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ABSTRACT 

We argue that for computers to do more for us, we need to show 
the cloud what we see and embrace cloud-powered sight for mo-
bile users. We present sample applications that will be empowered 
by this vision, discuss why the timing is right to tackle it, and 
offer our initial thoughts on some of the important research chal-
lenges. 

Categories and Subject Descriptors 
A.1 [General Literature]: introductory and survey 

General Terms 
Algorithms, Design, Human Factors, Languages, Performance, 
Security 

Keywords 

Camera, cloud, computer vision, mobile computing, wearable 
computing 

1. INTRODUCTION 

What computing can do for us is fundamentally limited by what 
data we give to our computer. Today we give instructions in the 
form of touch, speech, gestures, key press, and button click. While 
we accomplish a lot with these interactions, the rate and quantity 
of information that we provide to the computer limits the useful 
things it can do for us. Think about how many words we can 
speak per minute and how many words we can type per minute 
and compare this to how fast your computer can process data. 

In addition to explicit command-and-compute types of interac-
tions, we also provide data to our computer implicitly, for exam-
ple contacts, credit card transactions, web browsing digital photos, 
and videos. Using the tremendous power of the cloud, this data 
not only enables computing to be highly personalized but also 
empowers it to exploit human users as sensors, e.g., [AWB+11, 
ZZW+11].  Again, the rate of information transfer and the quanti-
ty of data provided to the computer limits the possibilities. 

Researchers have been working on addressing these limits and we 
have seen examples where mobile computers directly acquire 
information from the physical world, including the human user, 

and share it with the cloud.  Inspiring applications and services 
have been demonstrated that analyze continuously collected ac-
celerometer and microphone data, e.g., [LPL+09], and occasional-
ly data from phone camera, e.g., [ACR09]. The rate of infor-
mation transfer is greater than the traditional forms but still 
limited. 

In this paper, we assert that today’s cloud powered computers 
should be configured to analyze a lot more data, which is provided 
to them at a much higher rate. If this is done, we will be able to 
unleash the creativity of developers who will write powerful ap-
plications that make use of this data and make us even more effi-
cient. Today, we let the computer hear what we hear, and know 
where and how we move, but we have to do more. We have to let 
our computer see what we see.   

Our rationale is simple: visual information is the richest form of 
human sensory input. More often than not, it also requires the 
highest information transfer rate. The human nervous system is 
centered on the visual experience. We learn, reason, and act based 
on what we see.  Our interactions and collaborations with fellow 
humans are often triggered by our visual senses and many of our 
social experiences are influenced by it. By showing our computer 
what we see, we can not only create the next generation of per-
sonalized service but also overcome some the fundamental limita-
tions of being human.  

In the rest of the paper, we motivate our show the cloud what you 
see research agenda and describe some of the challenges. Specifi-
cally in Section 2, we offer application scenarios of cloud-
powered sight. In Section 3 we discuss why this is a great time to 
work on this vision. And in Section 4 we present some initial 
thoughts on some of the important research challenges. We con-
clude by discussing related work and visions in Section 5. 

2. MOTIVATIONAL APPLICATIONS 

Predicting compelling applications is hard. However, some di-
mensions of the design space of mobile personal vision based 
applications seem clear. Figure 1 illustrates four dimensions along 
which the user experience of such applications may vary.  

First, the degree to which raw pixels are interpreted before presen-
tation to the user may vary from none at all (e.g., remotely viewed 
video) to some interpretation (e.g., reconstructed 3-D views) to 
extensive interpretation as symbolic data (e.g., via object or activi-
ty recognition). Second, the latency between sensing and presenta-
tion to the user may vary from faster than frame rate (for predic-
tive applications), to frame rate (for interactive applications such 
as gaming) to multi-second response times (e.g., for reminders) to 
hour- or day-long delays in retrospective applications (e.g., vaca-
tion footage reconstruction). Third, the amount of user attention 
required to act based on the visual footage may range from none 
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at all if the system is set up to monitor continuously and act proac-
tively, to point-triggers from the user when hits of information are 
required (e.g., “identify that person in front of me”) to immersive 
experiences that demand full, extended attention (e.g. in augment-
ed- or reconstructed-reality settings). Finally, user may expect 
action based on footage from individuals (often, their own), feder-
ated across groups affiliated with them (e.g., in social settings), or 
across people from a wide area whom they may not even know 
personally (e.g., to obtain city- or even world-wide perspectives). 
 

 
Figure 1: Design space for applications of cloud-powered sight 
 

Many interesting applications fall within this space: 

Augmented perception: Although the visual experience is rich, 
we are limited in what we can pay attention to at a time. This is 
highlighted by the invisible gorilla video [INV]. While this limita-
tion has helped Homo sapiens survive in focusing on important 
signals and suppressing noise, it can fail us when multiple im-
portant signals are present simultaneously. With the cloud watch-
ing out for each individual human user, the chance that one misses 
a social clue or gets run over by a car will be significantly re-
duced. 

Augmented cognition: Even if we perceive an object, we are 
limited in our cognitive power in analyzing the object and relating 
it to what we already know. That is, we have limited rationality as 
characterized by Herbert Simon. Occasionally we would have 
difficulty recalling the names of people we already know when we 
run into them on the street. Recognizing a person of interest from 
a crowd would be a challenge task even for an experienced detec-
tive, who can definitely use automatic face recognition as exem-
plified by the recent movie Mission Impossible 4. 

Crowd-sourced reality: Today, when a driver uses Google 
Map’s Navigate feature, his/her location information is collected 
and used along with that from many others to estimate the traffic 
and the estimation benefits the driver. Users get a better sense of 
the physical world by sharing data with the cloud. In the future, 
when users share what they see with the cloud, a spectator in the 
stadium of Super Bowl will be able to see the game from any 
angle and replay the most thrilling touch from the best perspec-
tive.  

Crowd-sourced lifelog: People who show what they see to the 
cloud naturally get their lifelog when the cloud keeps a copy of 
what they see. If a sufficient number of people around a person 
show what they see to the cloud, the cloud can extract pieces that 
have the person captured and aggregate them to produce a com-
prehensive, though incomplete, lifelog for that person. This appli-
cation is unique in that it brings benefit to people who do not 

show what they see to the cloud, which is important for the socie-
tal adoption of our vision. 

3. WHY THE TIMING IS RIGHT 

We are motivated by both evolutionary and revolutionary break-
throughs in multiple research areas. There are several interrelated 
reasons why we do not yet show the cloud what we see. (i) High 
cost of acquisition, analysis and storage of visual information is 
high; (ii) Short battery lifetime of the acquisition system; (iii) Low 
usability of the acquisition system, which is supposed to be wear-
able and portable; and (iv) Lack of applications and services built 
on top of the acquired visual information.  

3.1  A Buck for Billion 

Moore’s Law is expected to survive for at least another decade. 
Looking at our history, it is very likely that the cost of a billion 
transistors will drop by many folds, getting closer to a US dollar, 
or “A Buck for Billion” as coined by Gene Frantz [Fra09].  Both 
the mobile and cloud will become more powerful by orders of 
magnitude and the same integrated circuit will become cheaper by 
orders of magnitude. 

With this in mind, we expect to see mobile devices by the end of 
the next decade to be significantly more powerful, in-fact as pow-
erful as high-end desktop computers today. Specifically, we ex-
pect to see a mobile systems-on-chip (SoC) with many billions of 
transistors (for example, Tegra 3 already has about one billion 
transistors today). Although not all these transistors will be active 
most of the time due to peak power and thermal constraints, with 
careful power management, such mobile SoC will deliver perfor-
mance that is equivalent to today’s state-of-the-art desktop micro-
processor.  

Similarly we expect to see microprocessors with many tens of 
billions of transistors, and today’s microprocessors cost a tiny 
fraction of their current price. This trend has two implications: (i) 
the cloud will be more powerful by orders of magnitudes; and (ii) 
the cloud will be any place with sufficient energy supply, not 
necessarily sitting in the datacenters. It is possible a car and a 
residential house will have built-in the computational power of 
today’s datacenter. 

3.2 Battery and Thermal Management 

While the research community has been pessimistic about battery 
and thermal management technologies for mobile systems, we 
still expect significant improvement in them in the next decade. 

History shows that battery technology improves about 5-10% 
annually in terms of energy and power density [Pow95]. Although 
it is much slower than Moore’s Law, 10% annual improvement 
will lead to 2.6x improvement in a decade. Furthermore, recent 
development in applying silicon nanowires and carbon nanotubes 
to energy storage is promising bigger breakthroughs, e.g., 
[CPL+08, RSG+09]... 

The same integrated circuit will consume less energy as it is im-
plemented using a newer process technology. Before 90nm tech-
nology, the new implementation consumes only half of the energy 
of the previous one [Fra08]. Although the increasing ratio of leak-
age power consumption has reduced the efficiency benefit of us-
ing a newer process technology, the general trend holds; and with-
in a decade, the same computing, implemented using the newest 
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semiconductor process technology, will likely consume 10 times 
less energy than what it does today. 

Finally, there has is an emerging trend of using highly specialized 
integrated circuits, instead of general-purpose processor, in com-
mon computation. This specialization will allow the same compu-
tation to be accomplished with lower energy consumption by 
many folds [HQW+10]. For example, face detection is realized 
with a dedicated integrated circuit on OMAP4 SoC from Texas 
instruments. Another example is that of the modern browser ren-
dering engines, which employ the graphics accelerator inside a 
mobile SoC through OpenGL.  

The implication is that we will be able to do greater than 30 times 
more work with a battery of the same size and weight by the end 
of the coming decade, and this brings a tremendous opportunity 
for mobile devices to do the heavy-lifting when analyzing visual 
scenes. While the cloud will still be used for delivering even more 
formidable computation, we expect to see it to be used for reliev-
ing the mobile from thermal management problem and to be used 
as a trusted agent to aggregate data from many mobile users. 

3.3 Break-through in Sensors 

We are motivated by the breakthroughs in building inexpensive 
and miniature sensors, driven by MEMS and nanomaterial re-
search. From motion to sound to trace chemicals, an integrated 
circuit will be able to not only measure almost all physical proper-
ties we care but also extract meanings out of the measurement 
with low energy consumption. With these sensors, the cyber 
world can be tightly coupled with the physical world in an energy-
efficient and cost-effective way. 
 

 
Figure 2: Pixel size halves every five years, not only allowing 
more pixels but also processing within a pixel. (Source: Keith 
G. Fife [Fif09]; included with the author’s permission) 
 

We are particularly excited by the development in camera tech-
nologies enabled by Moore’s Law. (i) First, the diminishing size 
and cost of transistors allow not only smaller pixels, as shown in 
Figure 2 [Fif08], but also more intelligent pixels, i.e., pixels with 
processing built-in. For example, the digital pixel sensor technol-
ogy from Pixim adds an analog-to-digital converter (ADC) along-
side each pixel to extend the dynamic range of the pixel reading 
[Pix08]. Research prototypes have been reported that allow digital 
processing inside the image sensor, e.g., NAG09]], and that em-
ploy new architectures such as frameless address-event represen-
tation (AER) image sensors, e.g., [LSL11]. (ii) Second, the in-
creasingly available computational power discussed in Section 2.1 
also helps overcome the limitation in the image sensor and reduce 
the cost of visual information acquisition systems. In particular, 
compressed sensing, a compute-intensive method, has been ex-
ploited to simplify the hardware complexity and cost of acquisi-
tion systems [WMN11], e.g., the single-pixel camera [DDT+08]. 

(iii) Furthermore, refined semiconductor process technology al-
lows novel optical structures for image sensors. For example, 
layers of gratings can be added to make pixels sensitive to the 
angle of light [WM12]. Array of small lens can be added to make 
multi-aperture image sensors for 3D imaging [FEW08]. (iv) Final-
ly, combining the innovation in novel image sensor designs and 
the computational power allows novel ways of capturing visual 
experience. Digital light field photography [Ng09] leverages both 
multi-aperture image sensors and compute-intensive post-
processing to eliminate the “focusing” step of photo capturing. 
Lytro, the first commercial light field camera based on the tech-
nology, allows a user to capture the image without focusing and to 
focus computationally afterwards. This technology apparently 
reduces the need of human engagement in capturing quality pho-
tos.  

3.4 Computer Vision 

Finally we believe computer vision research has reached a point 
that the coming of age for its applications is just around the corner 
as attested by numerous deployed applications for smartphones, 
e.g., Google Goggle and SnapTell, automobiles, e.g., automatic 
parking and driving, and face recognition in photo management.  
Our belief is based on three related developments in the recent 
five years, in addition to the increasing computational power. 

First, novel algorithms and methodologies have been developed 
that exploit advancement in statistical machine learning, e.g., 
boosting and bagging, and exploit the increasingly available im-
age datasets and computational power. Recent development along 
this line not only enable features of various abstract levels to be 
extracted, objects to be recognized, but also allows the same ob-
ject captured from various intrinsic, e.g., camera, and external, 
e.g., perspective and illumination, conditions to be matched and 
aligned. Ongoing research from the computer vision community 
extensive investigates the extraction and use of high-level mean-
ings of images, e.g., scene understanding, category recognition, 
and even context analysis. For an excellent comprehensive treat-
ment, see [Sze10]. 

Second, large-scale image datasets are increasingly available so 
that sophisticated machine learning techniques are now applicable 
to computer vision problems. These datasets become possible 
because (i) digital cameras and camera phones have made photo 
capturing easy, leading to a massive number of digital photos 
being captured around the globe every day; (ii) High-speed Inter-
net and the popularity of Web 2.0 services such as Facebook and 
Flickr have made a significant portion of digital photos captured 
public; and (iii) the computer vision community has made a con-
scious endeavor to create image databases that are not only mas-
sive in scale but also relational, rich in semantic and ontological 
information, e.g., ImageNet [DDS+09].  

Finally, new imaging hardware allows previously impossible in-
formation to be captured. Many of these emerging camera tech-
nologies have already been discussed in Section 3.3. For example, 
depth cameras provide depth information of a scene and empower 
much more accurate object recognition and tracking, as exempli-
fied by Microsoft Kinect; the digital pixel sensor technology from 
Pixim enables a much wider dynamic range in captured images; 
and light-field cameras like Lytro capture the entire light field of 
the scene and therefore more information by many folds than 
conventional cameras. Finally, sensors of other modalities are 
increasingly available on digital cameras and camera phones. 
They allow visual experience to be captured with a rich set of 
context information such as location and social settings. These 
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new capabilities will not only significantly improve the perfor-
mance of existing computer vision solutions but also enable the 
exploration of novel ones such as context-aware object recogni-
tion. 

4. RESEARCH CHALLENGES 

We are excited by the vision of showing the cloud what we see 
because if realized it will fundamentally transform the entire eco-
system of computing, communication, and human-machine inter-
action. 

4.1 Always-on Wearable Camera 

The very first challenge is to build a visual experience capturing 
system that meets the following requirements: It must 

 Capture application-specific information 
 Last for a day without recharging; 
 Have a wearable form factor; 
 Be able to ship the captured information to the cloud in re-

al-time, with delay under several seconds. 

The real challenge is battery lifetime as many wearable camera 
prototypes have been built and commercially sold that meet the 
other three requirements. They are either fitted into a pair of 
glasses, attached to a helmet, mounted on top of the ear, or 
neckworn like a pendulum. Although none of them are able to 
directly ship the captured information to the cloud in real-time 
yet, it is not fundamentally difficult since smartphones are already 
able to stream video through the cloud in real-time with applica-
tions like Apple’s FaceTime.  

In Section 3.2, we discussed the issue of battery lifetime at length 
and claimed that over the next decade or so great strides will be 
made towards solving this problem. Yet we believe that this prob-
lem can be potentially addressed even today with the following 
related principles: 

First, the system should capture application-specific information 
only, instead of compressed video. Useless data should be dis-
carded as early as possible. To accomplish this, we should consid-
er emerging image sensors that allow in-sensor processing while 
simultaneously working on designing novel image sensors that are 
geared toward information capturing, instead of video capturing – 
this is the design goal of most today’s CMOS image sensor arrays 
used in wearable cameras.  

Second, the system should be heterogeneous. Today’s cameras 
including the wearable ones are largely homogenous. That is, a 
single CMOS image sensor array is employed to capture the vid-
eo, which is then compressed with dedicated hardware. They op-
erate either as on or off, which is usually dictated by the user 
through a button or remote control. Instead, we believe the system 
should leverage a collection of sensors of various modalities and a 
collection of image sensors with various specialties to capture the 
required information with low average power consumption. Re-
cent research prototypes of wearable cameras, e.g., SenseCam 
[HWB+06], have already employ sensors of various modalities. In 
particular, sensors of lower power consumption, such as accel-
erometer and microphone are used to trigger the camera operation. 
As specialization has become a major approach for improving the 
energy efficiency of computing, we argue it should be applied to 
visual information capturing too: image sensors specialized for 
capturing different aspects of visual information should be com-
bined to achieve high operational efficiency.  

Finally, the system should leverage other personal computing 
resources, including computing, storage, energy, and connectivity. 
Today such resources are available in the smartphones we carry. 
In a decade, we will very much likely still carry a personal com-
puting device in our pocket, though it may be called a different 
name. With a smaller form factor, this device will most likely 
have greater energy and more sensory and computational power 
than today’s wearable systems by orders of magnitude.  

4.2 Low-Latency, High Throughput Network 

The first big challenge in showing the cloud what you see is to 
increase the network capacity. The applications we want to enable 
inherently create a tremendous burden on wireless networks.  
Even with the best video codecs, a single compressed video 
stream requires bandwidth of about a mega-bit or two per second 
and the overall demand on the network goes up linearly with the 
number of people being served. Today’s mobile operators (MOs) 
are already scrambling to meet the exponential growth of data 
brought about by the popularity of smartphones and tablets. One 
of the strategies they are employing to curb this demand is tiered 
pricing. Still, even when users opt for a plan with several GB of 
data usage, the authors of [II03] calculated that a 24-hour 160 by 
120 video stream at 10 frames per second, encoded in MPEG4 
consumes more than 1.5 GB of bandwidth. Recently Cisco 
claimed that mobile video will grow at a CAGR of 90 percent 
between 2011 and 2016. Of the 10.8 Exabyte per month crossing 
the mobile network by 2016, 7.6 Exabyte will be due to video 
[Cisc11].  Note that this report is based on current end-user behav-
ior but not on the vision we are describing in this paper.  

In addition to needing greater capacity, many applications which 
take advantage of showing the cloud what you see require low 
latency and low jitter in uploading visual information, e.g., crowd-
sourced reality as outlined in Section 2. Measurement studies have 
shown that existing and emerging cellular networks have high 
latency and delay, incurred by the combination of last-hop wire-
less and sub-optimal Internet connectivity to the cloud.  
[HXT+10, HQG+12].   

Solutions to these problems can be resolved by taking a multi-
prong approach that may include: (i) lobbying the regulators and 
policy makers around the world to open up unused spectrum for 
both licensed and unlicensed use, (ii) encouraging MOs to in-
crease spatial reuse by embracing smaller cell size networks e.g. 
via femtocells, (iii) helping Wi-Fi operators and MOs embrace 
traffic offloading between licensed and unlicensed networks, e.g. 
between 4G and Super Wi-Fi networks, and (iv) continuing to 
improve spectrum efficiency by at least an order of magnitude to 
meet the growing capacity demand.  

The research and legal communities are working together like 
never before to find solutions to the looming spectrum crisis.  
Whitespace networks and more importantly database driven op-
portunistic networks are a recent example of forward thinking 
technologist and regulators teaming up to open additional spec-
trum for consumers who are demanding greater connectivity and 
bandwidth [BCM+09, MCT+10]. We must design and develop 
opportunistic networks that use both distributed spectrum data-
bases and cognitive radios with distributed sensing capabilities.  
Opportunistic networks allow primary and secondary users to co-
exist, and therefore spectrum use is optimized. 

To reduce the network latency while bringing the power of the 
cloud to the user, we advocate the use of Cloudlets, which we 
define as a resource rich infrastructure computing devices that 
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have high-speed Internet connectivity to the cloud.  Mobile devic-
es such as smartphones and tablets can use Cloudlets to augment 
their capabilities and enable applications that were previously not 
possible [SBC+09]. 

Access to cloudlets may be via Wi-Fi, Super Wi-Fi, or any of the 
emerging cellular technologies.  But there is another possibility, 
the untapped 7 GHz of unlicensed spectrum available in the 60 
GHz range. Recent advances in CMOS technology have reduced 
the cost of 60 GHz devices significantly; however the nature of 60 
GHz radio waves leads to significant challenges for operating 
high rate links. All other factors being equal, a 60 GHz link is 
roughly 55 dB (a factor of 300,000× worse) than a 2.4 GHz link in 
terms of the signal-to-noise ratio (SNR) that determines packet 
delivery. This is due to three factors: first, the free-space path loss 
is higher due to the extremely small 5mm wavelength; second, the 
channels are 100 times wider and thus 20 dB noisier, and third 
most commercial equipment uses only 10mW transmit power 
(compared to 802.11’s typical 50mW) in order to meet regulations 
and energy budgets.  In addition to large bandwidth, directionality 
represents another novel aspect of 60 GHz technology and a good 
network design that connects the user’s wearable device to the 
cloudlet can take advantage of this. Directional antenna effective-
ness is inversely proportional to the square of the radio wave-
length so the short wavelength of 60 GHz leads itself to compact 
antennas. With directional antennas, 60 GHz links can support 
multi-Gbps rates over distances of several meters, thus providing 
convenient access to cloudlets.    

Finally, to improve spectrum efficiency, we advocate at least three 
hardware-driven technologies: First, as suggested in [YZS+11], 
mobile clients should have multiple antennas that exploit various 
forms of beamforming for the uplink; Second, base stations 
should employ a large number of antennas to communicate with 
many clients simultaneously through multi-user beamforming, 
and third, instead of competing for spectrum resources, mobile 
clients help each other through cooperative communication 
schemes.   

There is a lot of research work we still have to do to enable high-
capacity, low latency, low jitter networks, and as outlined above 
the solutions will come in many different forms.  

4.3 Capturing and Representing Visual In-
formation 

There are three interesting opportunities to reduce the aggregated 
network capacity requirement from showing the cloud what users 
see. First, as discussed above, if only application-specific infor-
mation, instead of compressed video, is shipped to the cloud, the 
capacity requirement will be significantly reduced. This oppor-
tunity will be naturally realized if the information capturing sys-
tem discussed in Section 3.1 becomes information capturing, in-
stead of video capturing.  

Second, there is a lot of redundancy in a user’s daily visual expe-
rience. For example, a user sees her car many times a day, but the 
car does not change very much in its appearance so often. Existing 
and emerging video encoding standards, e.g., H.264/MPEG AVC 
and HEVC, unfortunately, do not effectively exploit such redun-
dancy. They do employ motion estimation to identify redundancy, 
e.g., the same car, in consecutive frames, but they do not do it for 
video captured at different times.   

Similarly, there is a lot of redundancy in the visual experiences of 
multiple users. For example, users walking down the same streets 
will share much of their visual experience, without various tem-

poral, angular shifts. What they see can be jointly encoded to 
achieve much higher compression rate and significantly reduce 
the aggregated capacity requirement.  

The last two opportunities require new research into video analy-
sis, representation, and compression. Some primitive steps have 
already been taken though for different goals. For example, there 
is significant work about video summarization to identify the most 
informative frames of the video sequences for both compression 
and retrieval. Similar methods have been applied to compress 
real-time video streaming for face-to-face videoconference 
[WC05]. We believe the following map-plus-dictionary approach 
holds a great promise. 

Much of our visual experience is about things that do not move or 
change in a short time, e.g., buildings, hallways, and major pieces 
of home furniture and appliance. Given our location and the direc-
tion of our view, much of the visual experience can be derived 
from a map built beforehand. The visual information capturing 
system only needs to capture and share the difference between the 
real view and the one derived from the map. The direction of view 
can be efficiently estimated with kinetic sensors and the location 
of a user is increasingly available from a combination of various 
technologies. Interestingly, the visual information capturing and 
location estimation can be performed in an iterative manner, given 
the map. The map, on the other hand, can be constructed and 
maintained through a combination of war-driving, similar to how 
Google StreetView is created today, and crowd-sourced data col-
lection, similar to how traffic map is generated today.  

In addition to maps of relatively stable visual objects, a user will 
benefit from a personal dictionary of visual objects that she usual-
ly sees. For example, if the user owns a particular smartphone, it 
will appear in her visual experience very often and can be includ-
ed in her dictionary for compressing her visual experience. We 
note that dictionary-based methods have been widely studied in 
the data compression community [LM99]. However, there is a key 
difference between our proposal and existing solutions. Existing 
dictionary-based methods all employ very low-level dictionary 
entries, usually computationally derived without understanding 
the semantics of the visual experience, e.g., spectrum and DCT 
components. In contrast, the dictionary in our envisioned ap-
proach consists of entries that are of much higher level of abstrac-
tions and are semantically meaningful, e.g., smartphone, dog, and 
car. The increase in abstraction of dictionary entries may require 
fundamentally different methods of deriving dictionary entries 
and decomposing visual experience into dictionary entries. 

Finally, the map-plus-dictionary approach will need a rethinking 
of the representation of visual experience. Currently visual expe-
rience is captured as a sequence of frames, each of which is an 
array of pixels. However, the map-plus-dictionary approach will 
be most effective if the visual experience can be captured seman-
tically or it should be represented based on how a human user 
would interpret it if given enough time. For example, when a user 
sees her house at different time of the day and from different per-
spectives, instead of recording the visual experience by pixels, the 
system can potentially describe and represent the visual experi-
ence with a dictionary entry of the house, the viewing angle, and 
the illumination setting. We expect recent development about 
feature-based alignment and deriving structure from motion in 
computer vision to provide useful tools for this purpose. For ex-
ample, computer vision researchers are able to reconstruct multi-
ple views of tourist sites using photos collected from keyword-
based image search queries [SSS08]. And they are currently aim-
ing at generating 3D models of these sites in this way. This new, 
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semantic representation captures a visual experience by analyzing 
it and apparently requires significantly more computation at the 
time of capturing, which bodes well with the increasing availabil-
ity of computational power at a mobile or wearable device as 
analyzed in Section 2.   

4.4 From Datacenters to Ubiquitous Cloud 

As the cost of computing video decreases, we envision the current 
cloud model with highly centralized mega datacenters will be 
enhanced with smaller datacenters distributed in residences, 
communities, and businesses, thus making the cloud truly ubiqui-
tous. Beyond the cloudlet vision outlined in [SBC+09], this dis-
tributed cloud model invites researchers to think about a multi-tier 
cloud computing paradigm, its management, and optimized use. 
There are multiple rationales behind this speculation. First, the 
computing power of a residential house will be comparable to that 
of today’s small to mid-tier datacenters. Consequently, much of 
the processing will take place as close as possible to where the 
data is captured therefore significantly reducing the stress on the 
network and outside infrastructure.  

Second, as the latency of the last-hop wireless link decreases sig-
nificantly the latency due to the rest of the network infrastructure 
will become the bottleneck for instant network transactions, e.g., 
fast web loading and crowd-sourced reality. When this happens, 
we expect the base stations will evolve into mini datacenters serv-
ing its mobile users with low latency. The business implication of 
this is apparent.    

Third, because visual experience is highly location-dependent and 
there is a huge redundancy in visual experience captured by co-
located users, the distributed cloud model will be best positioned 
to leverage this redundancy. 

Moreover a locally hosted, owned datacenter may provide the 
real-time power to co-located users while ensuring what you see 
does not go outside that property. This is highly desirable for cor-
porations and private homes, which are particularly sensitive 
about sending any data, visual or otherwise to an outside cloud.  

Finally, showing the cloud what we see will pose a grand chal-
lenge to the design of databases as user-generated data increases 
by many orders of magnitude. Moreover, the data from visual 
experience will be highly structured and have extremely rich rela-
tionships among entries. That is, the visual experience from a user 
may compose of a number of objects, which may in turn have 
subcomponents; at the same time, the visual experience from the 
same user but from different time may be highly similar or relat-
ed; those of multiple co-located users may also have a lot of 
commonality and therefore related. The complicated structure and 
relationships will probably require a rethinking of the database 
design. 

4.5 Programming Support 

The key to the vision of showing the cloud what we see is the 
applications that can be easily built on top of the visual experience 
captured. One may argue that the availability of development kits 
for computer visions such as OpenCV have already achieved this 
goal. Yet we believe the abstraction level provided by computer 
vision development kits today is still too low. That is, developers 
still operate on pixel arrays; the development kits only provide 
APIs for developers to extract visual information, e.g., detecting 
and recognizing a face.  In contrast, in the envisioned the system, 
the step of abstraction should have already been extracted during 

the capturing of the visual experience, as discussed in Section 4.3. 
The developers will mostly have a semantic representation of the 
visual experience available. We need programming support that 
enables them to easily work with this high abstraction level, in-
stead of raw pixel arrays.  Such abstractions include the properties 
of visual objects including semantic, physical and temporal prop-
erties, relationships between visual objects, and operations that 
can be applied to them. For example, we expect programmers to 
write code similar to the following 

if (any car is approaching) alert(); 

4.6 Legal and Privacy Challenges 

Intille and Intille provide an excellent review of the legal issues 
related to wearable cameras in [II03]. Much of their speculations 
are applicable to our vision of showing the cloud what you see. In 
addition, we foresee several new privacy issues. First, there are 
three levels of privacy related to capturing our visual experience: 
analyzing the captured video data in real-time, storing it, and shar-
ing / disclosing it, each with increasing legal liability.  

Second, the legal liability depends on how the visual experience is 
represented. We note that some form of abstraction might reduce 
the privacy concern and legal liability. For example, while a 
friend we speak with may object to being videotaped during a 
conversation, he or she may be accommodating to being recorded 
as the person we spoke with at a particular time and location.  

Third, the core problem in capturing other people’s activities is 
that the person being captured has no control on how the video 
data is analyzed in real-time or years later or is shared with others. 
This is an important challenge to many social protocols we are 
used to today. We believe it is similar to the copyright manage-
ment problem in the music industry. Without copyright manage-
ment, when a song is digitalized and made available to a user, the 
creator loses all her control in how the song will be played, edited, 
and shared. Since this problem is considered reasonably solved 
today, we speculate that the control problem in capturing the visu-
al experience will also be solved using an approach that involves 
robust human identification and a trusted information capturing 
system [LSW+12].     

The adoption of our vision by the society will likely depend on 
how people who do not show what they see to the cloud react to 
being visually captured by early adopters. It is important that we 
think about what tangible and immediate benefits these people 
will receive. When the benefits overweigh the privacy concerns, 
the social barrier to adopting these technologies will be lowered. 

5. PRIOR ART AND RELATED VISIONS 

Our vision builds on multiple existing research visions.  

MyLifeBits from Microsoft employs a wearable camera, 
SenseCam, to capture photos of meaningful moments of a user’s 
life and envisions a lifelong database of captured photos that can 
be easily searched. The vision of MyLifeBits is to enhance users’ 
long-term memory, which is known to have long latencies for 
writes, i.e., memorizing, and reads, i.e., retrieval. Our vision goes 
beyond just enhancing the long-term memory to include percep-
tion and cognition. Furthermore, our vision also brings the possi-
bility of sharing with a much tighter coupling between the cloud 
and the mobile.  

Realizing “the user attention is the most precious computing re-
source,” Project Aura from CMU aims at reducing interrupts, 
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automating tedious work so that users can focus on more im-
portant ones. Driven by the same human limitation, our vision is, 
however, to extend the human capability, instead of maximizing 
its use. Envisioned about a decade before our vision, Project Aura 
emphasizes the use of audio input from the user and environment. 
In contrast, our vision sets the visual experience at the center 
stage. 

Our vision also encompasses a closely related vision: augmented 
reality. While augmented reality can have a broad definition, e.g., 
including virtual markers on ESPN sports games, what is related 
to our vision is what captured by the Terminator Vision from the 
Terminator (1984): enhancing what we see on the go by overlay-
ing digital information on top of a user’s visual experience. It has 
three parts: (i) acquire information about what a user may see; (ii) 
figure out what information to add; and (iii) output that infor-
mation to the user. Part (i) may employ a camera, e.g., Google 
Goggle, or may not, e.g., Google’s Project Glass [Goo12], which 
relies on location information to infer about what a user may see 
most of the time.  Part (ii) may or may not involve the cloud. And 
Part (iii) usually employs a head-mounted display (HMD). The 
video see-through type of HMDs actually employs a camera to 
capture the user’s visual field; the captured visual field is then 
displayed along with augmented information. Augmented reality 
is related to our vision in two ways. First, we consider augmented 
reality as an application that can be built on top of showing the 
cloud what you see and, more importantly, it will be significantly 
better that way by closely coupling the cloud and leveraging shar-
ing. Moreover, we consider technologies from augmented reality 
instrumental for addressing some of the challenges outlined 
above, in particular the user interface challenges.  

The sensor network community has investigated wireless visual 
sensor networks of nodes with image sensors [SH09]. The used 
image sensors include both commercial-off-the-shelf ones, e.g., 
[KGS+05, RBI+05], and research prototypes, e.g., [GMG+11]. 
However, a focus on long-term operation leads to extremely tight 
power constraint and therefore much reduced capabilities in cap-
turing and processing the visual experience; and such visual sen-
sor networks are limited to applications that are usually concerned 
with surveillance and monitoring. 

ACKNOWLEDGEMENTS 

The authors are grateful for the useful input from David Chu, 
Stefan Saroiu, and Cha Zhang from Microsoft Research. 

REFERENCES 

[ACR09] Martin Azizyan, Ionut Constandache, and Romit Roy 
Choudhury. 2009. SurroundSense: mobile phone localization 
via ambience fingerprinting. In Proc. ACM Int. Conf. Mobile 
Computing and Networking (MobiCom), September 2009. 

[Aura] Project Aura: distraction-free ubiquitous computing 
http://www.cs.cmu.edu/~aura/ 

[AWB+11] Ardalan Amiri Sani, Wolfgang Richter, Xuan Bao, 
Trevor Narayan, Mahadev Satyanarayanan, Lin Zhong, 
Romit Roy Choudhury, "Opportunistic Content Search of 
Smartphone Photos," Technical Report TR0627-2011, Rice 
University, June 2011. 

[BCM+09] Paramvir Bahl, Ranveer Chandra, Thomas 
Moscibroda, Rohan Murty, Matt Welsh, “White Space Net-
working with Wi-Fi like Connectivity,” in Proc. ACM 
SIGCOMM, 2009. 

[Cis11] Cisco, “Cisco Visual Networking Index: Global Mobile 
Data Traffic Forecast Update, 2010–2015”, February 2011 
http://newsroom.cisco.com/ekits/Cisco_VNI_Global_Mobile
_Data_Traffic_Forecast_2010_2015.pdf 

[CPL+] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, 
R. A. Huggins, and Y. Cui, “High-performance lithium bat-
tery anodes using silicon nanowires,” in Nature Nanotech-
nology, vol. 3, No. 1, pp. 31--35, 2007. 

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. 
Fei-Fei, “ImageNet: a large-scale hierarchical image data-
base,” IEEE Computer Vision and Pattern Recognition 
(CVPR), 2009. 

[DDT+08] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. 
Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel 
imaging via compressive sampling,” in IEEE Signal Pro-
cessing Magazine, 25(2), 83–91, 2008. 

[FEW08] K. Fife, A. El Gamal and H.-S. P. Wong, "A Multi-
Aperture Image Sensor with 0.7um Pixels in 0.11um CMOS 
Technology," in IEEE Journal of Solid-State Circuits, pp. 
2990-3005, December 2008. 

[Fif09] Keith G. Fife, Devices for integrated multi-aperture imag-
ing, Ph.D. Dissertation, Stanford University, June 2009. 

[Fra08] Gene A. Franz, “SoC in the new paradigm of IC technol-
ogy,” 
http://www.dallasces.org/talks/IEEEConsumerElectMtg-
Dallas-August2008.pdf 

[Fra09] Gene Frantz, 2020 Vision: Transistors a buck a billion:  
http://www.eetimes.com/electronics-news/4196903/2020-
Vision-Transistors-a-buck-a-billion 

[GMG+11] L. Gasparini, R. Manduchi, M.  Gottardi, D. Petri, 
"An ultralow-power wireless camera node: development and 
performance analysis," in IEEE Transactions 
on Instrumentation and Measurement, vol.60, no.12, 
pp.3824-3832, Dec. 2011 

[Goo12] Google, Project Glass: Thoughts, designs, and stories: 
http://g.co/projectglass 

[HQW+10] Rehan Hameed, Wajahat Qadeer, Megan Wachs, 
Omid Azizi, Alex Solomatnikov, Benjamin C. Lee, Stephen 
Richardson, Christos Kozyrakis, and Mark Horowitz, “Un-
derstanding sources of inefficiency in general-purpose 
chips,” in SIGARCH Comput. Archit. News 38, 3, June 2010, 
37-47. 

[HQG+12] Junxian Huang, Feng Qian, Alexandre Gerber, Z. 
Morley Mao, Subhabrata Sen, and Oliver Spatscheck, “A 
Close Examination of Performance and Power Characteris-
tics of 4G LTE Networks” in Proc. ACM Int. Conf. Mobile 
Systems, Applications, and Services (Mobisys), June 2012.  

[HWB+06] Steve Hodges, Lyndsay Williams, Emma Berry, 
Shahram Izadi, James Srinivasan, Alex Butler, Gavin Smyth, 
Narinder Kapur, and Ken Wood, “SenseCam: a retrospective 
memory aid,” in Proc. Int. Conf. Ubiquitous Compu-
ting (UbiComp) 2006. 

[HXT+10] Junxian Huang, Q. Xu, B. Tiwana, Z. Morley Mao, 
Ming Zhang, and Paramvir Bahl, “Anatomizing Application 
Performance Differences on Smartphones,” in Proc. ACM 
Int. Conf. Mobile Systems, Applications, and Services 
(Mobisys), June 2010 

59



[II03] Stephen S. Intille and Amy M. Intille, “New challenges for 
privacy law: wearable computers that create electronic digital 
diaries,” MIT House_n Technical Report, September 2003. 

[INV] C. Chabris and D. Simons, the invisible gorilla: 
http://www.theinvisiblegorilla.com/videos.html 

[KGS+05] Purushottam Kulkarni, Deepak Ganesan, Prashant 
Shenoy, and Qifeng Lu, “SensEye: a multi-tier camera sensor 
network,” in Proc ACM Int. Conf. Multime-
dia (MULTIMEDIA), 2005.  

[KP10] D. W. F. van Krevelen and R. Poelman, “A survey of 
augmented reality: technologies, applications and limita-
tions,” in The International Journal of Virtual Reality, 2010, 
9(2):1-20. 

[LM99] N. Jesper Larsson and Alistair Moffat, “Offline Diction-
ary-Based Compression,” in Proc. IEEE Conf. Data Com-
pression (DCC), 1999. 

[LPL+09] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem 
Choudhury, and Andrew T. Campbell, “SoundSense: scala-
ble sound sensing for people-centric applications on mobile 
phones,” in Proc. ACM Int. Conf. Mobile Systems, Applica-
tions, and Services (MobiSys), June 2009.  

[LSL11] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. 
Linares-Barranco, “A 3.6 μs Latency Asynchronous Frame-
Free Event-Driven Dynamic-Vision-Sensor,” in IEEE Jour-
nal of Solid-State Circuits, June 2011. 

[LSW+12] He Liu, Stefan Saroiu, Alec Wolman, and Himanshu 
Raj, “Software Abstractions for Trusted Sensors,” in Proc. 
ACM Int. Conf. Mobile Systems, Applications, and Services 
(Mobisys), June 2012. 

[MCT-10] Rohan Murty, Ranveer Chandra, Thomas Moscibroda, 
Paramvir Bahl, “SenseLess: A Database-Driven White Spac-
es Network,” IEEE DySpan 2011  

[NAG09] A. Nilchi, J. Aziz, and R. Genov, "Focal-Plane Algo-
rithmically-Multiplying CMOS Computational Image Sen-
sor," in IEEE Journal of Solid-State Circuits, vol.44, no.6, 
pp.1829-1839, June 2009 

[NG09] Ren Ng, Digital light field photography, Ph.D. disserta-
tion, Stanford University, 2009. 

[Pix08] Pixim Inc., White Paper: Digital pixel system technology, 
May 2008: 

http://www.pixim.com/assets/files/product_and_tech/Digital
_Pixel_System_Technology_White_Paper_June_2_08.pdf 

[Pow95] R. A. Powers, “Batteries for low power electronics,” in 
Proceedings of the IEEE, vol. 83, No. 4, pp. 687-693, 1995. 

[RBI+05] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, 
Juan C. Garcia, Jay Warrior, Deborah Estrin, and Mani 
Srivastava, “Cyclops: in situ image sensing and interpretation 
in wireless sensor networks,” In Proc. ACM Int. Conf. Em-
bedded Networked Sensor Systems (SenSys), 2005.  

[RSG+09] A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and 
P. M. Ajayan, “Coaxial MnO2/carbon nanotube array elec-
trodes for high-performance lithium batteries,” in Nano Let-
ters, vol. 9, No. 3, pp. 1002--1006, 2009. 

[SH09] Stanislava Soro and Wendi Heinzelman, “A survey of 
visual sensor networks,” in Advances in Multimedia, 2009.  

[SBC+09] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Ca-
ceres, and Nigel Davies, “The Case for VM-Based Cloudlets 
in Mobile Computing,” in IEEE Pervasive Computing 8, 4, 
14-23, 2009. 

[SSS08] Noah Snavely, Steven M. Seitz, and Richard Szeliski, 
“Modeling the world from Internet photo collections,” in In-
ternational Journal of Computer Vision, 80:189-210, 2008. 

[Sze10] Richard Szeliski, Computer Vision: Algorithms and Ap-
plications, Springer. Electronic version available from 
http://szeliski.org/Book/, the latest version September 2010 

[WC05] Jue Wang and Michael F. Cohen, “Very Low Frame-Rate 
Video Streaming For Face-to-Face Teleconference,” in Proc. 
IEEE Conf. Data Compression, pp. 309-318, 2005. 

[WM12] A. Wang and A. Molnar, “A Light-Field Image Sensor 
in 180 nm CMOS”, in IEEE Journal of Solid-State Circuits, 
vol. 47, no. 1, Jan. 2012. 

[WMN11] Rebecca M. Willett, Roummel F. Marcia and Jonathan 
M. Nichols, "Compressed sensing for practical optical imag-
ing systems: a tutorial", in Opt. Eng., Jul, 2011. 

[ZZW+11] Siqi Zhao, Lin Zhong, Jehan Wickramasuriya and 
Venu Vasudevan, "Human as real-time sensors of social and 
physical events: a case study of Twitter and sports 
games," Technical Report TR0620-2011, Rice University and 
Motorola Mobility, June 2011 (http://www.sportsense.org).  

 

 

 

60




