM
nodes, wrapping the addEventListener() function
that is used to register DOM 2 handlers. The wrapper
adds each newly registered handler to a list of functions
associated with each DOM node; this list property, called
DOMNode.DOM2handlers, is a regular field that can
be accessed via standard JavaScript reflection.

Web Workers: A web application can launch a con-
current JavaScript activity using the web worker facil-
ity [21]. Although a web worker runs in parallel with
the spawning context, it has several limitations. Unlike
a traditional thread, a web worker does not share the
namespace of its parent; instead, the parent and the child
exchange pass-by-value strings over the asynchronous
postMessage() channel. Web workers can generate
AJAX requests and register timer callbacks, but they can-
not interact with the DOM tree.

An application launches a web worker by creating a
new Worker object. The application calls the object’s
postMessage() function to send data to the worker;
the application receives data from the worker by reg-
istering DOM 0 or DOM 2 handlers for the worker’s
message event. At page load time, the Rivet library
wraps the Worker class in logging code. Similar to
Rivet’s wrapper code for the XMLHttpRequest class,
the Worker shim allows Rivet to track the extant in-
stances of the class and the event handlers that have been
added to those instances. Rivet also shims the AJAX class
and the timer callback registration functions inside each
worker context.

2.2 Pausing an Application
In the text above, we described how the client-side

Rivet library exposes application state to the remote de-
bugger. However, before the debugger can examine this
state, the application must reach a stable point. A stable



point occurs when Rivet-defined code is running within
each client-side event context. Each frame or web worker
can only execute a single callback at any given time, so if
a Rivet-defined callback is running in a particular context,
Rivet can be confident that no other application code is si-
multaneously running in that context. If Rivet code is run-
ning in all contexts, then Rivet has effectively paused the
execution of all application-defined code. Rivet’s client-
side portion can then cooperate with the remote debugger
to inspect and modify application state in an atomic fash-
ion, without fear of concurrent updates issued by regular
application code.

The top-most frame in a Rivet-enabled application
is the coordinator for the pausing process. When the
user detects a problem with the application, she informs
the Rivet library in the root frame, e.g., by clicking a
“panic” button that the developer has linked to the special
Rivet.pause() function. Rivet.pause() causes
the root frame to send a pause request to the Rivet library
in each child frame and web worker; these pause requests
are sent using the postMessage() JavaScript function.
Upon receiving a pause command, a parent recursively
forwards the command to its children. When a context
with no children receives a pause request, it sends a pause
confirmation to its parent and then opens a synchronous
AJAX connection to the remote debug server. This syn-
chronous connection allows the Rivet library to freeze the
event dispatch process, forcing application-defined call-
backs to queue up. A parent with children waits for con-
firmations from all of its children before notifying its own
parent that it is paused and opening its own synchronous
connection to the debug server. When the root frame
receives pause confirmations from all of its children, it
knows that the entire application is paused. The root
frame connects to the remote debugger, which can then
inspect the state of the application using the introspection
facilities described in Section 2.1.

To unpause the application, the remote debugger sends
a “terminate” message to each AJAX connection that it
has established with the client. Upon receiving this mes-
sage, each Rivet callback closes its AJAX connection and
returns, unlocking the event loop and allowing the appli-
cation to return to its normal execution mode.

2.3 Breakpoints
Rivet allows developers to dynamically insert break-

points into a running application’s event handlers. To set
a breakpoint, the developer must first identify the appro-
priate event handler using the remote debugger’s object
enumeration GUI. This interface uses a standard tree view
to represent the application’s object graphs. Once the de-
veloper has found the appropriate function, the remote de-
bugger displays the function’s source code by calling the

var lastEvalResult = "Start of breakpoint";
var exprToEval = "";
while(lastEvalResult){
exprToEval = Rivet.breakpoint(lastEvalResult);

//Uses a synchronous AJAX connection
//to return the result of the prior
//debugger command and fetch a new one.

lastEvalResult = eval(exprToEval);
}

Figure 6: The Rivet breakpoint implementation.

toString() of the underlying function object. The de-
veloper inserts breakpoints at one or more locations in the
source code and then instructs the debugger to update the
event handler function on the client side.

When the client-side Rivet framework receives the new
handler source code, it translates each breakpoint into the
code shown in Figure 6. Each breakpoint is just a loop
which receives a command from the remote debugger,
eval()s that command, and sends the result back to the
debugger. A breakpoint command might fetch the value
of a local variable or reset its value to something new.
Communication with the debugger uses a synchronous
AJAX connection to ensure that Rivet locks the event loop
in the breakpoint’s event context.

Once the client-side framework has translated the
breakpoints, it dynamically creates a new function rep-
resenting the instrumented event handler. To do so, Rivet
passes the new source code to the standard eval() func-
tion if the handler to rewrite is not a closure; otherwise,
Rivet uses the handler’s evalInScope () function
(§2.1). Equipped with the new callback, Rivet then re-
places all references to the callback using the techniques
we describe later in Section 2.5.

When the debugger unpauses the application, the ap-
plication will execute normally until it hits a call to
Rivet.breakpoint(). Rivet.breakpoint()
must pause the application, but it must not relinquish
control of the local event loop while it does so. Thus,
Rivet.breakpoint() sends standard pause requests
to its children, but does not wait for confirmations be-
fore marking itself as paused. Rivet.breakpoint()
also sends a special “breakpoint” message to its parent.
This message is recursively forwarded up the event con-
text tree until it reaches the root frame. Upon receiving
the message, the root frame pauses the rest of the applica-
tion. Once the debugger has detected that all of the event
contexts are paused, it can interrogate them as necessary.

2.4 Stack Traces
JavaScript does not explicitly expose function call stack

frames to application-level code. Nevertheless, when
an application hits a breakpoint, Rivet can send a stack



trace to the remote debugger. Rivet defines two kinds of
stack traces. A lightweight stack trace reports the func-
tion name and current line number for each active call
frame. Even though Rivet does not have explicit access
to the call stack, it can access function names and line
numbers by intentionally generating an exception within
a try/catch block, and extracting stack trace information
from the native Exception object that the browser gen-
erates. This is the same technique used by the stack-
trace.js library [23], and it works robustly across all mod-
ern browsers.

Lightweight stack traces do not expose actual call
frames to Rivet. Thus, although Rivet breakpoints can
use an eval() loop to provide read/write access to lo-
cal variables in the topmost stack frame, Rivet cannot
use lightweight stack traces to introspect variables in call
frames that are lower in the stack. Rivet can provide
heavyweight stack traces that provide such functional-
ity, but to do so, Rivet must rewrite all functions so that
they update a stack of function objects upon each call
and return. Furthermore, each function must define the
getScope () and evalInScope () that Rivet

uses to introspect upon closure state (§2.1).
Both closure rewriting and heavyweight stack rewrit-

ing can be done statically, before application deployment.
However, the function code that supports heavyweight
stack traces can be dynamically swapped in at debug
time. This allows the application to avoid the bookkeep-
ing overhead during normal operation. Note that rewritten
closure code should always be used, lest Rivet miss the
creation of a closure scope and be unable to expose the
bound variables to the remote debugger.

2.5 Generic Live Patching
Rivet defines a patch as a single JavaScript function

which Rivet will evaluate in the global scope. The patch
can access and modify the objects reachable from the
global variables without assistance from Rivet. The patch
accesses closure scopes through the getScope ()
function that Rivet adds to each closure. The patch can
also access normally non-enumerable event handlers us-
ing data structures like Rivet.timeoutCallbacks
and DOMNode.DOM2handlers.

To make patches easier to write, Rivet defines three
convenience functions for developers. The first, called
Rivet.overwrite(oldObj, newObj), instructs
Rivet to copy all of newObj’s values into oldObj. If
neither newObj nor oldObj are a function, the over-
writing process is trivial—since JavaScript objects are just
dictionaries mapping property names to property values,
Rivet can overwrite an object in place by deleting all of
its old properties and assigning it all of newObj’s prop-
erties. If newObj or oldObj is a function (or another
native code object like a regular expression), Rivet must

//Define a constructor function for class X.
function X(){

this.prop1 = ’one’;
}
X.prototype.prop2 = ’two’;

var x1 = new X();
var x2 = new X();
alert(x1.prop1); //’one’: defined in constructor
alert(x1.prop2); //’two’: defined by prototype

x1.prop1 = ’changed’;
alert(x1.prop1 == x2.prop1); //False

//Changing the value for a prototype
//property changes the value in all
//instances of that class *unless* an
//instance has explicitly redefined the
//property.
X.prototype.prop2 = ’cat’;
alert(x1.prop2 == ’cat’); //True
x2.prop2 = ’dog’;
alert(x2.prop2 == ’cat’); //False

Figure 7: Example of prototype-based inheritance.

use a different approach, since these objects are bound to
opaque internal browser state that is not easily transferred
to other objects. Thus, to overwrite a native object, Rivet
must traverse the application’s entire object graph and, for
each object, replace any references to oldObj with ref-
erences to newObj. Rivet uses standard techniques from
garbage collection [12] to avoid infinite recursion when
the object graph contains cycles.

The second convenience function, called
Rivet.redefineClass(oldCtor,
makeNewVersion, newCtor), is useful for
updating all instance objects of a modified class defini-
tion. Whereas C++ and Java implement classes using
types, JavaScript implements classes using prototype
objects [7]. Any JavaScript function can serve as a
constructor if its invocation is preceded by the new
operator; any references to this inside the constructor
invocation will refer to the new object that is returned.
Furthermore, by defining a prototype property for
a function, an application defines an exemplar object
which provides default properties for any instance of that
constructor’s objects. Figure 7 provides a simple example
of JavaScript’s prototype-based classes.

When a patch invokes
Rivet.redefineClass(oldCtor,
makeNewVersion, newCtor), Rivet does the
following:
• Rivet finds all instances of oldCtor’s class,

i.e., all objects whose proto field is
oldCtor.prototype.

• For each instance obj, Rivet calls
makeNewVersion(obj), creating a new



version of the object using application-specific
logic. Rivet then update oldObj in-place with the
contents of newObj.

• Finally, Rivet uses
Rivet.overwrite(oldCtor,newCtor)
to replace stale references to oldCtor with
references to newCtor.

Applications that desire finer-grained con-
trol over their patching semantics can invoke
Rivet.traverseObjectGraph(callback),
specifying a function that Rivet will call upon each object
in the application.

2.6 Debugging Scenarios
We envision that Rivet will be used in two basic sce-

narios. In the beta testing scenario, a small number of
professional testers or motivated volunteers interact with
an unpolished version of an application. These testers are
not developers themselves, but they are willing to start and
stop their application sessions and actively help the devel-
opers to debug any problems that arise. In this scenario,
when the beta tester encounters a problem, she initiates a
full-blown debugging interaction with a remote developer.
The developer starts the debugging GUI and engages in
an iterative process with the beta tester and the remote
application, exploring and modifying the program state in
various ways. Using Rivet’s live patching mechanism, the
developer can dynamically add a chat interface to the live
page; this enables a real-time dialogue between the tester
and the developer without requiring the tester to configure
a separate out-of-band communication mechanism.

For a widely deployed application, the typical layper-
son user may not want to assist with a remote debug-
ging session. In these situations, the application can still
contain a “panic” button. However, when this button is
pressed, the application does not initiate a remote debug-
ging session with a human developer—instead, the web
page connects to an automated debug server which runs a
set of predefined diagnostics on the page. Each diagnostic
is implemented as a Rivet patch which simply runs a test
on the client-side state and uploads the result to a server.
For example, a patch might generate an application-level
core dump, serializing the DOM tree and application heap
and sending it to the server for further analysis. As an-
other example, a diagnostic could run integrity checks
over the application’s cookies and other persistent client-
side data. These kinds of automatic tests require no as-
sistance from the end user, but provide invaluable debug-
ging information to application developers. These tests
can also be silently initiated by the Rivet library, e.g., in
response to catching an unexpected exception. In some
applications, such automatic diagnostics may be prefer-
able to having a user-triggered “panic” button.

2.7 Implementation
Our Rivet prototype consists of a client-side JavaScript

library and a developer-side debugging framework that
contains a JavaScript rewriter, a debug server, and a front-
end debugging GUI. After minification (i.e, the removal
of comments and extraneous whitespace), the client-side
library is less than 29 KB of source code; thus, it adds
negligible cost to the intrinsic download penalty for a
modern web application that contains hundreds of KB of
JavaScript, CSS, and images [18]. The closure rewriter
and the debug server are both written in Python. Be-
fore deploying an application, the developer passes its
JavaScript code through the rewriter, which instruments
closures as described in Section 2.1. After deploying the
application, the debug server listens for debugging re-
quests from remote web pages. If the server is configured
to run in auto-response mode, it will run a pre-selected
diagnostic script on the remote application and store the
results in a database. Otherwise, if the server is set to in-
teractive mode, it will open a front-end debugging GUI
which the developer can use to inspect the remote ap-
plication in real time. The front-end is just a web page
that communicates with the debug server via HTTP. The
server acts as a relay between the front-end and the remote
application, sending debugger commands to the page and
sending client-generated results back to the front-end.

Our current prototype implements all of the features de-
scribed in this section except for heavyweight stack traces
(§2.4). We are currently building a rewriting engine to
support this facility. The client-side Rivet library has been
tested extensively on Firefox, Safari, IE, and Chrome, and
it works robustly on those browsers.

3 Privacy Concerns

Rivet exposes all of a web page’s state to a remote de-
bugger. This state might include personal information like
passwords, emails, e-commerce shopping carts, and so
on. Applications can use HTTPS to secure the connection
between the web browser and the debug server; by do-
ing so, a client can easily verify the identity of the remote
principal that is inspecting local state. HTTPS also pre-
vents arbitrary network snoopers from inspecting client
data. However, it does not constrain the remote debug-
ger’s ability to enumerate and modify client-side state.

Rivet does not grant fundamentally new inspection
powers to developers, since applications do not need
Rivet to take advantage of JavaScript’s powerful reflec-
tion capabilities. For example, there are many preex-
isting JavaScript libraries that analyze user activity and
page state to determine which ads a user clicks or which
parts of a page are accessed the most. Also, much of
the private client-side information is persistently stored in
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Figure 8: Microbenchmarks: Relative slowdown of Rivet-
enabled versions. A slowdown factor of 1 indicates no
slowdown.

server-side databases, with the client application treated
as an ephemeral cache. Thus, developers can already in-
spect much of the user’s private data without interrogating
the client portion of the application.

4 Evaluation

In this section, we investigate four questions. First, how
much overhead does Rivet add to an application during
normal usage, i.e., when the application is not being de-
bugged? Second, how long does it take for Rivet to pause
an application? Third, how large are the messages that
are exchanged between the client-side Rivet library and
the debug server? Finally, how long does it take for Rivet
to patch a live application or run an automated diagnos-
tic? Using synthetic benchmarks and real applications,
we show that Rivet adds negligible overhead during nor-
mal operation. Furthermore, at debug time, Rivet is fast
enough to support interactive remote debugging sessions.

To test Rivet’s performance on web applications in the
wild, we loaded those applications through a rewriting
web proxy. The proxy added the Rivet JavaScript library
to each HTML file and web worker; it also passed all
of the JavaScript code through Rivet’s closure rewriter.
Using this proxy, we could test Rivet’s performance on
live web applications without requiring control over the
servers that actually deliver each application’s content. In
all graphs, each result is the average of ten trials. Each
trial was run on a Dell workstation with dual 3.20 GHz
processors, 4 GB of RAM, and the Windows 7 operat-
ing system. For the experiments in this section, we used
Firefox 6.0.2 and Safari 5.1 to load Rivet-enabled appli-
cations. For graphs using only a single browser, Firefox
was used.

4.1 Microbenchmarks
Computational slowdown: Figure 8 shows the rela-
tive performance slowdown for several Rivet-enabled mi-
crobenchmarks. We used the following benchmarks:
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Figure 9: Time needed to pause a nested frame tree with
no event loop contention.

• Richards and Delta Blue are CPU-bound
benchmarks from Google’s V8 test suite.

• setTimeout measures how quickly the browser
can dispatch timer callbacks that have a delay time
of zero.

• The AJAX download test downloads a 100 KB
file from a local web server on the same machine as
the browser. Using a local web server eliminates the
impact of external network conditions and isolates
Rivet’s impact on client-side AJAX handling.

• In the Mouse move test, the web page registers a
null callback for mouse movement events. A human
user then quickly moves the mouse cursor back and
forth across the screen for ten seconds. The output
of the benchmark is how many times the browser in-
voked the GUI callback.

• The Worker ping-pong test examines how
quickly a web worker and a parent frame can send
postMessages() to each other.

With the exception of the Worker ping-pong test, the
performance of the Rivet-enabled benchmarks was statis-
tically indistinguishable from that of the standard bench-
marks. There are several reasons for Rivet’s low over-
head. First, the Rivet initialization code that runs during
page load is extremely fast. This code merely needs to
interpose on some class definitions and global methods,
and this process takes less than one millisecond (which
is the best resolution of JavaScript timestamps on modern
browsers). Post-initialization, Rivet’s bookkeeping code
is also extremely fast. For example, the overhead of track-
ing setTimeout() callbacks is five lines of bookkeep-
ing code and two extra function calls (one made from the
wrapped setTimeout() to the native version, and one
made from the wrapped callback to the real, application-
supplied function). Rivet’s overhead for tracking closure
state is also low. As shown in Figure 3, rewritten closures
do not execute any Rivet code during normal usage—the
getScope () and evalInScope () functions

are only invoked by the remote developer at debug time.



Figure 8 shows that Rivet makes the Worker
ping-pong test roughly 25% slower. The primary
reason is that browsers dispatch worker messages with
much higher throughput than the rate at which they
dispatch zero-delay timer callbacks or mouse events.
As a concrete example, on our dual-core test machine,
Firefox 6 could issue roughly 44 mouse events a sec-
ond and 163 zero-delay timer callbacks a second, but
over 16,000 ping-pong exchanges per second. Thus,
Rivet’s postMessage() overheads are compara-
tively larger. In a Rivet application, a single round of
ping-pong involves three wrapped function calls: the
postMessage() on the worker object in the parent
context, the message callback in the worker context, and
the message callback in the parent context that handles
the worker’s response.

Pause latency: A web application consists of a tree of
event contexts. Rivet pauses an application by dissemi-
nating pause requests across this tree and waiting for child
contexts to acknowledge that they are paused; the entire
application is paused once the root frame has received
pause confirmations from all of its children. Figure 9 de-
picts the pause latency as perceived by the root frame for
event trees of various depths and branching factors. None
of the event contexts defined any application-level han-
dlers, so Rivet’s pause handlers could execute as quickly
as possible. Thus, the results in Figure 9 represent the
lowest possible pause latencies.

Figure 9 shows that the intrinsic pause delay is ex-
tremely small. Even for an unrealistically dense tree with
a branching factor of three and a depth of four, the pause
process only takes 25 milliseconds. Of course, fully paus-
ing an application can take an unbounded amount of time
if an event handler contains code that runs for an ex-
tremely long time. However, we expect such situations to
be rare, at least for handlers defined in frames, since de-
velopers know that long-running, non-yielding computa-
tions may freeze the browser’s UI. Web workers were de-
signed specifically so that applications could execute such
computations without affecting the user interface; thus,
web workers are a more likely source of long-running
event handlers. However, in these situations, developers
can explicitly insert Rivet breakpoints in worker code to
place an upper-bound on an application’s pause time.

Rivet’s current pausing scheme guarantees that all con-
texts are in non-volatile states when debugging occurs.
Rivet could trade this guarantee for the ability to diagnose
hung contexts. At application load time, Rivet could cre-
ate an invisible master frame that resided atop the context
hierarchy. This master frame, controlled by Rivet, would
always be guaranteed to be live. By coordinating with
the Rivet libraries in each descendant event context, the
master frame could build a list of all such contexts. Us-
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Figure 10: Time needed to pause several applications.

ing this list, the master frame could send pause requests
to each descendent context directly (instead of sending re-
quests down the context tree). After a timeout, the master
frame would declare any silent contexts to be hung. At
that point, the master frame would yield to the remote de-
bugger. The remote debugger could inspect both paused
contexts and hung contexts as normal. However, all con-
texts would be in potentially volatile states, since a hung
event handler could unhang at any moment and mutate
some context’s state before relinquishing the processor.

4.2 Macrobenchmarks
Pause latency: Figure 10 depicts the time needed to
pause eight real applications. Crazy Flies simulates
an insect swarm, using a web worker to calculate insect
movements and a frame to depict an animation of the
simulated insects’ movements. Pixastic is an image
manipulation program that supports standard operations
like hue adjustment, noise removal, and edge detection.
Super Mario is a JavaScript port of the popular 8-
bit Nintendo game. TinyMCE is a full-featured word
processor. The remaining web pages (MSNBC, Amazon,
Yahoo, and YouTube) are the start pages for the associ-
ated web portals.

Figure 10 shows that in all but two cases, application
pause times are essentially zero. This is because in most
applications, the depth of the event context tree is either
zero or one, and in each event context, there is little
contention for the local event loop. The former means
that the spanning tree for pause dissemination messages
is small; the latter means that the Rivet library in each
context does not need to wait long before it can grab the
local event loop and pause the context. Thus, pausing is
often very fast. Both Crazy Flies and Amazon had
event context trees of depth one (Crazy Flies has a
web worker, and Amazon has several frames). However,
in both cases, pause times were less than 25 milliseconds.

Message sizes: Figure 11 depicts the size of the mes-
sages that Rivet generated during a debugging session for
the Yahoo page. At the start of the session, the debug-
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Figure 11: Size of messages exchanged between the re-
mote debugger and the client application.

ger automatically fetched the list of global variables and
information about the children of the root <html> DOM
node; this allowed the debugger GUI to populate the ini-
tial tree view elements that a human developer uses to ex-
plore the DOM tree and the object graph rooted by the
window object. After this initialization completed, a hu-
man developer used the debugger GUI to explore various
DOM nodes and application-defined objects.

Control messages from the remote debugger to the
paused client application were extremely small, having
an average size of 53 bytes and a maximum size of 74
bytes. The primary content of each control message was
a list of property strings that indicated the path to the
object whose contents should be returned. Compared to
debugger requests, client responses were more variable
in size, since objects had widely varying property counts.
However, these messages were also small. The average
client response was 13 KB, and all but one message
was smaller than 50 KB. The outlier was the initial
fetch of the global variable list and the properties of
the associated objects. The browser defines over 200
built-in global variables, and a given application often
adds ten or twenty more. Thus, the number of properties
to fetch for the initial object view is often much larger
than subsequent ones. Also note that for each function,
the Rivet GUI fetches the associated source code by
calling that function’s toString(). This source code
comprises the bulk of the initial view fetch.

Diagnostics: Once a web page is paused, a developer
can run diagnostics on it or install a live patch. Rivet al-
lows arbitrary dynamic code to be run on or inserted into
the client-side. In this section, we discuss a few concrete
examples of what a diagnostic might look like.
Rivet.traverseObjectGraph(f) al-

lows the debugger to evaluate the function f
over every object in an application. Thus,
Rivet.traverseObjectGraph() is a useful
foundation for many types of whole-application diag-
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Figure 12: Time needed to visit every application object.
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Figure 13: Computational overheads for lightweight
(LW) and heavyweight (HW) DOM tree serialization.

nostics. Figure 12 shows how long it takes Rivet to
invoke a null function upon each object belonging to
a particular application. This time is roughly linear in
the number of objects that the application contains. In
most cases, a full traversal only takes a few seconds.
This means that a Rivet page supporting non-interactive,
full graph diagnostics will only have to ask the user
to keep a malfunctioning page open for a few seconds
before the user can close it. Note that MSNBC has the
largest traversal time (almost 15 seconds) because it has
both a complex graph of application-defined JavaScript
objects, and a complex, deep DOM tree. Although
applications like TinyMCE and Super Mario also
have large non-DOM object graphs, their DOM trees are
comparatively simpler, leading to smaller traversal times.

Visual layout bugs are a common source of frustra-
tion in web applications [13]. Thus, developers will
often be uninterested in viewing an application’s en-
tire object graph—instead, developers will be specifically



interested in the application’s DOM tree. Rivet pro-
vides built-in support for two types of DOM serializa-
tion. Lightweight serialization simply returns a string rep-
resenting the page’s HTML—Rivet easily generates this
string by reading the innerHTML property of the page’s
<html> DOM node. The innerHTML string only re-
flects simple DOM properties like tag names and node ids,
so it does not capture more complex application-defined
properties like DOM 2 event handlers. Rivet’s second
type of serialization, which we call heavyweight serial-
ization, does capture these properties. Heavyweight seri-
alization essentially generates a serialized debugger view
for the DOM tree. However, instead of generating view
data for nested objects on demand, this data is recursively
gathered in one sweep for analysis by the debug server.

Figure 13 depicts the computational requirements for
lightweight and heavyweight DOM serialization. We ran
the experiments on the five applications with the largest
DOM trees. As expected, lightweight serialization was
faster and generated smaller outputs than heavyweight
serialization. The implementation of innerHTML
resides completely within the native code of the browser,
so reading the value only required a few milliseconds
(Figure 13(a)). The resulting serialized strings were
between 56 KB and 273 KB in size (Figure 13(b)).
In contrast, generating the heavyweight serialization
string was much slower, since the DOM tree traversal
took place in application-level JavaScript code instead
of browser-level C++ code. Figure 13(c) shows that
heavyweight serialization took between 370 milliseconds
and 1773 milliseconds. The serialization strings were
also much larger, with the most complex sites like MSNBC
and Yahoo having serialized DOM trees of 7–12 MB.
On a modern DSL connection, such trees would take a
few seconds to upload to the debug server. However, like
the other client messages, we expect the serialized trees
to be amenable to compression.

Live patching: Rivet supports live patching in ad-
dition to remote debugging. The installation speed
of a live patch depends on the nature of that specific
patch. For example, we created a patch that dynam-
ically updated the MSNBC page to call an input san-
itizer [15] whenever the user entered data into a text
box; the input sanitizer stripped any dangerous HTML
characters from the input, preventing cross-site script-
ing attacks [16]. The patch code used the built-in
document.getElementByTagName() method to
fetch all of the DOM nodes corresponding to text inputs.
For each node, the patch installed a new handler for the
onchange event that invoked the sanitizer.

Since document.getElementByTagName() is
implemented by native browser code, this patch took

only 11 milliseconds to execute. However, patches
that are primarily implemented by application-level
JavaScript will take longer to run. For example, we
wrote a patch for TinyMCE that changed the definition
of a class that represents URLs. The patch used the
Rivet.redefineClass() method (§2.5) to perform
the necessary modifications to the object graph. The
resulting patch took almost eight seconds to install. This
is because Rivet.redefineClass() has to make
expensive application-level traversals through the object
graph to replace stale object references.

Bug coverage: We have successfully used Rivet to ex-
plore known bugs in several in-house web applications;
these bugs were caused by incorrect JavaScript code in
the applications. Rivet can also explore the effects of bugs
that arise from client-side configuration state that is not
directly accessible to the JavaScript interpreter. For ex-
ample, we used Rivet to reproduce a problem with the
Firebug [6] plugin for Firefox, whereby enabling the plu-
gin caused a severe performance decrease for the built-
in JavaScript eval() function [5]. Mugshot [14], a
JavaScript-level diagnostic framework like Rivet, cannot
reliably examine bugs that involve client-side state be-
neath the JavaScript layer (§5).

5 Related Work
All modern browsers have built-in JavaScript debug-

gers. In most cases, these debuggers are only useful for
examining the state of web pages running inside the lo-
cal browser. The WebKit engine [22] used by Safari and
Chrome does support remote debugging [4, 11, 17]. How-
ever, this debugging framework has three disadvantages.
First, it only works for pages running inside Safari or
Chrome. Second, the browser-side portion of the debug-
ger must be manually configured by the end-user; for ex-
ample, the user must decide which debug server should be
allowed to connect to the local browser. Third, the debug-
ging framework allows remote developers to inspect any
page running on the remote browser, not just the ones that
were created by the developer. In contrast, Rivet works
on all browsers, requires no configuration work from end-
users, and prevents a remote developer from inspecting
pages that do not reside in her origin. Rivet also provides
rich support for automated diagnostics, live patches, and
real-time communication between end-users and remote
developers.

There are browser-specific extensions for Firefox [1, 8]
and the Android mobile browser [3] that add remote de-
bugging facilities. Rivet has similar advantages over
these systems—lack of end-user configuration activity,
browser-agnosticism, and so on. However, because Rivet



runs at the application level instead of inside the browser,
Rivet cannot provide some of the low-level services that
in-browser debuggers can provide. For example, Rivet
cannot clear the browser cache or query the JavaScript
garbage collector.

The JSConsole tool [19] provides remote access to a
page’s JavaScript logging console. JSConsole redefines
the JavaScript console variable, replacing it with an ob-
ject that implements the standard console interface but
also accepts commands from a remote debugger. This al-
lows a developer to inspect log messages generated by
the application. The developer can also evaluate new
JavaScript expressions within the context of the remote
application. Like Rivet, JSConsole is browser-agnostic.
However, compared to the debugging interface provided
by Rivet or an in-browser debugger, the console inter-
face is very limited. For example, JSConsole provides no
way to set breakpoints, inspect closure state, or enumerate
timer callbacks.

Mugshot [14] is a logging and replay framework for
JavaScript web applications. Using Mugshot, a user who
encounters a buggy application run can upload a log of the
application’s nondeterministic events to a remote devel-
oper. The developer can then replay the buggy execution
run on a local browser, using the local browser’s debugger
to inspect the application’s state.

Mugshot shares Rivet’s goal of running on unmodi-
fied commodity browsers, and Rivet employs some of
Mugshot’s introspection techniques to instrument event
contexts. However, Rivet interposes on fewer browser in-
terfaces; this makes Rivet more robust and easier to main-
tain, since browser interpositioning is challenging to get
correct [13, 14]. Mugshot also requires developers to de-
ploy a special replay proxy that sits between the end user
and the application web server. This proxy records the
content and delivery order of client-requested information
so that load order and load content can be faithfully recre-
ated at replay time. Deploying this proxy may involve
non-trivial effort, particularly if the application fetches
content from external origins, since that content must be
mirrored by the application’s home servers so that it can
be fetched through (and recorded by) the replay server.
Rivet requires no such infrastructure. Rivet also has the
advantage that it can examine application bugs in situ in-
stead of having to transfer a log to the developer machine
and recreate the application’s state inside the developer’s
browser. This recreation process is somewhat fragile; for
example, replay may lack fidelity if the developer does
not select the same type of browser that the user has, or
if the bug depends on client-side configuration state like
DLLs that the client-side Mugshot library cannot see (and
thus cannot describe to the remote developer). In contrast,
Rivet runs inside the buggy application itself, and does not
require state transferral or recreation. Rivet’s interactive

debugging mode allows developers to receive descriptions
of local configuration state from the end-user.

Ksplice [2] is a system for live patching the Linux ker-
nel. A Ksplice patch updates the kernel at the granu-
larity of a function—to replace an old function, Ksplice
adds the new function code to the kernel’s address space
and then inserts a jump instruction to the new code at the
start of the old function. Rivet can perform similar tricks
using JavaScript’s built-in facilities for object reflection.
Similar to Rivet’s notion of a stable point, Ksplice de-
fines a quiescent kernel function as one that is not on the
call stack of any thread; only quiescent functions may be
patched. If a Ksplice patch changes the layout of data
structures, the developer must provide code to change
these structures. Ksplice ensures that the execution of this
code takes place within the same atomic transaction that
updates functions. This process is similar to Rivet’s mech-
anism for updating object definitions.

6 Conclusions

Rivet is the first browser-agnostic remote debugger for
web applications. Rivet works on unmodified commod-
ity browsers, taking advantage of JavaScript’s intrinsic ca-
pabilities for dynamic object reflection and modification.
Rivet’s client-side consists of a JavaScript library; this li-
brary adds debugging hooks to the application and com-
municates with a remote debug server. Upon application
failure, the remote server can initiate an interactive debug-
ging session with the remote developer, or run automatic
diagnostic scripts that produce data for offline analysis.

Experiments show that Rivet adds negligible over-
head during standard application operation. At debug
time, Rivet can pause an application in tens of millisec-
onds; subsequent debugging traffic between the applica-
tion and the debug server is quite small, with debugger-
to-application messages being 53 bytes on average, and
application-to-debugger messages being 13 KB on aver-
age. Experiments also show that Rivet can efficiently sup-
port non-trivial diagnostics and live patches.
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