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Abstract

Grace is a graph-aware, in-memory, transactional graph
management system, specifically built for real-time
queries and fast iterative computations. It is designed to
run on large multi-cores, taking advantage of the inher-
ent parallelism to improve its performance. Grace con-
tains a number of graph-specific and multi-core-specific
optimizations including graph partitioning, careful in-
memory vertex ordering, updates batching, and load-
balancing. It supports queries, searches, iterative com-
putations, and transactional updates. Grace scales to
large graphs (e.g., a Hotmail graph with 320 million ver-
tices) and performs up to two orders of magnitude faster
than commercial key-value stores and graph databases.

1 Introduction

Last decade has witnessed an increase in the number and
relevance of graph-based applications. Finding shortest
path over road networks, computing PageRank on web
graphs, and processing updates in social networks are a
few well-known examples of such real-world workloads,
which access graphs with millions and billions of ver-
tices and edges.

Some of these workloads — such as PageRank [10] —
run in the background, without any direct user interac-
tions. Since they do not have latency constraints, they
can be run on existing data-parallel architectures such as
MapReduce [12], Hadoop [4], or DryadLinq [32]. Given
the importance of these workloads, new distributed ar-
chitectures such as Pregel [21] are built to run them more
efficiently. Typically, such batch-processed workloads
run on read-only graph snapshots and therefore, their
platforms do not support graph updates.

On the other hand, certain graph workloads are latency
sensitive. For example, finding directions in a map or a
search query accessing the social network of a user to
find relevant information require responses that do not
exceed strict time constraints (typically, in the order of
few 10s of milliseconds), even though each such query
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(or workloads) can access millions of random vertices
and edges.

Whereas batched workloads run on static graph snap-
shots, real-time queries often run on graphs that can
change continuously (such as in social network). Ex-
isting graph processing platforms are largely unsuitable
to host these workloads because they are optimized for
batched, read-only workloads. Other general purpose
systems such as key-value stores or relational databases
are graph-agnostic and offer sub-optimal performance.

Grace is a graph-aware, in-memory, transactional
graph management system that is specifically designed
for supporting low-latency graph applications. It exposes
a simple graph querying interface and a platform for run-
ning iterative graph computations. Grace supports trans-
actions, guaranteeing ACID semantics on graph modifi-
cations. Consistent graph snapshots can be created in-
stantaneously in Grace, allowing read-only workloads —
such as computing the shortest path — to run concurrently
with other transactional updates.

Two design aspects of Grace distinguish it from ex-
isting systems, such as key-value stores and relational
databases that are used for storing graphs. First, Grace
is graph-aware, that is, Grace’s design including its data
structures, algorithms, policies, and interfaces are chosen
to support graphs and graph workloads rather than being
general purpose. Second, given that many graph work-
loads are highly parallelizable, Grace is optimized to run
on large-scale multi-cores, taking advantage of the un-
derlying parallelism and memory layout to improve the
overall performance.

We show that this graph-awareness and support for
parallelism can boost performance significantly when
compared to key-value stores such as Berkeley DB
(BDB) [1] and even when compared to other commer-
cially available graph databases such as Neo4;j [6]. Grace
runs up to two orders of magnitude faster than BDB and
Neo4;j under a single thread; under multi-threaded mode,
Grace runs up to 40 times faster than its unoptimized,
single threaded mode. Grace scales well on large multi-
cores and large graphs; for example, it runs on a 48-core
machine, managing a 320 million node Hotmail graph.

In the rest of the paper, we present the system as fol-



lows. Next, we present the high-level design of Grace.
In Section 3, we describe the algorithms used for graph
partitioning and ordering vertices in memory. Following
that, we explain the platform for running iterative com-
putations in Section 4 and present the details of transac-
tions in Section 5. We then explain the implementation
details in Section 6 and present results from evaluation in
Section 7. Finally, we discuss related work in Section 8
and conclude in Section 9.

2 Design for a Graph Management
System

Grace’s overall design is driven by the following two
characteristics exhibited by several graph workloads.

2.1 Imparting Graph Awareness

A graph’s inherent structure — which reflects how its ver-
tices are connected — gives us certain hints about how the
vertices will be accessed. Most graph workloads follow
a strong graph-specific locality in their access patterns;
specifically, when a workload accesses a vertex, it is
highly likely to access the vertex’s neighbors in the near
future. For example, in a social network, sending updates
to friends (and friends of friends) involves traversing the
social graph and updating neighbors’ data. Even iterative
computation such as PageRank, which does not follow
any graph-traversal pattern, computes the rank of a page
and passes a fraction of its rank to its neighbors (thereby,
accessing its neighbors’ data).

However, general-purpose solutions — such as key-
value stores and relational databases — used today for
storing and accessing graph datasets are often agnostic
to the underlying graph structure and therefore rely only
on default access patterns and policies to improve perfor-
mance.

Grace’s graph-awareness spans the whole system
starting from its low-level cache and memory layouts to
high-level interfaces exposed to applications. Some of its
graph-aware features include a fast graph partitioning al-
gorithm, which can be used to split a graph into smaller
sub-graphs and decide where to assign new graph up-
dates, a graph-aware layout where vertices are ordered
such that neighboring vertices are placed close to each
other, and a set of querying and updating APIs for ac-
cessing a graph.

2.2 Embracing Parallelism

Second, graph workloads are often partitionable and
therefore, parallelizable. For example, in a social net-
work, two different users can update their status in paral-
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Figure 1: Grace Architecture.

lel without affecting each other. Even computations such
as PageRank can be run in parallel on a partitioned graph
such that updates from a partition are sent to another par-
tition only if they share an edge. This partitionable na-
ture of graphs and their workloads is well-aided by the
evolution of hardware into the multi-core era.

However, general purpose systems often lack sup-
port for large-scale multi-cores; for example, BDB and
Neo4j do not support partitioned data or computation.
Even if they are built for multi-cores, because of the
absence of graph-awareness, key-value stores and rela-
tional databases cannot efficiently partition or layout a
graph on multi-cores.

Grace makes several optimizations for multi-core pro-
cessors. For example, it minimizes inter-core commu-
nications by batching updates across partitions. Grace’s
load-balancer can dynamically shed load from a thread
that is handling a ‘hot’ graph partition to other free
threads.

An overall result of these optimizations is that Grace
outperforms other comparative systems; in a single-
threaded mode, Grace runs up to two orders of magnitude
faster than Berkeley DB and Neo4j; in a multi-threaded
mode, Grace gains a speed up of up to 40 times relative
to its single-threaded performance.

2.3 Grace Architecture

A high-level sketch of Grace is presented in Figure 1.
Grace runs on a single machine. Since low-latency of
queries is one of our main objectives, we specifically
choose to keep the entire graph in-memory. Grace ac-
cesses the durable media only when loading a graph ini-
tially and logging transactional updates.

Grace exposes a set of APIs for querying and updating
a graph. Queries can be vertex-specific (e.g., GetVer-
texAndNeighbors()), or partition or graph-specific (e.g.,
GetNumberOfVertices()). A graph can be updated by
adding or deleting vertices and edges.



Grace also presents a platform for running iterative
computations — which in turn use the querying APIs —
on graph partitions. While iterative computations (such
as PageRank) are typically treated as batch-processed
workloads, we show that when run on Grace, they take a
few minutes instead of several hours to complete.

Within Grace, a graph can be partitioned and stored as
smaller sub-graphs. Grace provides a library for running
management tasks such as partitioning a graph or rear-
ranging its vertices in-memory; parameters for partition-
ing such as the algorithm to use and number of partitions
to create can be specified via a configuration file. Each
partition is handled by a thread, which can be pinned to a
core; the thread is responsible for processing queries and
updates to vertices and edges of that partition.

Next, we present more details on how Grace partitions
a graph and arranges its vertices in memory.

3 Partitioning and Placement

One of the key opportunities we have in designing a spe-
cialized store for graph structured data is to exploit the
expected locality of reference in the graph. Users access-
ing one vertex are often interested in adjacent vertices,
and by carefully laying out the graph we can make such
follow-up queries much faster than an otherwise random
request.

We investigate graph layout at two granularities. First,
we are interested in partitioning the vertices of the graph
into a few parts, allowing simpler concurrency and par-
allelization between multiple workers. Second, we are
interested in the relative placement of the vertices within
a part, ideally with proximate vertices placed near one
another to exploit caches at various levels. Partitioning
is a very binary separation, two vertices are either in the
same part or not, whereas placement is more continuous,
in that two vertices can be placed within a spectrum of
distances.

3.1 Partitioning and Placement Algo-
rithms

Graph partitioning is a well-studied problem. The objec-
tive of a graph partitioning algorithm is to split a graph
into smaller sub-graphs such that the number of edges
that run between the sub-graphs (i.e., the edge-cut be-
tween the partitions) is small. Another important cri-
teria to consider while partitioning a graph is to create
balanced partitions, that is, sub-graphs of roughly equal
size. The number of vertices alone does not guarantee
balanced partitions; for example, even with similar sizes,
a partition with more high-degree vertices may become
‘hotter’ than other partitions. In addition, it is desirable

to have a partition algorithm that can run faster, can be
parallelized, and can be applied on incremental updates
without having to look at the entire graph.

Optimizing all these criteria is a challenging, and un-
solved problem. Moreover, different algorithms can
have very different behavior on different graphs. Con-
sequently, Grace provides an extensible library of par-
titioning algorithms, initially stocked with three simple
but useful candidates: 1. a hash-based scheme oblivious
to the graph structure, 2. a folklore heuristic, based on
placing vertices in parts with fewest non-neighbors, and
3. a spectral partitioning algorithm based on the second
eigenvector of the normalized Laplacian.

3.1.1 Hash Partitioning

Partitioning a data set based on the hash of the data is
well-known. We hash by the vertex ID and distribute
the vertices to different partitions. The nice features of
hash partitioning are: it is fast; it does not require an
entire graph to be loaded into memory and therefore,
can be applied on incremental graph updates; it creates
well-balanced partitions, and since it does not look at the
degree of a vertex, high-degree vertices are mostly uni-
formly distributed, which reduces the chance of a partic-
ular partition becoming overloaded. However, because
of its graph-agnostic nature, sub-graphs created using
hash partition have high edge-cuts.

3.1.2 Heuristic Partitioning

One folklore heuristic for partitioning repeatedly consid-
ers vertices and places them in the part with fewest non-
neighbors. All other things being equal, this is very sim-
ilar to placing them in the part with the most neighbors,
but avoids the degenerate case where all vertices join the
same part. Instead, there is a tension between choosing
an appealing part and balancing the parts.

More formally, for each vertex v with neighbors N (v),
the heuristic selects the part P; minimizing the number of
vertices not in N(v): |P; \ N(v)|. This number can be
easily tracked by maintaining the sizes of each part, and
a vector of current assignments of vertices to parts. Eval-
uating a vertex v requires only looking up the parts of
its neighbors, and then subtracting these totals from each
part size. The algorithm streams sequentially over the
edge file, and only needs to perform random accesses to
the vector of current assignments. Despite its simplicity,
we find that the heuristic provides significant improve-
ments in our experiments.

3.1.3 Spectral Partitioning

Spectral graph partitioning [29] uses the eigenvectors of
the connectivity matrix of the graph to partition nodes.



Despite the intimidating name, it has a fairly simple de-
scription: we associate a real value with each vertex, and
repeatedly update the value of each vertex to the aver-
age of the values of its neighbors. This process prov-
ably converges to values reflecting an eigenvector of the
connectivity matrix, and intuitively assigns positive val-
ues more often to vertices whose neighbors are positive,
and less often to those whose neighbors are negative, and
vice-versa. Any threshold (we use zero) partitions the
graph into two parts, nodes whose values are less than
and greater than the threshold, for which we expect fewer
edges between the parts than within the parts. One can
then repeat the process recursively, until a desired size is
reached.

We use hash and heuristic-based partitioning algo-
rithms to create graph parts and spectral partitioning to
order the graph vertices in-memory by their associated
real values. Even though spectral partitioning can be
used for graph partitioning, we did not use it because it
is hard to generate balanced partitions and it runs slower
than the other two.

On top of vertex placement, we also order the edges
within a partition. Edges are first grouped according to
their source vertices, following the same vertex order-
ing, and then within each group (with the same source),
edges are ordered by their destination partition. While
this placement improves most query performances, we
also explore a different edge ordering for iterative com-
putations, which is detailed in the next section.

4 TIterative Execution Platform

On top of the simple querying interface in Grace, we built
an execution platform, which can help users program and
run highly parallel iterative graph computations, with-
out worrying about complex thread management and
system-level optimizations. Similar to Pregel [21], Grace
adopts the Bulk Synchronous Parallel (BSP) [30] ab-
straction and implements a vertex-based data propaga-
tion model, which is effective for exploiting parallelism
and convenient for programming.

In this programming model, a graph computation con-
sists of a sequence of iterations, separated by global bar-
riers. Conceptually, each iteration has three steps: first,
updates from a previous iteration are received; second,
user-defined functions are invoked to apply the updates
and compute new values for each vertex; and finally, up-
dates are propagated to other vertices for the next itera-
tion. The sequence of iterations are stopped when every
vertex — that is, the user-defined function running for ev-
ery vertex — votes to halt.

Since Grace operates exclusively in a multi-core en-
vironment with cache coherent shared memory, propa-
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Figure 2: An Example for Batching Inter-Core Mes-
sages.

gation of updates simply involves applying the updates
directly to other vertices’ data. Specific to iterative com-
putations, Grace implements two optimizations: first, up-
dates can be batched per destination partition to mini-
mize data shuttling among cores; second, load from a
thread, which handles a ’hot’ partition, can be dynami-
cally shed to other threads resulting in balanced compu-
tation across cores.

4.1 Batching Updates

For a given partitioned graph and a general-purpose iter-
ative computation, Grace has limited opportunities to re-
duce the updates propagated among partitions. However,
by carefully orchestrating when updates are propagated,
Grace can substantially reduce unnecessary data copies
among various cores.

Most modern multi-core architectures present a cache-
coherent shared memory. That is, when a core modifies
a piece of data, the data is populated on its cache and
invalidated on other cores’ caches that may have a copy
of the data. Since a single cache line can hold multiple
data items — which is especially true for graph computa-
tions, where a vertex data can be small such as the rank in
PageRank or component Id in weakly-connected compo-
nents — batching updates to all such data items together
can minimize the number of cache copies and invalida-
tions. This batching is especially useful in Grace, where
vertices can be laid out according to their proximity in
the graph.

Figure 2 illustrates a specific example of the above
scenario, where batching is beneficial. It presents a graph
with two partitions, 0 and 1, each handled by a thread
pinned to its core. Consider a case where vertices B and
D are placed in contiguous memory addresses and in-
dexed into the same cache line. During an iterative com-
putation, if vertices A and C propagate their updates to
B and D, there are at least two possible schedules for
applying the updates: in the first schedule, A sends its
update to B, then C sends its update to B, which is fol-
lowed by A’s and C’s updates to D; in the second sched-
ule, A sends its updates to B and D, which is followed
by C’s updates to B and D. Assuming that the cache line



with B and D was present in core 0 initially, in the first
schedule, B and D are shuttled between partition 0 and
1 for three times, whereas in the second schedule, they
are copied only once.

Strictly scheduling threads in a choreographed man-
ner to avoid redundant data copies is difficult and can
incur additional overheads. Instead, Grace implements
a simple, yet effective memory layout and schedule for
propagating updates. Within each partition, all the edges
are grouped according to their destination partition, and
within each group of destination partition, edges are or-
dered according to their source vertices’ in-memory or-
dering. This is similar to the edge ordering proposed ear-
lier in Section 3, except that edges are first ordered by
destination and then by source. During an iterative com-
putation, whenever updates must be propagated, a thread
running in partition ¢, first selects the edges targeting it-
self and then selects the next partition in a round-robin
fashion (i.e., (¢ + 1) mod N, where N is the total num-
ber of partitions). In our evaluation, we find that batch-
ing updates as mentioned above can greatly improve the
performance for dense graphs with large average vertex
degree.

4.2 Balancing Load

In BSP programming model, iterative computations are
separated by global barriers; that is, a partition can exe-
cute its next iteration only after all other partitions com-
plete their current iteration. Although such synchronous
execution simplifies programming, it introduces a cause
for concern. If one partition’s execution significantly
lags behind others, then the whole computation is de-
layed proportionally.

In order to maximize the parallelism, it is necessary
to balance the load among worker threads such that they
are all busy during the entire computation. A standard
way of achieving this is by partitioning the data equally
among the workers; for example, a graph can be stati-
cally partitioned into sub-graphs of equal size. However,
there are several drawbacks in static partitioning. First,
it is difficult to define ‘balance’ because it is application-
dependent. For example, partitions with same number of
vertices may run computations for different time. Bal-
ancing the number of edges does not guarantee similar
runtime either because not all edges propagate updates
during each iteration. Second, enforcing balanced par-
titioning can degrade partitioning quality with respect
to the size of edge-cut and reduce benefits from graph-
specific locality.

Instead of statically balancing the sub-graphs, Grace
dynamically balances the load by an efficient work shar-
ing mechanism. During an iterative computation, instead
of statically assigning all the vertices in a partition to a

thread, Grace allows a thread to grab a set of vertices
from other partitions, if necessary. Each thread starts
processing vertices in its own partition. After all the ver-
tices have been processed in its current partition, a thread
grabs a set of vertices from another partition that has not
yet been fully processed. For example, if there are two
overloaded partitions and three free worker threads, the
three threads repeatedly take a portion of vertices from
the two partitions until everyone completes.

5 Transactional Graph Updates

The need to support graph updates stems from our ini-
tial goal of building a fast graph management system for
graphs that may change continuously. Although updates
can be applied by simply locking a graph, we chose to
implement it with transactions in order to improve the
concurrency between graph queries and updates; for ex-
ample, Grace can run long iterative computations, while
concurrently allowing a graph to change.

Grace supports structural changes to a graph. That is,
a vertex or an edge can be added or deleted and edge
weights can be changed. To update a graph, a thread
starts a transaction, issues a set of changes, and finally
tries to commit the transaction. The transaction may
commit or abort depending on other conflicting changes
that may have been applied to the graph. Once a trans-
action is committed, any new snapshot created from the
graph will reflect the changes.

Under the covers, Grace implements transaction using
snapshot-isolation [31]. When a transaction is started,
Grace creates a consistent, read-only snapshot of the
graph and allocates a temporary buffer for storing the
updates. Grace ensures that the snapshot is consistent by
making its creation atomic with respect to other trans-
actional updates. All reads issued by the transaction are
served from its snapshot and changes made by the trans-
action are logged into the temporary buffer.

During commit, Grace detects conflicts using version
numbers. Version numbers can be maintained for each
vertex, and although it reduces transaction conflicts, such
fine granularity can add a lot of overhead; on the other
hand, version can be managed at a large granularity
for each graph, which will conflict on every concurrent
transaction. Grace finds a middle ground and detects
conflicts at the granularity of partitions. When a transac-
tion prepares to commit, it checks if the partitions, which
will be changed, were modified since the snapshot was
taken. If not, the transaction proceeds to commit. Dur-
ing commit, contents of the temporary buffer are logged
into the durable media and then, the changes are applied
to the graph. After the transaction commits, the snapshot
is deleted.
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Figure 3: In-memory Data Structures in Grace.
6 Implementation

When implementing Grace, we took careful measures to
avoid features and data structures that can affect the per-
formance. Grace is implemented in C++, which gives
us the freedom to manipulate the memory layout to our
convenience. In this section, we give an overview of the
in-memory structures and how they are used to run trans-
actions; finally, we briefly explain the on-disk data.

6.1 In-memory Data Structures

Figure 3 presents an in-memory data organization of the
graph shown in Figure 1.

A graph object contains a set of partitions. Within each
graph partition, vertices and their edges are stored in sep-
arate arrays, which are managed as in-memory logs (Ver-
tex Log and Edge Log, in Figure 3). Vertex Log stores
per-partition vertex records and the Edge Log stores the
edge set — which is the degree and edges of a vertex — of
all the vertices in that partition. An edge itself is a com-
posite value consisting of a partition ID and the position
of the destination vertex in Vertex Log.

In addition to the Vertex and Edge Logs, Grace cre-
ates and manages a few other in-memory structures. An
Edge Pointer Array is used to store the position on the
Edge Log where a vertex’s edges set is stored. For exam-
ple, in Figure 3, in Partition 0, vertex B’s (whose index
is 1 in its Vertex Log) edge set is pointed by the contents
of Edge Pointer Array at position 1. Grace also main-
tains an index, mapping a vertex ID to its location on
Vertex Log. Finally, Grace uses a Vertex Allocation Map
to track whether a position on the Vertex Log contains a
valid vertex or not; for example, a vertex can be marked
as deleted by clearing the corresponding bit in Vertex Al-
location Map.

Grace uses several other data structures, which are
not shown in Figure 3 for simplicity. Grace separates
any data associated with a vertex (such as the ‘rank’ in
PageRank) and stores them on a separate array, at the
same index position as the vertex on the Vertex Log. This
separation of data and metadata improves performance
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considerably, especially for queries that only look at the
graph structure. Grace maintains a light-weight bitmap
locks for coordinating access to a vertex’s data from dif-
ferent partitions.

6.1.1 Implementing Iterative Computations

Iterative computation platform is built on top of the sim-
ple APIs exposed by Grace and batching the updates and
balancing the load are implemented separately at this
layer.

As we detailed earlier, for batching updates, edges are
first grouped according to their destination partitions and
then within each group, they are ordered by their source
vertices. To implement this, each partition uses one edge
array for each destination partition as shown in Figure 4.
For simplicity, we only show the data structures in par-
tition 0, which has two edge arrays, one for partition O
and 1. In addition to storing the edges, we also store the
number of edges each vertex has for a specific destina-
tion partition and a pointer to the vertex’s data (dashed
arrow). If a vertex does not have any updates to prop-
agate, it can be quickly skipped (based on the number
of edges that vertex has on the edge array); however, if a
vertex has some updates, its data can be quickly accessed
and propagated.

It is important to note that iterative computations are
executed on top of graph snapshots and therefore, use
separate data structures from the in-memory ones; as a
result, iterative computations are unaffected by transac-
tional updates.

6.1.2 Implementing Transactions

Grace uses temporary in-memory buffers for collecting
transactional updates and a version vector for a graph,
where each element of the vector represents the version
of each partition.

Consistent, read-only graph snapshots can be cre-
ated instantaneously in Grace using copy-on-write tech-



niques. Therefore, at any instant there will be one read-
write graph version (on which updates will be applied)
and there may be several read-only snapshots. Some
of the data structures are shared between all the graph
copies, while others are specific to each version. The
Vertex and Edge Logs are common across read-write and
read-only versions of the graph. Any change made on the
graph (such as adding a vertex or modifying an edge set)
is appended to the end of the corresponding logs, with-
out affecting other snapshots; that is, no vertex or edge is
modified in-place in the log. However, Edge Pointer Ar-
ray, Vertex Index, and Vertex Allocation Map are unique
to different versions of snapshots.

When a new vertex is added, Grace determines the par-
tition where the new vertex should go by rerunning the
partition algorithm. Then, the new vertex is appended to
the end of the Vertex Log; a copy of the Vertex Index is
created, where the new vertex’s mapping is included.

If an existing vertex’s edge set is modified, the newly
modified edge set is appended to the end of the Edge
Log; a copy of the Edge Pointer Array is created and its
entry corresponding to the modified vertex is changed to
point to the new edge set. Finally, if a vertex is deleted,
Grace copies the Vertex Allocation Map and clears the
corresponding vertex bit in it. In all cases, none of the en-
tries in Vertex Log or Edge Log are updated in place and
only the copy-on-write versions of Vertex Index, Edge
Pointer Array, and Vertex Allocation Map are modified.

6.2 On-disk Data

Grace’s on-disk data is maintained in a fairly straightfor-
ward manner. Each partition stores its vertices and edges
in respective files. When loading a graph, all the vertices
and edges are read parallelly by the partitions, resulting
in an overall fast graph loading. In addition to the ver-
tex and edge files, Grace also maintains an on-disk log
of committed updates, to recover from crashes.

7 Experiments and Evaluations

We evaluate Grace on two commodity multi-core ma-
chines running Windows Server 2008. First machine
has 96 GB of memory and four 2.29GHz AMD Opteron
6176 processors, each of which has 12 cores. The other
one has 24 GB of memory and two 2.4GHz Intel Xeon
E5645 processors, each having 6 cores.

We run representative graph applications such as it-
erative graph computations, graph traversal algorithms,
and online graph queries as benchmarks. For iterative
computations, we choose PageRank, Weakly Connected
Component (WCC), and Single Source Shortest Path
(SSSP). For graph traversal, we select Depth-First Search

A Orkut graph Web graph
PP BDB | Neodj | Grace BDB | Neodj | Grace
PgRk | 6,548.7 2,428.0 71.1 6,271.8 31,600.0 280.1
wcCC 3,5109 | 4,315.0 69.3 8,861.9 | 48,092.0 671.6
SSSP 700.8 2,000.0 124 | 6,336.7 12,702.2 210.1
BFS 1,227.6 | 2,732.0 7.6 | 3,7432 32,500.0 68.5
DFS 1,329.5 1,882.0 19.1 3,707.1 33,416.5 51.6
q4hop 2,052.7 1,791.2 9.1 4.2 32.0 0.162
q3hop 439 52.1 0.636 0.473 15.1 0.02

Table 1: Comparison With Existing Systems. This table
presents the workload running time (seconds) on BDB, Neo4;,
and Grace. PgRk refers to PageRank (5 iterations) and qnhop
refers to a query for n-hops neighbors. To make query run time
measurably long, we randomly pick 8 vertices to query from
Orkut graph, and randomly select 128 vertices to query from
web graph, which has a smaller average degree.

(DFS) and Breadth-First Search (BFS). Finally, for on-
line queries, we use n-hops queries that retrieve n-hops
neighbors’ information for a random vertex.

We run our benchmarks on two different graphs: a so-
cial network graph and a web graph. For the social net-
work graph, we use a dataset of Orkut which was col-
lected between Oct 3 and Nov 11 2006, and can be pub-
licly accessed [24]. It contains 3,072,441 vertices (users)
and 234,370,166 edges. For web graph, we use a dataset
from ClueWeb09 [2], which contains the first 10 mil-
lion English pages crawled during January and February
2009. The corresponding graph consists of 88,519,880
vertices (URLs) and 551,320,425 edges.

In all experiments, applications are run after the whole
graphs are loaded into memory and the graphs are kept
in memory until the applications finish. Our experiments
are designed to answer the following questions. 1. Does
Grace outperform existing graph management systems?
2. How effective are the graph-aware and multi-core-
specific optimizations? 3. How transactional copy-on-
writes impact the runtime? and 4. Does Grace scale to
large graphs? We explore these questions in the follow-
ing sections.

7.1 Comparison with Existing Systems

In order to demonstrate the effectiveness of Grace, we
compare it with two existing systems: Berkeley DB
(BDB), a widely used open-source key-value store and
Neo4j, an open-source transactional graph database im-
plemented in Java.

In BDB, both the key and value are organized as raw
bytes. Therefore, to store a graph, we serialize the ver-
tex Id and edges into the key and value payload. For fair
comparison, we use the in-memory mode of BDB and
set its index as hash table. In Neo4j, we use its vertex
and edge creation APIs to import the graphs into its stor-
age. Unlike BDB, Neo4j does not provide an in-memory
mode and therefore, we scan the entire graph to preload
it into memory before starting applications.
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Figure 5: Hash vs. Heuristic Partitioning on PageRank

Since both BDB and Neo4j do not support partitions,
we configured Grace to load a graph in to a single parti-
tion, where the vertices are rearranged according to their
graph proximity, and all three systems use a single thread
to run the workloads.

Table 1 compares the execution time of all the ap-
plications on BDB, Neo4j, and Grace, running on the
AMD machine. The result shows that Grace can perform
significantly better than the other two systems — some-
times, up to two orders of magnitude faster — because
of its graph-aware optimizations and compact data struc-
tures. Other reasons for the poor performance of BDB
and Neo4j are: first, search for a vertex following an edge
involves an indirect hash-table lookup on vertex Id; sec-
ond, data structures representing a vertex or an edge are
neither compact nor cache-aligned, which leads to larger
memory footprint and more cache misses; finally, BDB
incurs an additional overhead because it requires extra
data copies between its internal key-value structures and
the data structures used by applications.

7.2 Optimization Effectiveness

Given the large performance gap between Grace and
other systems, we further explore to understand the ef-
fectiveness of our optimizations.

7.2.1 Partitioning and Placement

We run experiments to understand the effectiveness of
graph-aware partitioning and vertex placement. For bet-

| L1 | L2 | L3 | DTLB
Orkut-Intel | 046 (6036) | 0.50(5326) | 0.44(1282) | 0.31(999)
Orkut-AMD | 0.51(6825) | 0.41(3815) | 0.48(19469) | 033 (1118)
Web-Intel 0.23(7908) | 0.27(12505) | 0.20(2997) | 0.24 (6749)
Web-AMD | 0.38(14245) | 0.24(10005) | 0.27 (47346) | 0.24 (6378)

Table 2: Relative Reduction in Cache and TLB Miss. The
table shows reduction in cache and TLB miss for PageRank on
12 partitions of Orkut and web graphs when heuristic partition-
ing and vertex placement optimizations are used. The results
are presented relative to the case when only heuristic partition-
ing is used. Actual number of cache and TLB misses, in mil-
lions, is shown in brackets.

ter understanding, we also integrate Metis, a public im-
plementation of multilevel k-way graph partitioning al-
gorithm [5, 19], into Grace’s partitioning library for com-
parison. Figures 5a—5d show the performance of PageR-
ank on Orkut and web graphs on Intel and AMD ma-
chines. Each figure plots the speedup from hash, heuris-
tic, and Metis partitioning, with and without vertex re-
ordering, relative to Grace’s performance on an unopti-
mized single partition.

First, graph-aware partitioning alone does not improve
the performance if the number of graph partitions are
fewer. However, the differences between these partition-
ing techniques grow larger at higher number of parti-
tions. Second, after the vertices and edges are ordered
according to their graph-specific locality, both heuristic
and Metis partitioning significantly outperform hash par-
titioning because when a graph is partitioned in a graph-
aware manner, the rearrangement algorithm has more op-
portunities to place a vertex and its neighbors close to
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Figure 6: Load Balancing and Updates Batching for PageRank

each other, resulting in better locality.

To better understand the effects of vertex placement,
we also measured the cache and TLB miss counts
through VTune [7] on Intel machine and CodeAnalyst [3]
on AMD machine. Table 2 presents the relative reduction
in cache and TLB miss when vertices were rearranged af-
ter heuristic partitioning relative to the case when no ver-
tices were rearranged. These results demonstrate that the
graph-aware vertex placement can significantly improve
the graph data locality.

However, the actual speedup from graph-aware par-
titioning and placement depends on both the graph and
the architecture. Sparse graphs such as the web graph
are easier to partition and order, whereas dense graphs
such as Orkut are less amenable to vertex layouts. Also,
we find that the AMD architecture, with its 48 cores, is
more sensitive to cross core communications — perhaps
due to the large number of cores — than the 12-core In-
tel. As a result, we find that the web graph on AMD en-
joys a significant speedup from a graph-aware partition-
ing and placement, whereas Orkut graph on Intel only
gains a relatively moderate improvement. Since the Intel
and AMD architectures have other differences as well,
more investigation is required to understand the reasons
behind the different speedups. WCC and SSSP work-
loads, which are not shown here, also have similar per-
formance curves.

(b) Orkut graph on Intel
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L1 ‘ L2 | 13 ‘ DTLB ‘ Remote | Remote
core chip
Bal 5867 5172 1343 1019 661 1159
Bal+Bat 4057 2603 421 17 204 291

Table 3: Hardware Event Counts for Load Balancing and
Update Batching. This table shows the hardware event counts
for PageRank running on Orkut graph with 12 partitions on
Intel machine. It compares load balancing (Bal) with both
load balancing and updates batching (Bal+Bat). Remote core
counts the number of retired memory load instructions that hit
in the L2 cache of a sibling core on the same die. Remote chip
measures the number of retired memory load instructions that
hit the remote processor socket.

7.2.2 Batching Updates and Balancing Load

Next, we focus on understanding the benefits of load bal-
ancing and batching updates on iterative computations.

Figures 6a—6d show the additional benefits (or lack
thereof) from load balancing and batching, relative to
the performance of Grace with heuristic partitioning and
placement, for PageRank workload on Orkut and web
graphs on both the machines. Each figure shows two
curves: the curve ‘Load Balancing’ represents the ben-
efit just from sharing work among threads and the curve
‘Load Balancing + Updates Batching’ is the speedup
from enabling both the optimizations. As can be noted
from the figures, these optimizations perform differently
for different graphs and architectures.

First, heuristic partitioning’s strength in producing
balanced sub-graphs can be observed from the fact that



AMD (48 cores Intel (12 cores
App ( ) ‘ ( )

‘ Orkut | Web | Orkut | Web
PgRk 34.1 36.5 17.9 235
WCC 40.4 19.2 14.5 12.5
SSSpP 14.8 8.2 6.8 8.2

Table 4: Maximum Speedup. This table presents the max-
imum speedup Grace gets with all optimizations and maxi-
mum number of partitions (as supported by the architecture).
Speedup is measured relative to a baseline with a single parti-
tion and no optimizations.

load balancing strategy did not offer substantial bene-
fits. Second, updates batching is very effective for dense
graph such as Orkut, which offers more destination edges
for batching and hence shows better performance. Sparse
graphs such as web graph do not have sufficient destina-
tion edges for updates batching to be effective; however,
since the source vertex’s data is accessed once for every
destination partition (as explained in Section 6.1.1), the
extra overhead can sometimes reduce the performance.
We noticed similar results for other workloads as well
and they are not shown here.

We measure the performance counters for PageRank
on Orkut graph on Intel machine to better understand the
effects of update batching (we do not measure the num-
bers for AMD machine since, to the best of our knowl-
edge, it does not provide counters for cross-core access).
Table 3 shows that the number of remote core and remote
chip accesses significantly decrease when updates are
batched. We notice that the cache and TLB miss counts
also decrease considerably. We believe that this is mainly
caused by the following two reasons: first, since each re-
mote core access implies an L2 cache miss (L2 cache is
private for each core) and each remote chip access im-
plies an L2 and L3 cache miss (L3 cache is shared by the
cores on the same chip), reduction in remote core or chip
accesses will also decrease L2 and L3 cache misses; sec-
ond, batching could lead to access patterns with better
locality because vertices in the same partition are more
likely to be in the same cache line than vertices from dif-
ferent partitions.

It is clear that not all optimizations work equally well
on all graphs (or architectures); so, it is important to have
a system configurable to specific scenarios. Grace pro-
vides the flexibility to (manually) choose the right con-
figuration desired by the user. In the future, we can add
logic that automatically selects optimizations appropri-
ate for a graph; for example, for sparse graphs, Grace
can turn off updates batching.

7.2.3 Overall Speedup

Table 4 presents the maximum speedup Grace achieves
for a specific workload-graph-and-architecture combina-
tion. The speedup is calculated with respect to a Grace
configuration with just one partition and without any
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Figure 7: Impact on Runtime due to Copy-on-Writes.

other optimization. We can notice speedups up to 40
times (for the case of WCC on Orkut graph on AMD),
reducing the runtime of those batch-processed workloads
to a few minutes.

7.3 Effect of Transactional Updates on
Layout

Copy-on-write is a great mechanism for implementing
instantaneous snapshots, consistent updates, and trans-
actions. However, by their very nature, copy-on-writes
can disrupt object layouts; specifically, when a data item
is changed, it is copied to a different location voiding
any careful cache or memory layout optimizations pre-
viously made. We evaluate the transactional support in
Grace to understand how it affects the in-memory layout
and therefore, the performance of workloads.

Figure 7 presents the increase in runtime for all the it-
erative workloads on Orkut graph, after the graph was
updated with transactions; the measurements are pre-
sented relative to the runtime on Orkut graph without any
changes. Each transaction either randomly deletes a ver-
tex or adds a new vertex with the same set of neighbors
as the last deleted one; although, this does not change the
conceptual structure of the graph, it does affect Grace’s
memory layout significantly, where every neighbor and
neighbor’s edges of a deleted (or added) vertex is copied
to the end of the Vertex Log or Edge Log. We vary the
number of transactions and estimate the increase in the
runtime. We can find that degradation in performance
is workload dependent; whereas PageRank suffers only
a small increase in runtime, others like WCC and SSSP
incur a noticeable drop in performance (up to 2.5 times,
for 24K transactions). To overcome such performance
drops, Grace can periodically reorder its modified mem-
ory layout and regain its original performance.

7.4 Scalability of Grace

Our previous experiments showed that Grace can scale
well on large multi-cores and our final experiment mea-
sures the scalability of Grace to large graphs. We used a



Graph | PageRank | WCC | SSSP
Hotmail | 190.1 | 109.9 | 46.5

Table 5: Scalability to Large Graphs. This table presents
the running time (seconds) of iterative workloads on Hotmail
graph.

Hotmail user graph, which is a weighted graph with over
320 million vertices and 575 million edges and ran the
iterative workloads on it. Table 5 presents the runtime of
iterative computations, which shows that Grace can re-
duce the runtime of PageRank-like workloads (which we
ran for 20 iterations) to close to 3 minutes.

8 Related Work

Systems for Graphs. Early research systems for graphs
were built for web graphs, where fast random access is
a basic requirement; consequently, systems such as Con-
nectivity Server [9] kept entire graphs in memory and fo-
cused on how to compress them efficiently. While early
systems ran on a single machine, later systems such as
Scalable Hyperlink Store [25] were distributed in de-
sign. Unlike these systems, Grace is general-purpose
and do not rely on specific graph characteristics. More-
over, none of the early systems focused on multi-core
optimizations or transactional updates.

To support efficient graph computations, systems like
Pregel [21], Naiad [23], GraphLab [20], and Parallel
Boost Graph Library [14, 15] provide a natural graph
programming API, which is adopted by Grace. Of all
these systems, Grace is more similar to GraphLab as they
both operate in memory and run on multi-cores; how-
ever, the similarities stop there. Whereas GraphLab is
optimized for machine learning algorithms, Grace is gen-
eral purpose. Grace is unique in how it uses its graph
awareness for efficient in-memory graph representations.
Moreover, none of these systems, including GraphLab,
provide transactional or snapshotting capabilities.

Neo4j [6] is an open-source, single-box graph
database. It supports transactions but does not allow
graph computations to run concurrently with transac-
tions, unless the computation is wrapped in a big trans-
action, which makes it likely to be aborted. Moreover,
Neo4j’s internal in-memory data structures are not opti-
mized for graphs, resulting in poor performance.
Graph-Aware Optimizations. Graph partitioning is a
well-studied problem. Its goal is to produce partitions
with fewer cross-partition edges. Several offline parti-
tioning algorithms [18, 29] have been proposed, which
typically take longer to run. Pujol et al. [27] proposed an
online partitioning mechanism to obtain good partition
quality with a small replication cost. While this works
well on distributed systems, — where the cost of access-

ing a remote partition is far higher than what we observe
in multi-cores — we find that a graph-aware partitioning
alone does not perform better; however, when accompa-
nied by vertex ordering, graph-aware partitioning works
very well on multi-cores.

Imranul et al. [17] proposed to leverage the commu-

nity structure of social graphs to optimize its layout on
disk. Similarly, Diwan et al. [13] presented a cluster-
ing mechanism for tree structure to achieve good local-
ity on disk. Although relevant, these past work optimize
for specific graph characteristics (such as social graph
or tree), whereas Grace remains general-purpose. More-
over, since Grace keeps an entire graph in memory, it fo-
cuses on memory and cache layouts, and does not bother
with disk structures.
Multi-Core Optimizations. Since multi-cores are a de
facto standard on modern servers, data-parallel com-
putations and key-value stores have been evaluated in
them [22, 28]. Recently, many graph algorithms [8, 11,
16] have been specifically designed and implemented for
multi-core system.

Jacob et al. [26] developed a system runtime out of
commodity processors to optimize graph applications.
Although they focus on single machine performance,
they assume that graph locality is hard to improve and
therefore, propose to tolerate memory access latency
with massive concurrency. They built a lightweight
multithreading library, which accesses memory asyn-
chronously using prefetch instructions. Their technique
is orthogonal and can be complementary to Grace.

9 Conclusion

In the last 15 years — perhaps fueled by the stupendous
growth of web and, more recently, social networks — sys-
tems researchers have been working on special purpose
storage and computation platforms for graphs. Grace
is another entry in this continuing effort. Grace, with
its graph-awareness and optimizations for multi-cores, is
unique among them. We plan to extend Grace to run on
distributed frameworks, where we hope to apply its cur-
rent optimizations and discover new ones in those con-
texts as well.
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