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Abstract
Gibraltar is a new framework for exposing hardware devices
to web pages. Gibraltar’s fundamental insight is that Java-
Script’s AJAX facility can be used as a hardware access pro-
tocol. Instead of relying on the browser to mediate device in-
teractions, Gibraltar sandboxes the browser and uses a small
device server to handle hardware requests. The server uses
native code to interact with devices, and it exports a stan-
dard web server interface on the localhost. To access hard-
ware, web pages send device commands to the server using
HTTP requests; the server returns hardware data via HTTP
responses.

Using a client-side JavaScript library, we build a simple
yet powerful device API atop this HTTP transfer protocol.
The API is particularly useful to developers of mobile web
pages, since mobile platforms like cell phones have an in-
creasingly wide array of sensors that, prior to Gibraltar, were
only accessible via native code plugins or the limited, incon-
sistent APIs provided by HTML5. Our implementation of
Gibraltar on Android shows that Gibraltar provides stronger
security guarantees than HTML5; furthermore, it shows that
HTTP is responsive enough to support interactive web pages
that perform frequent hardware accesses. Gibraltar also sup-
ports an HTML5 compatibility layer that implements the
HTML5 interface but provides Gibraltar’s stronger security.

1. Introduction
Web browsers provide an increasingly rich execution plat-
form. Unfortunately, browsers have been slow to expose
low-level hardware devices to JavaScript [8], the most pop-
ular client-side scripting language. This limitation has be-
come particularly acute as sensor-rich devices like phones
and tablets have exploded in popularity. A huge marketplace
has arisen for mobile applications that leverage data from
accelerometers, microphones, GPS units, and other sensors.
Phones also have increasingly powerful computational and
storage devices. For example, graphics processors (GPUs)
are already prevalent on phones, and using removable stor-
age devices like SD cards, modern phones can access up to
64GB of persistent data.

Because JavaScript has traditionally lacked access to
such hardware, web developers who wanted to write device-
aware applications were faced with two unpleasant choices:
learn a new plugin technology like Flash which is not sup-
ported by all browsers, or learn a platform’s native applica-

tion language (e.g, the Win32 API for Windows machines,
or Java for Android). Both choices limit the portability of
the resulting applications. Furthermore, moving to native
code eliminates a key benefit of the web delivery model—
applications need not be installed, but merely navigated to.

1.1 A Partial Solution
To remedy these problems, the new HTML5 specifica-
tion [10] introduces several ways for JavaScript to access
hardware. At a high-level, the interfaces expose devices as
special objects embedded in the JavaScript runtime. For
example, the <input> tag [24] can reflect a web cam ob-
ject into a page’s JavaScript namespace; the page reads or
writes hardware data by manipulating the properties of the
object. Similarly, HTML5 exposes geolocation data through
the navigator.geolocation object [27]. Browsers imple-
ment the object by accessing GPS devices, or network cards
that triangulate signals from wireless access points.

Given all of this, there are two distinct models for creat-
ing device-aware web pages:
• Applications can be written using native code or plug-

ins, and gain the performance that results from running
close to the bare metal. However, users must explicitly
install the applications, and the applications can only run
on platforms that support their native execution environ-
ment.
• Alternatively, applications can be written using cross-

platform HTML5 and JavaScript. Such applications do
not require explicit installation, since users just navigate
to the application’s URL using their browser. However,
as shown in the example above, HTML5 uses an incon-
sistent set of APIs to name and query each device, mak-
ing it difficult to write generic code. Furthermore, by ex-
posing devices through extensions of the JavaScript inter-
preter, the entire JavaScript runtime becomes a threat sur-
face for a malicious web page trying to access unautho-
rized hardware—once a web page has compromised the
browser, nothing stands between it and the user’s devices.
Unfortunately, modern browsers are large, complex, and
have many exploitable vulnerabilities [4, 30, 34]. On mo-
bile devices, browsers represent a key infection vector for
malicious pages that steal SMS information [21], SD card
data [23], and other private user information.

Ideally, we want the best of both worlds—device-aware,
cross-platform web pages that require no installation, but



whose security does not depend on a huge trusted computing
base like a browser.

1.2 Our Solution: Gibraltar
Our new system, called Gibraltar, uses HTTP as a hardware
access protocol. Web pages access devices by issuing AJAX
requests to a device server, a simple native code applica-
tion which runs in a separate process on the local machine
and exports a web server interface on the localhost domain.
If a hardware request is authorized, the device server per-
forms the specified operation and returns any data using a
standard HTTP response. Users authorize individual web do-
mains to access each hardware device, and the device server
authenticates each AJAX request by ensuring that the refer-
rer field [7] represents an authorized domain.

Unlike HTML5, Gibraltar does not require the browser
to be fully trusted. Indeed, in Gibraltar, the browser is sand-
boxed and incapable of accessing most devices. However,
a corrupted or malicious browser can send AJAX requests
to the device server which contain snooped referrer fields
from authorized user requests. To limit these attacks, Gibral-
tar uses capability tokens and sensor widgets [12]. Before a
web page can access hardware, it must fetch a token from
the device server. The page must tag subsequent hardware
requests with the fresh capability.

To prevent a malicious browser from surreptitiously re-
questing capabilities from the device server, Gibraltar em-
ploys sensor widgets. Sensor widgets are ambient GUI el-
ements like system tray icons that indicate which hardware
devices are currently in use, and which web pages are using
them. Sensor widgets help a user to detect discrepancies be-
tween the set of devices that she expects to be in use, and
the set of devices that are actually in use. Thus, sensor wid-
gets allow a user to detect when a compromised browser is
issuing hardware requests that the user did not initiate.

Using these mechanisms, a compromised browser in
Gibraltar has limited abilities to independently access hard-
ware (§5). However, a malicious browser is still the con-
duit for HTTP traffic, so it can snoop on data that the user
has legitimately fetched and send that data to remote hosts.
Gibraltar does not stop these kinds of attacks. However,
Gibraltar is complementary to information flow systems like
TightLip [39] that can prevent such leaks.

1.3 Advantages of Gibraltar
Gibraltar’s device protocol has four primary advantages:
• Ease of Deployment: Gibraltar allows device-aware pro-

grams to be shipped as web applications that do not need
to be installed. The device server does need to be in-
stalled, but it can ship alongside the browser and be in-
stalled at the same time that the browser itself is installed.
• Security: Compared to HTML5-style approaches which

expose hardware by extending the JavaScript interpreter,
Gibraltar has a much smaller attack surface. Gibraltar’s
HTTP protocol is a narrow waist for hardware accesses,

and the device server is much simpler than a full-blown
web browser; for example, our device server for Android
phones is only 7613 lines of strongly typed Java code,
instead of the million-plus lines of C++ code found in
popular web browsers. Using capability tokens and sen-
sor widgets, Gibraltar can also prevent (or at least detect)
many attacks from malicious web pages and browsers.
HTML5 cannot stop or detect any of these attacks.
• Usability: An HTTP device protocol provides a uniform

naming scheme for disparate devices, and makes it easy
for pages to access non-local devices. For example, a
page running on a user’s desktop machine may want to
interact with sensors on the user’s mobile phone. If a
Gibraltar device server runs on the phone, the page can
access the remote hardware using the same interface that
it uses for local hardware—the only difference is that the
device server is no longer in the localhost domain.
• Backwards Compatibility: It is straightforward to map

HTML5 device commands to Gibraltar calls. Thus, to run
a preexisting HTML5 application atop Gibraltar, a devel-
oper can simply include a translation library that converts
HTML5 calls to Gibraltar calls but preserves Gibraltar’s
security advantages. The library can use Mugshot-style
interpositioning [19] to intercept the HTML5 calls.

Since Gibraltar uses HTTP to transport hardware data, a key
question is whether this channel has sufficient bandwidth
and responsiveness to support real device-driven applica-
tions. To answer this question, we wrote a device server for
Android mobile phones, and modified four non-trivial appli-
cations to use the Gibraltar API. Our evaluation shows that
Gibraltar is fast enough to support real-time programs like
games that require efficient access to hardware data.

2. Design
Gibraltar uses privilege separation [29] to provide a web
page with hardware access. The web page, and the enclosing
browser which executes the page’s code, are both untrusted.
Gibraltar places the browser in a sandbox which prevents
direct access to Gibraltar-mediated devices. The small, na-
tive code device server resides in a separate process from the
browser, and executes hardware requests on behalf of the
page, exchanging data with the page via HTTP.

As shown in Figure 1, a Gibraltar-enabled page includes
a JavaScript file called hardware.js. This library imple-
ments the public Gibraltar API. hardware.js fetches au-
thentication tokens as described in Section 2.1, and trans-
lates page-initiated hardware requests into AJAX fetches as
described in Section 3. hardware.js also receives and de-
serializes the responses. Note that hardware.js is merely a
convenience library that makes it easier to program against
Gibraltar’s raw AJAX protocol; Gibraltar does not trust
hardware.js, and it does not rely on hardware.js to en-
force the security properties described in Section 5.
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Figure 1. Gibraltar Architecture.

Note that the device server resides in the localhost do-
main, whereas the Gibraltar-enabled page emanates from a
different, external origin. By default, the same-origin pol-
icy would prevent the hardware.js in the web page from
fetching cross-origin data from the localhost server. How-
ever, using the Access-Control-Allow-Origin HTTP
header [37], the device server can instruct the browser to
allow the cross-origin Gibraltar fetches. This header is sup-
ported by modern browsers like IE9 and Firefox 4+. In
older browsers, hardware.js communicates with the de-
vice server using an invisible frame with a localhost origin;
this frame exchanges Gibraltar data with the regular applica-
tion frame using postMessage(). Similarly, Gibraltar can
use a remote-origin frame to deal with off-platform devices.

2.1 Authenticating Hardware Requests
In Gibraltar, device management consists of three tasks:
manifest authorization, session establishment, and session
teardown. Figure 2 provides the relevant pseudocode in the
device server. We discuss this code in more detail below.

Manifest authorization: On mobile devices like Android,
users authorize individual applications to access specific
hardware devices. Similarly, in Gibraltar, users authorize
individual web domains like cnn.com to access individual
hardware devices. When a page contacts the device server
for the first time, the page includes a device manifest in its
HTTP request. The manifest is simply a list of devices that
the page wishes to access. The device server presents this
manifest to the user and asks whether she wishes to grant
the specified access permissions to the page’s domain. If
so, the device server stores these permissions in a database.
Subsequent page requests for devices in the manifest will not

void handle_request(req){
resp = new AJAXResponse();
switch(req.type){

case OPEN_SESSION:
if(!active_tokens.contains(req.referrer)){

resp.result = "TOKEN:" + makeNewToken();
active_tokens[req.referrer] = resp.result;

}
break;

case DEVICE_CMD:
if(!authorized_domains[req.device].contains(

req.referrer) ||
(active_tokens[req.referrer] == null) ||
(active_tokens[req.referrer] != req.token)){
resp.result = "ACCESS DENIED";

}else{
resp.result = access_hardware(req.device,

req.cmd);
sensor_widgets.alert(req.referrer,

req.device);
}
break;

case CLOSE_SESSION:
if(active_tokens[req.referrer] == req.token)

active_tokens.delete(req.referrer);
break;

}
sendResponse(resp);

}

Figure 2. Pseudocode for device server.

require explicit user action, but if the page requests access
to a new device, the user must approve the new permission.

Session management: Since Gibraltar hardware requests
are expressed as HTTP fetches, a natural way for the de-
vice server to authenticate a request is to inspect its refer-
rer field [7]. This is a standard HTTP field which indicates
the URL (and thus the domain) of the page which gener-
ated the request. Unfortunately, a misbehaving browser can
subvert this authentication scheme by examining which do-
mains successfully receive hardware data, and then gener-
ating fake requests containing these snooped referrer fields.
This is essentially a replay attack on a weak authenticator.

To prevent these replay attacks, the device server grants
a capability token to each authorized web domain. Before
a page in domain trusted.com can access hardware, it
must send a session establishment message to the device
server. The device server examines the referrer of the HTTP
message and checks whether the domain has already been
granted a token. If not,1 the server generates a unique token,
stores the mapping between the domain and that token, and
sends the token to the page. Later, when the page sends an
actual hardware request, it includes the capability token in
its AJAX message. If the token does not match the mapping
found in the device server’s table, the server ignores the
hardware request.

1 We restrict each domain to a single token for security reasons that we
describe in Section 5.1. However, this restriction does not prevent a do-
main from opening multiple device-aware web pages on a client—the
pages can inform each other of the domain’s token using the JavaScript
postMessage() API.



A page sends a session teardown message to the device
server when it no longer needs to access hardware, e.g., be-
cause the user wants to navigate to a different page. Upon
receipt of the teardown message, the server deletes the rele-
vant domain/token mapping. hardware.js can detect when
a page is about to unload by registering a handler for the
JavaScript unload event.

Sensor widgets: Given this capability scheme, a misbehav-
ing browser that can only spoof referrers cannot fraudulently
access hardware—the browser must also steal another do-
main’s token, or retrieve a new one from the device server.
As we discuss in Section 5, cross-domain token stealing
is difficult if the browser uses memory isolation to parti-
tion domains. However, nothing prevents a browser from au-
tonomously downloading a new security token in the back-
ground under the guise of an authorized domain, and then
using this token in its AJAX requests. To prevent this at-
tack, we use sensor widgets [12], which are ambient GUI
elements like system tray icons that glow, make a noise, or
otherwise indicate when a particular hardware device is in
use. Sensor widgets also indicate the domains which are cur-
rently accessing hardware. Thus, if the browser tries to au-
tonomously access hardware using a valid token, the activity
will trigger the sensor widgets, alerting the user to a hard-
ware request that she did not initiate.

The sensor widgets are implemented within the device
server, not the browser. However, the browser can try to
elude the widgets in several ways. In Section 5, we provide
a fuller analysis of Gibraltar’s security properties.

2.2 The Gibraltar API
Figure 3 lists the client-side Gibraltar API. Before a web
page can issue hardware commands, it must get a new capa-
bility token via createSession(). Then, it must send its
device manifest to the device server via requestAccess().
The device server presents the manifest to the user and asks
her to validate the requested hardware permissions.

2.2.1 Sensor API
To provide access to sensors like cameras, accelerometers,
and GPS units, Gibraltar provides a one-shot query inter-
face and a continuous query interface. In keeping with Java-
Script’s event-driven programming model, singleQuery()
and continuousQuery() accept an application-defined
callback which Gibraltar invokes when the hardware data
has arrived. The functions also accept the name of the de-
vice to query, and a device-specific params value which
controls sensor-specific properties like the audio sampling
bitrate. continuousQuery() takes an additional parameter
representing the query frequency.

Different devices will define different formats for the
params object, and different formats for the returned device
data. However, much like USB devices, Gibraltar devices
fall into a small set of well-defined classes such as storage

devices, audio devices, and video devices. Thus, web pages
can program against generic Gibraltar interfaces to each
class; the device server and hardware.js can encapsulate
any device-specific eccentricities.

Figure 3 also describes a sensor management interface.
The power controls allow a page to shut off devices that it
does not need; the device server ensures that a device is left
on if at least one application still needs it. sensorAdded()
and sensorRemoved() let applications register callbacks
which Gibraltar fires when devices arrive or leave. These
events are useful for off-platform devices like Bluetooth
headsets and Nike+ shoe sensors [22].

2.2.2 Processor API
Multi-core processors and programmable GPUs are already
available on desktops, and they are starting to ship on mobile
devices. To let web pages access these extra cores, Gibraltar
exports a simple multi-processor computing model inspired
by OpenCL [13], a new specification for programming het-
erogeneous processors.

A Gibraltar kernel represents a computational task to
run on a core. Kernels are restricted to executing two types
of predefined functions. Primitive functions are geometric,
trigonometric, or comparator operations. Gibraltar’s primi-
tive functions are similar to those of OpenCL. Built-in func-
tions are higher-level functions that we have identified as
particularly useful for processing hardware data. Examples
of such functions are FFT transforms and matrix operations.

A web page passes a kernel to Gibraltar by calling
enqueueKernel(). To execute a parallel vector compu-
tation with that kernel, the page calls setKernelData()

with a vector of arguments; Gibraltar will instantiate a new
copy of the kernel for each argument and run the kernels in
parallel. A web page can also create a computation pipeline
by calling enqueueKernel() multiple times with the same
or different kernel. Gibraltar will chain the kernels’ inputs
and outputs in the order that the kernels were passed to
enqueueKernel(). The page sets the input data for the
pipeline by passing a scalar value to setKernelData().

Once an application has configured its kernels, it calls
executeKernels() to start the computation. Gibraltar dis-
tributes the kernels to the various cores in the system, coordi-
nates cross-kernel communication, and fires an application-
provided callback when the computation finishes.

2.2.3 Storage API
The final set of calls in Figure 3 provide a key/value stor-
age interface. The namespace is partitioned by web domain
and by storage device; a web domain can only access data
that resides in its partitions. To support removable storage
devices, Gibraltar fires connection and disconnection events
like it does for off-platform sensors like Bluetooth headsets.

HTML5 DOM storage [11] also provides a key-value
store. However, DOM storage is limited to non-removable



Call Description
createSession() Get a capability token from the device server.

destroySession() Relinquish a capability token.
requestAccess(manifest) Ask for permission to access certain devices.

singleQuery(name, params) Get a single sensor sample.
continuousQuery(name, params, period) Start periodic fetch of sensor samples.

startSensor(name) Turn on a sensor.
stopSensor(name) Turn off a sensor.
sensorAdded(name) Upcall fired when a sensor is added.

sensorRemoved(name) Upcall fired when a sensor is removed.
getSensorList() Get available sensors.

enqueueKernel(kernel) Queue a computation kernel for execution.
setKernelData(parameters) Set the input data for the computation pipeline.

executeKernels() Run the queued kernels on the input data.
put(storename,key,value) Put value by key.

get(storename,key) Get value by key.

Figure 3. Summary of hardware.js API. All calls implicitly require a security token and callback function.

media, and it does not explicitly expose the individual de-
vices which are used for the underlying stable storage.

2.3 Remote device access
As we mentioned earlier, some devices may reside off-
platform. If those devices run a Gibraltar server which ac-
cepts external connections, a web page can seamlessly ac-
cess those devices using the same interface that it uses for
local ones. This capability enables many interesting appli-
cations. For example, in Section 6, we evaluate a game that
runs on a desktop machine but uses a mobile phone with
an accelerometer as a motion-sensitive controller. In this ex-
ample, the web page runs on the desktop machine, but the
device server runs on the phone.

A device server accepts connections from localhost
clients by default (subject to the authentication rules de-
scribed in Section 2.1). For security reasons, a device server
should reject connections from arbitrary remote clients.
Thus, users must explicitly whitelist each external IP ad-
dress or dynamic DNS name [35] that wishes to communi-
cate with a device server. This is accomplished in a fashion
similar to how the user authorizes device manifests (§2.1).

2.4 Sandboxing the Browser
Gibraltar is agnostic about the mechanism that prevents the
browser from accessing Gibraltar devices. For example, mo-
bile platforms like Android, iOS, and the Windows Phone
provide device ACLs that makes it easy to prohibit appli-
cations from accessing forbidden hardware. Gibraltar is also
compatible with other isolation techniques like hardware vir-
tualization or binary rewriting.

3. Implementation
Client-side Library: hardware.js encodes device re-
quests using a simple XML string. Each request contains

a security token, an action to perform, the target device, and
optional device-specific parameters. For example, a request
to record microphone data includes a parameter that rep-
resents the recording duration. Device responses are also
encoded using XML. The response specifies whether the re-
quest succeeded, and any data associated with the operation.
The device server encodes binary data in Base64 format so
that hardware.js can represent data as JavaScript strings.

Android Device Server: On Android 2.2, we implemented
the device manager as a servlet for the i-jetty web server [2].
A servlet is a Java software module that a web server in-
vokes to handle certain URL requests. The Gibraltar servlet
handles all requests for Gibraltar device URLs. The servlet
performs the authentication checks described in Section 2.1,
accesses hardware using native code, and returns the seri-
alized results. We refer to our Android implementation of
Gibraltar as GibDroid.

The GibDroid device server has different probing poli-
cies for low throughput sensors and high throughput sensors.
For low throughput devices like cameras, GibDroid accesses
the sensor on demand. For devices like accelerometers that
have a high data rate, the GibDroid server continuously pulls
data into a circular buffer. When a page queries the sensor,
the device server returns the entire buffer, allowing multi-
ple data points to be fetched in a single HTTP round trip.
Currently, GibDroid provides access to accelerometers, GPS
units, cameras (both single pictures and streaming video),
microphones, local storage, and native computation kernels.

Before a web page can receive hardware data from the
device server, it must engage in a TCP handshake with the
server and send an HTTP header. For devices with high
data rates like accelerometers and video cameras, creating an
HTTP session for each data request can hurt performance,
even with sample batching. Thus, GibDroid allows the de-



Figure 4. GibDroid uses the Android notification bar to
hold sensor widgets.

vice server to use Comet-style [3] data pushes. In this ap-
proach, hardware.js establishes a persistent HTTP con-
nection with the device server using a “forever frame.” Un-
like a standard frame, whose HTML size is declared in the
HTTP response by the server, a forever frame has an indefi-
nite size, and the server loads it incrementally, immediately
pushing a new HTML chunk whenever new device data ar-
rives. Each chunk is a dynamically generated piece of Java-
Script code; the code contains a string variable representing
the new hardware data, and a function call which invokes
an application-defined handler. Forever frames are widely
supported by desktop browsers, but currently unsupported
by many mobile browsers. Thus, the device server reverts to
request-response for mobile browsers.

GibDroid can stream accelerometer data and video frames
using Comet data pushes. To handle video, our current im-
plementation uses data URIs [18] to write Base64-encoded
data to an <image> tag2. Many current browsers limit data
URIs to 32 KB data; thus, data URIs are only appropriate for
sending previews of larger video images. Our current Gib-
Droid implementation displays video frames with a pixel
resolution of 530 by 380. The device server uses Android’s
setPreviewCallback() call to access preview-quality im-
ages from the underlying video camera.

GibDroid supports the execution of kernel functions.
However, our evaluation Android phone does not have sec-
ondary processing cores. Therefore, GibDroid kernels run
in separate Java threads that time-slice the single processor
with other applications.

As shown in Figure 4, GibDroid places sensor widgets
in the standard notification bar that exists in all Android
phones. The notification bar is a convenient place to put the
widgets because users are already accustomed to periodi-
cally scanning this area for program updates. We are still
experimenting with the visual presentation for the widgets,
so Figure 4 represents a work-in-progress.

2 In the next version of Gibraltar, hardware.js will write video frames to
the bitmap of an HTML5 Canvas object [10].

Windows PC Device Server: We also wrote a device server
for Windows PCs. This device server, written in C#, cur-
rently only provides access to the hard disk, but it is the tar-
get of active development. In Section 6.1, we use this device
server to compare Gibraltar’s performance on a multi-core
machine to that of HTML5.

4. Applications
In this section, we describe four new applications which
use the Gibraltar API to access hardware. We evaluate the
performance of these applications in Section 6.

Our first application is a mapping tool similar to Map-
Quest [17]. This web page uses GPS data to determine the
user’s current location. It also uses Gibraltar’s storage APIs
to load cached maps tiles. More specifically, we assume that
the phone’s operating system prefetches map tiles, similar
to how the Songo framework prefetches mobile ads [14].
The operating system stores the map tiles in the file sys-
tem; for each cached tile, the OS adds the key/value pair
(tileId,fileSystemLocation) to the mapping appli-
cation’s Gibraltar storage area. When the map application
loads, it determines the user’s current location and calcu-
lates the set of tiles to fetch. For each tile, it consults the
tile index in Gibraltar storage to determine if the tile resides
locally. If it does, the page loads the tile using an <img> tag
with a file:// origin; otherwise, the page uses a http://
origin to fetch the image from the remote tile server.

The popular native phone application Shazam! identi-
fies songs that are playing in the user’s current environment.
Shazam! does this by capturing microphone data and apply-
ing audio fingerprint algorithms. Inspired by Shazam!, we
built Gibraltar Sound, a web application that captures a short
sound clip and classifies it as music, conversation, typing,
or other ambient sound. To classify sounds, we used Mel-
frequency cepstrums (MFCC) for feature extraction, and
Gaussian Mixture Models (GMM) for inference [16]. We
implemented MFCC and GMM as native built-in kernels.

Our final applications leverage Gibraltar’s ability to ac-
cess off-platform devices. These pages load on a desktop
machine’s browser, but use Gibraltar to turn a mobile phone
into a game controller. The first application, Gibraltar Paint,
is a simple painting program in which user gestures with the
phone are converted into brush strokes on a virtual canvas.
Gestures are detected using the phone’s accelerometer.

We also modified a JavaScript version of Pacman [15]
to use a Gibraltar-enabled phone as a controller for a game
loaded on the desktop browser—tilting the phone in a direc-
tion will cause Pacman to move in that direction. HTML5
cannot support the latter two applications because it lacks an
API for remote device access.

5. Security
Any mechanism for providing hardware data to web pages
must grapple with two questions. First, can it ensure that



each device request was initiated by the user instead of a mis-
behaving browser? Second, once the hardware data has been
delivered to browser, can the system prevent the browser
from modifying or leaking that data in unauthorized ways?
Gibraltar only addresses the first question, but it is comple-
mentary to systems that address the second. In Section 5.1,
we describe the situations in which Gibraltar can and cannot
prevent fraudulent hardware access. In Section 5.2, we de-
scribe how Gibraltar can be integrated with a taint tracking
system to minimize unintended data leakage.

5.1 Authenticating Hardware Requests
In Gibraltar, there are five kinds of security principals: the
user, the Gibraltar device server, the underlying operating
system, web pages, and the web browser. Gibraltar does
not trust the last two principals. More specifically, Gibral-
tar’s security goal is to prevent unauthorized web pages
from accessing hardware data, and faulty web browsers
from autonomously fetching such data. Gibraltar assumes
that the OS properly sandboxes the browser, and that the
OS prevents the browser from directly accessing Gibraltar-
mediated hardware; Gibraltar is agnostic to the particular
sandboxing mechanism that is used, e.g., binary rewriting,
virtual machines, or OS-enforced device ACLs provided by
platforms like Android and iOS. Gibraltar assumes that the
device server is implemented correctly, that the user can
inform the device server of authorized web sites without in-
terference, and that the operating system prevents the web
browser from directly tampering with the device server.
Thus, the only way that a faulty web page or browser can
access hardware is by subverting the AJAX device protocol.

As shown in Figure 2, the device server will only respond
to a hardware request if the request has an authorized refer-
rer field and a valid authentication token; furthermore, the
authorized domain cannot have another open session involv-
ing a different token. Thus, Gibraltar’s security with respect
to device D can be evaluated in the context of three parame-
ters: whether the attacker can fake referrer fields, whether the
attacker can steal tokens from domains authorized to access
D, and whether the user currently has a legitimate, active
frame belonging to a legitimately authorized domain. Fig-
ure 5(a) provides concrete threat examples that correspond
to whether an attacker can fake referrers or steal tokens.

Figure 5(b) shows Gibraltar’s attack resilience when the
user does not have an authorized frame open. Figure 5(c)
shows the attacker’s power when the user has opened an au-
thorized frame. In both cases, we see that an attacker can-
not fraudulently access hardware if he cannot fake referrer
fields. If the attacker can fake referrer fields, then his abil-
ity to fraudulently access device D depends on whether the
user has already opened a frame for a domain that is au-
thorized to access D. If no such frame is open, the attacker
can successfully fetch an authentication token from the de-
vice server, since the domain will not have an outstanding to-
ken in circulation. The attacker’s first hardware request will

pass the device server’s authentication tests, since the refer-
rer will be authorized and the token will be valid. However,
the device server will trigger the appropriate sensor widget
for D, indicating the (spoofed) trusted domain that is access-
ing that device. At this point, the user can realize that she has
not legitimately opened a frame in that domain, and she can
shut down her browser or take other remediating steps. Al-
though the browser has gained limited access to hardware
data, Gibraltar can work in concert with a taint tracking sys-
tem to prevent the data from being externalized (§5.2).

Now suppose that the attacker can fake referrer fields,
and the user does have an authorized frame open (this is the
right column of Figure 5(c)). If the browser uses a Gazelle-
style architecture [36] and strongly isolates the attacker page
from the authorized page, the attacker cannot inspect the
token in the authorized page. Thus, the attacker must request
a new token from the device server. However, the server will
refuse this request because the domain in the referrer field
will already have a token.

If the attacker can steal tokens and fake referrers, and the
user already has an authorized frame open, then nothing pre-
vents the attacker from opportunistically hiding his hardware
requests within the background traffic from the legitimately
authorized frame. Although current browsers do provide a
modicum of domain isolation (e.g., via IE’s process-per-tab
model, or Chrome’s process-per-site-instance model [31]),
commercial browsers do not implement Gazelle-strength
isolation. However, browsers are continually moving to-
wards stronger isolation models, so we believe that soon,
cross-frame token stealing will be impossible.

Gibraltar assumes that the operating system correctly
routes packets to the device server. Thus, the device server
can reject arbitrary connections from off-platform entities
by verifying that the source in each AJAX request has a
localhost IP address. If a user wants to associate a device
server with a web page that resides off-platform, she must
whitelist the external IP address, or notify the device server
and the web page of a shared secret which enables the de-
vice server to detect trusted external clients. For example,
the client web page might generate a random number and
include this number in the first AJAX request that it sends
to the device server. When the server receives this request, it
can present the nonce to the user for verification.

Malicious local applications that are not web pages can
also try to access hardware by contacting the device server.
Sensor widgets provide some defense, but using tools like
Linux’s lsof or Windows’ Process Explorer, the device
server can simply reject localhost connections from pro-
grams that are not hosted within a web browser.

5.2 Securing Returned Device Data
The browser acts as the conduit for all AJAX exchanges, and
it can arbitrarily inspect the JavaScript runtimes inside each
page. Thus, once the browser has received hardware data
(either because a user legitimately fetched it, or because the
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Figure 5. Gibraltar security properties.

browser stole/fetched a token and acquired the data itself),
neither Gibraltar nor HTML5 can prevent the browser from
arbitrarily inspecting, modifying, or disseminating the data.

Suppose that, through clever engineering, the browser
cannot be subverted by malicious web pages. Further sup-
pose that the browser is trusted not to fake referrer fields,
steal tokens from authorized domains, or otherwise subvert
the Gibraltar access controls. Even in these situations, ma-
licious web pages can still leak hardware data to remote
servers. For example, suppose that the user has authorized
domain x.com to access hardware, but not y.com. The same-
origin policy ostensibly prevents JavaScript running on
http://x.com/index.html from sending data to y.com’s
domain. However, this security policy is easily circumvented
in practice. For example, the JavaScript in x.com’s page
can read the user’s GPS data and create an iframe with

a URL like http://y.com/page.index?lat=LAT DATA

long=LON DATA. By loading the frame, the browser implic-
itly sends the GPS data to y.com’s web server.

If the browser is trusted, it can prevent such leakage by
tracking the information flow between Gibraltar AJAX re-
quests and externalized data objects like iframe URLs. This
is similar to what TaintDroid [6] does, although TaintDroid
tracks data flow through a Java VM instead of a browser.

If the browser is untrusted, we can place the taint tracking
infrastructure outside of the browser, e.g., in the underlying
operating system. However, regardless of where the taint
tracker resides, it must allow the user to whitelist certain
pairs of domains and hardware data. For example, suppose
that the user has authorized only x.com to access the GPS
unit. Whenever the data flow system detects that GPS data is
about to hit the network, it must ensure that the endpoint



resides in x.com’s domain, e.g., by doing a reverse DNS
lookup on the endpoint’s IP address.

If the taint system performs that check, it can prevent
data from directly leaking to unauthorized domains. How-
ever, a full security suite requires both a taint tracker and
Gibraltar, since a taint tracker alone cannot prevent several
damaging attacks. For example, if only a taint tracker is
present, a misbehaving browser could send hardware data
to an authorized domain even if the user is not currently
viewing a page in that domain. Such persistent snooping
is problematic because it lets the authorized domain build
a huge database of contextual information about the user,
even though the user only intended for that data to be col-
lected when she was actually browsing a web page from
that domain. As shown in Figure 5(b), Gibraltar detects this
attack if the user has not opened a page for an authorized
domain. This is because the browser cannot surreptitiously
stream data without triggering a sensor widget. However, if
the user does have an authorized page open, and is running a
browser with weak memory isolation, Gibraltar cannot stop
the stolen token attacks shown in the bottom-right corner of
Figure 5(c). Note that HTML5 cannot stop any of these at-
tacks, since it lacks sensor widgets or a method for assigning
device ACLs to web pages.

Note that taint tracking and whitelists cannot prevent
all kinds of information leakage. For example, a malicious
browser can post sensitive data to a whitelisted site using a
format that the site does not treat as sensitive. For example,
user data could be encoded as a comment in a web forum.
When combined with cross-site request forgery (CSRF), an
attacker may be able to download the exfiltrated user data.
Gibraltar is compatible with approaches for stopping CSRF
attacks (e.g., [25, 33]).

6. Evaluation
In this section, we ask two fundamental questions about
Gibraltar’s performance. First, is an HTTP channel fast
enough to support high frequency sensors and interactive
applications? Second, is Gibraltar competitive with HTML5
in terms of performance?

As described in Section 3, we wrote device servers for
two platforms. The first server runs on Android 2.2 phones,
and we tested it on two handsets: a Nexus One with 512 MB
of RAM and a 1 GHz Qualcomm Snapdragon processor,
and a Droid X with 512 MB of RAM and a 1 GHz Texas
Instruments OMAP processor. We also wrote a device server
for Windows PCs. We tested that server on a Windows 7
machine with 4 GB of RAM and an Intel Core2 processor
with two 2.66 GHz cores.

6.1 Access Latency
Multi-core machines: We define a device’s access latency
as the amount of time that a client perceives a synchronous
device operation to take. Figure 6 shows access latencies
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Figure 6. Read and write latencies to the hard disk on the
dual-core desktop machine.

for the hard disk on the dual-core desktop machine. Each
bar represents the average of 250 trials, with each read or
write involving 1 KB of data. HTML5 disk accesses were
implemented using the DOM storage API [11], whereas
Gibraltar disk accesses were handled by the device server
and accessed a partitioned region of the local file system
owned by the device server. All reads targeted prior write
addresses, meaning that the reads should hit in the block
cache inside the device server or the HTML5 browser.

The absolute latencies for Gibraltar’s disk accesses are
small on both Firefox 3.6 and IE8. For example, a Gibraltar-
enabled page on IE8 can read 1 KB of data with a latency
of 0.62 ms; on Firefox, the page can perform a similar read
with 2.58 ms of latency. While Gibraltar’s read performance
is worse than that of HTML5, it is more than sufficient to
support common use cases for local storage, such as caching
user data to avoid fetching it over a slow network.

For disk writes on both browsers, Gibraltar is more
than five times faster than HTML5. This is because the
Gibraltar device server asynchronously writes back data,
whereas Firefox and IE have a write-through policy. Switch-
ing Gibraltar to a write-through policy would result in sim-
ilar performance to HTML5, since the primary overhead
would be mechanical disk latencies, not HTTP overhead.

Single-core machines: Our desktop machine had a dual-
core processor, meaning that the device server and the web
browser rarely had to contend for a core. In particular, once
the device server had invoked a send() system call to trans-
fer device data to the browser, the OS could usually swap
the browser immediately onto one of the two cores. On a
single core machine, the browser might have to wait for a
non-trivial amount of time, since multiple processes besides
the browser are competing for a single core.

Figure 7 depicts access latencies to the Null device on
the Droid X phone (the Null device immediately returns
an empty message). By using setsocketopt() to disable
the TCP Nagle algorithm, we prod TCP into sending small
packets immediately instead of trying to aggregate several
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Figure 8. Nexus One access latencies (mobile browser ac-
cessing local hardware). Note that the y-axis is log-scale.

small packets into one large one. This decreases the average
access latency from 87 ms to 78 ms; it also decreases the
standard deviation from 34 ms to 25 ms. By raising the
priority of the device server thread and the receiving browser
thread, we can further decrease the latency to 67 ± 18 ms.
However, the raw performance is still worse than in the
dual-core case due to scheduling jitter. For example, looking
at single-core results for individual trials, we saw access
latencies as low as 29 ms, and as high as 144 ms.

Multi-core processors are already pervasive on desktop
systems, and new mobile phones and tablets like the LG Op-
timus 2X have dual-core processors. Thus, we expect that
scheduling jitter will soon become a non-issue for Gibraltar.
In the rest of this section, we provide additional evaluation
results using the single-core Nexus One phone. We show
that even on a single-core machine, Gibraltar is fast enough
to support interactive applications.

Accessing Sensors on the Nexus One: Figure 8 depicts the
access latency for various devices on the Nexus One phone.
The accelerometer and the GPS unit are the sensors that
applications query at the fastest rate. Figure 8 shows that
the accelerometer can be queried 9.4 times a second, and the

8.3 7.9

11.6 12

0

20

40

60

80

100

120

140

Video 
Chrome

Video 
Firefox

M
ill
is
e
co
n
d
s

Device

86% 86%

0

50

100

150

200

Accel. 
Chrome

Accel. 
Firefox

M
ill
is
e
co
n
d
s

Device

Request-Response

Server Push

Figure 9. Nexus One access latencies (desktop browser ac-
cessing phone hardware). Top-bar numbers for accelerom-
eter represent improvements in sample frequency; top-bar
numbers for video represent frame rates.

GPS unit can be queried 6.6 times a second. As we discuss
in Section 6.4, these sampling rates are sufficient to support
games and interactive mapping applications.

Accessing the camera or the microphone through Gibral-
tar is much more expensive than accessing the accelerome-
ter. However, most of the latency arises from the inherently
expensive initialization costs for those devices. For exam-
ple, GibDroid adds 160 ms to the inherent cost of sampling
10 seconds of audio data, and 560 ms to the inherent cost of
taking a picture. In both cases, the bulk of Gibraltar’s over-
head came from the Base64 encoding that the device server
must perform before it can send binary data to the applica-
tion.

The results in Figure 8 used the request-response version
of the Gibraltar protocol. On browsers that support forever
frames (§3), Gibraltar can use server-push techniques to de-
crease client-perceived access latencies to devices. Figure 9
quantifies this improvement for desktop browsers accessing
phone hardware over a wireless connection. For example,
for video on Firefox, frame access latencies decreased from
126 ms to 83 ms; this improved the streaming rate for live
video from 8 frames per second to 12. For the accelerometer,
access latencies decreased from 173 ms to 22 ms, allowing
the client to fetch accelerometer readings at a rate of 45 Hz.
This was close to the native hardware limit of 50 Hz. Note,
however, that the performance gains in both cases arose not
just from the server-push technique, but from the fact that the
device server and the web browser ran on different machines
(and thus different processors). This ameliorated some of the
scheduling jitter that arises when the device server and the
browser run on the same core.

6.2 Sampling Throughput
Low access latencies improve the freshness of the data that
the client receives. However, the client may still be unable to
receive data at the native sampling frequency. Thus, the de-
vice server continuously gathers information from high data
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rate devices like the accelerometer and the GPS unit. When
the server gets a read request for such a device, it returns all
of the data that has accumulated since the last query. Thus,
an application can analyze the entire data stream even if it
cannot access every sample at the native data rate.

Figure 10 depicts GibDroid’s sampling throughput using
the built-in Android browser to access phone hardware. Each
bar represents the maximum number of data samples acces-
sible per second to a native application, a Gibraltar page
using an inner iframe (§2), and a Gibraltar page in which
the outer iframe directly issues AJAX requests. Through-
put degradation was less than 5% for all devices. Figure 10
also shows that cross-frame postMessage() overhead was
minimal. Note that the accelerometer throughput was greater
than the Null device throughput because GibDroid batched
multiple accelerometer samples per HTTP response.

6.3 Power
On mobile devices, minimizing power consumption is ex-
tremely important. To measure Gibraltar’s impact on bat-
tery life, we attached a Monsoon Power Monitor [20] to the
Nexus One. The Monsoon acted as an energy source while
simultaneously measuring how much power it transferred to

the phone. We set the phone’s screen brightness to the mini-
mum setting and enabled the phone’s “airplane mode” when
running tests that did not involve radios.

Figure 11 shows power consumption in several different
scenarios. The first bar depicts the power consumption for an
idle device server. Running an idle server costs 337 mW, and
this is essentially the base cost of having the phone turned
on. Continuously querying the accelerometer in a native
application requires 411 mW. In contrast, using GibDroid
to continuously query the device costs 803 mW; however,
this cost includes the power spent by the server and the
browser. By comparison, making a phone call requires 773
mW, and actively browsing the Internet uses over 1W. Thus,
we believe that Gibraltar’s power usage is similar to that of
other mobile applications.

6.4 Applications
For the final part of our evaluation, we examined the per-
formance of the four Gibraltar-enabled applications that we
described in Section 4. We evaluated all four applications on
the GibDroid platform.

Our map application took an average of 64 ms to load a
cached map tile, but 372 ms to fetch one from the Internet.
This result is not surprising, since accessing local storage
should be faster than pulling data across the wide area.

For our audio classification application, the key perfor-
mance metric is how long the classification takes. For a 52
KB WAV file representing 10 seconds of data, feature ex-
traction took approximately 6 seconds, and classification of
the result took 1.5 seconds. These experiments used a Java-
Script implementation of the classification algorithms. For
larger audio files, the application could use Gibraltar’s na-
tive computation kernels to boost performance.

We evaluated Paint and Pacman by running them on a
Chrome desktop browser which communicated with Gib-
Droid through a USB cable. Paint was able to sense 9.83 mo-
tions per second; this number is an application-level latency
that includes the Gibraltar access latency and the overhead
of updating the HTML Canvas object. Pacman had similar
performance. In both cases, the phone was able to control
the application with no user-perceived delay. We plan to run
further tests over a wireless network which allows the phone
to be untethered from the desktop.

7. Related Work
In Section 1, we described the disadvantages of using native
code plugins like Flash to provide hardware access to web
pages. We also described why HTML5 is a step in the right
direction, but not a complete solution.

Like Gibraltar, Maverick [32] provides web pages with
hardware access. Maverick lets web developers write USB
drivers using JavaScript or NaCl. Maverick sandboxes each
untrusted page and USB driver; the components exchange
messages through the trusted Maverick kernel. Maverick dif-
fers from Gibraltar in three key ways. First, Maverick is lim-



ited to the USB interface, whereas Gibraltar’s client-side Ja-
vaScript library can layer arbitrary hardware protocols atop
HTTP. Second, unlike USB, HTTP provides straightforward
support for off-platform devices. Third, Maverick does not
have mechanisms like sensor widgets that detect misbehav-
ing applications. Thus, Maverick cannot prevent buggy or
malicious pages from using the driver infrastructure in ways
that the user did not intend. Maverick does have better per-
formance than the current implementation of Gibraltar since
Maverick provides IPC via native code NaCl channels in-
stead of via standard HTTP over TCP. However, with ker-
nel support for fast-path localhost-to-localhost TCP connec-
tions, and/or NIC support for offloading TCP-related compu-
tations to hardware, we believe that Gibraltars performance
can approach that of Maverick.

PhoneGap [26] is a framework for building cross-plat-
form, device-aware mobile applications. A PhoneGap ap-
plication consists of JavaScript, HTML, CSS, and a bun-
dled chrome-less browser whose JavaScript runtime has
been extended to export hardware interfaces. Like Gibraltar,
PhoneGap allows developers to write device-aware applica-
tions using the traditional web stack. Compared to Gibraltar,
PhoneGap has three limitations. First, PhoneGap’s hardware
interface is philosophically equivalent to the HTML5 inter-
face, and thus has similar drawbacks with respect to inter-
face and security. Second, a PhoneGap program is a native
application and must be explicitly installed, unlike a Gibral-
tar web page. Third, PhoneGap applications run within the
file:// protocol, not the http:// protocol. Thus, unlike
Gibraltar web pages, PhoneGap programs are not restricted
by the same domain policy. This allows a PhoneGap pro-
gram to load multiple frames from multiple domains and
manipulate their data in ways that would fail in the http://
context and violate the security assumptions of the remote
domains.

In Palm’s webOS [1], applications are written in Java-
Script, HTML, and CSS. However, these programs are not
web applications in the standard sense—they rely on we-
bOS’ special runtime, and they will not execute inside actual
web browsers. The webOS runtime is a customized version
of the popular WebKit browser engine. It exposes HTML5-
style device interfaces to applications, and thus suffers from
the problems that we discussed in prior sections.

Microkernel browsers like OP [9] and Gazelle [36] re-
structure the browser into multiple untrusted modules that
exchange messages through a small, trusted kernel. Gibral-
tar’s device server is somewhat like a trusted microkernel
which mediates hardware access. However, previous micro-
kernel browsers do not change the hardware interface ex-
posed to web pages, since these browsers use off-the-shelf
JavaScript runtimes that export the HTML5 interface.

Several projects from the sensor network community ex-
pose hardware data using web protocols [5, 28, 38]. How-
ever, these systems do not address the security challenge of

authenticating hardware requests that emanate from poten-
tially untrustworthy browsers. Gibraltar also exports a richer
interface for device querying and management.
8. Conclusions
Gibraltar’s key insight is that web pages can access hard-
ware devices by treating them like web servers. Gibraltar
sandboxes the browser, shifts authority for device accesses
to a small, native code device server, and forces the browser
to access hardware via HTTP. Using this privilege separa-
tion and sensor widgets, Gibraltar provides better security
than HTML5; the resulting API is also easier to program
against. Experiments show that the HTTP device protocol
is fast enough to support real, interactive applications that
make frequent hardware accesses.
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