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Abstract

We consider the problem of designing revenue maximizingnernposted-price mechanisms when
the seller has limited supply. A seller hasdentical items for sale and is facing potential buyers
(“agents”) that are arriving sequentially. Each agentisrigsted in buying one item. Each agent’s value
for an item is an independent sample from some fixed (but unkhdistribution with supporio, 1].
The seller offers a take-it-or-leave-it price to each amgvagent (possibly different for different agents),
and aims to maximize his expected revenue.

We focus on mechanisms that do not use any information abeulistribution; such mechanisms
are calleddetail-free (or prior-independent They are desirable because knowing the distribution is
unrealistic in many practical scenarios. We study how thremae of such mechanisms compares to the
revenue of the optimal offline mechanism that knows theibigtion (“offline benchmark”).

We present a detail-free online posted-price mechanismsa/hevenue is at mog}((k logn)?/?)
less than the offline benchmark, for every distribution tha¢gular. In fact, this guarantee holds without
anyassumptions if the benchmark is relaxed to fixed-price mgishes. Further, we prove a matching
lower bound. The performance guarantee for the same mesrthaain be improved 0 (v/% log n), with
a distribution-dependent constant, if the rd;gids sufficiently small. We show that, in the worst case over
all demand distributions, this is essentially the best tfzdi can be obtained with a distribution-specific
constant.

On a technical level, we exploit the connection to multi-adhvandits (MAB). While dynamic pric-
ing with unlimited supply can easily be seen as an MAB probliam intuition behind MAB approaches
breaks when applied to the setting with limited supply. OighHevel conceptual contribution is that
even the limited supply setting can be fruitfully treatecdsandit problem.
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1 Introduction

Consider a promoter that is interested in sellintickets for a given concert. The seller is interested in max-
imizing her revenue from selling these tickets, and is offgthe tickets on a website such as Ticketmaster.
Potential buyers (“agents”) arrive one after another, ewitih the goal of purchasing a ticket if the price is
smaller than the agent’s valuation. The seller expeasch agents to arrive. Whenever an agent arrives the
seller presents to him a take-it-or-leave-it price, andhiipent makes a purchasing decision according to that
price. The seller can update the price taking into accouwnbbiserved history and the number of remaining
items and agents.

We adopt a Bayesian view that the valuations of the buyersireamples from a fixed distribution,
calleddemand distribution A standard assumption in a Bayesian setting is that the démiatribution is
known to the seller, who can design a specific mechanisnredilo this knowledge. (For example, the
Myerson optimal auction for one item sets a reserve priceistafunction of the distribution). However, in
some settings this assumption is very strong, and shoulddigeal if possible. For example, when the seller
enters a new market, she might not know the demand diswitbuéind learning it through market research
might be costly. Likewise, when the market has experiencsigrificant recent change, the new demand
function might not be easily derived from the old data.

Ideally we would like to design mechanisms that perform viallany demand distribution, and yet do
not rely on knowing it. Such mechanisms are cahkaﬂail—fredil in the sense that the specification of the
mechanism does not depend on the details of the “envirorimienthe spirit of Wilson’s Doctrine[[43].
Learning about the demand distribution is an integral pltt@problem that a detail-free mechanism faces.
The performance of such mechanisms is compared to a benkiimddoesdepend on the specific demand
distribution, as in[[34, 31, 18, 25] and many other papers.

In this paper we take this approach and design detail-frd&éeoposted-price mechanisms with revenue
that is close to the revenue of the optimal offline mechanigrat can depend on the demand distribution
and is not restricted to be posted price). Our main resuft$arany demand distribution that is regular, or
any demand distribution that satisfies the stronger canrddf “monotone hazard rate”. Both conditions are
mild and standard, and even the stronger one is satisfied byagommon distributions, such as the normal,
uniform, and exponential distributions.

Posted price mechanisms are commonly used in practice rargbpealing for several reasons. First, an
agent only needs to evaluate her offer rather than computprivate value exactly. Human agents tend to
find the former task much easier than the latter. Secondiggemot reveal their entire private information
to the seller: rather, they only reveal whether their peuatlue is larger than the posted price. Third, posted-
price mechanisms are truthful (in dominant strategies)raoteover also group strategy-proof (a notion of
collusion resistance when side payments are not alloweojh&r, detail-free posted-price mechanisms are
particularly useful in practice as the seller is not requiite estimate the demand distribution in advance.
Similar arguments can be found in prior work, elg./[22].

Our model. We consider the following limited supply auction model, ahive termdynamic pricing with
limited supply A seller hask items she can sell to a setwfagents (potential buyers), aiming to maximize
her expected revenue. The agents arrive sequentially tménket and the seller interacts with each agent
before observing future agents (in an online manner). Weentfad simplifying assumption that each agent
interacts with the seller only once, and the timing of therattion cannot be influenced by the agent. (This
assumption is also made in other papers that consider ohlepndor special supply amounts [34,7] 13].)
Each ageni (1 < ¢ < n) is interested in buying one item, and has a private vaju®r an item. The
private values are independently drawn from the sdemeand distributiort”. The demand distributiof’ is

1An alternative term used to describe these mechanisprivisindependent



unknownto the seller. We assume théthas bounded support, and an upper bound on the support istknow
to the selleB by normalizing, it is known to the seller thatipport(F') C [0, 1].

Whenever agent arrives to the market the seller offers him a prigefor an item. The agent buys
the item if and only ifv; > p;, and in case she buys the item she payéso the mechanism is incentive-
compatible). The seller never learns the exact value; 08he only observes the agent’s binary decision
to buy the item or not. The seller selects priggsusing an online algorithm, that we henceforth call
pricing strategy We are interested in designing pricing strategies witlm m&yenue compared to a natural
benchmark, with minimal assumptions on the demand digtoibbu

Our main benchmark is the maximal expected revenue of amefftiechanism that is allowed to use
the demand distribution; henceforth, we will calbifline benchmarkThis is a very strong benchmark, as
it has the following advantages over our mechanism: it imald to use the demand distribution, it is not
constrained to posted prices and is not constrained to rlineont is realized by a well-known Myerson
Auction [39] (whichdoesrely on knowing the demand distribution).

High-level discussion. Absent the supply constraint, our problem fits into thelti-armed bandi{MAB)
framework [20]: in each round, an algorithm chooses amonxgd fiet of alternatives (“arms”) and observes
a payoff, and the objective is to maximize the total payo#ra given time horizon. Our setting corresponds
to (prior-free) MAB with stochastic payofff35]: in each round, the payoff is an independent sample from
some unknown distribution that depends on the chosen “apmi¢g). This connection is exploited in [34,
[16] for the special case of unlimited supply £ n). The authors use a standard algorithm for MAB with
stochastic payoffs, calledCB1 [4]. Specifically, they focus on the pricgs) : i € N}, for some parameter
d, and runuCB1 with these prices as “arms”. The analysis relies on the tdmgnend from [4].

However, neither the analysis nor the intuition behir@B1 and similar MAB algorithms is directly
applicable for the setting with limited supply. Informallthe goal of an MAB algorithm would be to
converge to a price that maximizes the expected per-round reveR(g) = p(1 — F(p)). This is, in
general, a wrong approach if the supply is limited: indeedlirgy at a price that maximize&(-) may
quickly exhaust the inventory, in which case a higher prioeild be more profitable.

Our high-level conceptual contribution is showing thatrettee limited supply setting can be fruitfully
treated as a bandit problem. The MAB perspective here issadbcus on the trade-off betweerploration
(acquiring new information) andxploitation (taking advantage of the information available so far). In
particular, we recover an essential featur&@es1 that it does not separate exploration and exploitation, and
instead explores arms (prices) according to a scheduleticagtasingly adapts to the observed payoffs. This
feature results, both fasCB1 and for our algorithm, in a much more efficient explorationsaboptimal
arms: very suboptimal arms are chosen very rarely even wieleare being “explored”.

We use an “index-based” algorithm where each arm is detéstizally assigned a numerical score
(“index”) based on the past history, and in each round an aitmavmaximal index is chosen; the index of
an arm depends on the past history of this arm (and not on athes). One key idea is that we define the
index of an arm according to the estimated expected totaifprgm this arm given the known constraints,
rather than according to its estimated expected payoff inglesround. This idea leads to an algorithm that
is simple and (we believe) very natural. However, while tlgpathm is simple its analysis is not: some new
ideas are needed, as the elegant tricks from prior work dapyy (see Sectidn 4 for further discussion).

It is worth noting that a good index-based algorithm did Ima¥eto exist in our setting. Indeed, many
bandit algorithms in the literature are not index-basegl,BXP3 [5] and “zooming algorithm”[[3B] and their
respective variants. The fact that Gittins algorithm! [2d¢l #CB1 [4] achieve (near-)optimal performance
with index-based algorithms was widely seen as an impressiatribution.

This assumption enables concentration inequalities ssdbhernoff Bounds. It corresponds to the assumption of bedind
rewards, which is very common in the literature on multi-adhbandits.
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Contributions. In all results below, we consider the dynamic pricing prableith limited supply: n
agents and: < n items. We present pricing strategies with expected revémaieis close to the offline
benchmark, for large families of natural distributions| &lir pricing strategies are deterministic and (triv-
ially) run in polynomial time. Our main result follows.

Theorem 1.1. There exists a detail-free pricing strategy such that foy eegular demand distribution its
expected revenue is at least the offline benchmark nifslog n)%/?).

We emphasize that Theorém]1.1 holds for a pricing strategfydibesnot know the demand distribution.
The resulting mechanism is incentive-compatible as it iostgr price mechanism. The specific bound
O((klogn)?/?) is most informative whei > log n, So that the dependence oiis insignificant; the focus
here is to optimize the power &f (Note that any non-trivial bound must be belévwy

The proof of Theoreni 111 consists of two stages. The firstestagmediate from Yan[][44]) is to
observe that for any regular demand distribution the exgeotvenue of the best fixed-price stra@gy
close to the offline benchmark. Henceforth, the expectednaw of the best fixed-price strategy will be
called thefixed-price benchmarkThe second stage, which is our main technical contributi®ho show
that our pricing strategy achieves expected revenue tleise to the fixed-price benchmark. Surprisingly,
this holds withoutanyassumptions on the demand distribution.

Theorem 1.2. There exists a detail-free pricing strategy whose expeeenue is at least the fixed-price
benchmark minu®((k log n)?/3). This result holds for every demand distribution. Moreptkas result is
the best possible up to a factor @flog n).

As discussed above, we recover the MAB technique from [4]tlier unlimited supply setting. The
corresponding contribution to the literature on MAB may lbeéndependent interest.
If the demand distribution is regular and moreover the rgtie sufficiently small then the guarantee in

Theoreni L1 can be improved & (v/% log ), with a distribution-specific constant.

Theorem 1.3. There exists a detail-free pricing strategy whose expeteenue, for any regular demand
distribution F, is at least the offline benchmark minQécx 'k log n) whenever’ﬁc < sp, wherecp andsp
are positive constants that depend BnFor monotone hazard rate distributions one can take= %.

The bound in Theorem 1.3 is achieved using the pricing styateem Theoreni_1]1 with a different
parameter. Varying this parameter, we obtain a family afteggies that improve over the bound in Theo-
rem[1.1 in the “nice” setting of Theordm 1.3, and moreoveehan-trivial additive guarantees for arbitrary
demand distributions. However, we cannot match both timesseith the same parameter.

Note that the rate/k dependence oh in Theoren{ LB contains a distribution-dependent constant
(which can be arbitrarily large, depending B}, and thus is not directly comparable to the raté depen-
dence in Theorein 1.2. The distinction (and a significant gapyeen bounds with and without distribution-
dependent constants is not uncommon in the literature ares¢igl decision problems, e.g. [n [4, 34) 53].

In fact, we show that they vk dependence oh is essentially the best possieWe focus on the
fixed-price benchmark (which is a weaker benchmark, so égte a stronger lower bound). Following the
literature, we defineegretas the fixed-price benchmark minus the expected revenue gfiging strategy.

Theorem 1.4. For anyy < % no detail-free pricing strategy can achieve regéetcr k) for all demand
distributions F' and arbitrarily large k, n, where the constanty can depend ot

3A fixed-price strategy is a pricing strategy that offers thme price to all agents, as long as it has items to sell. Thst*be
fixed-price strategy is one with the maximal expected regdoua given demand distribution.

“4For a particularly pronounced example, for tRearmed bandit problem with stochastic payoffs the bestiplessates for
regret with and without a distribution dependent constamtrespectivelyO (cx log n) andO(v'Kn) [4,5,[3].

*However, the lower bound in Theoréml.4 does not match theruppund in Theorefi 1.3 since the latter assumes regularity.

4



The bounds in Theorem 1.1 and Theotem 1.2 are uninformatieniv = O(log®n). We next provide
another detail-free, online posted-price mechanism tivasgneaningful bounds — not dependingrof in
the case that is very small (but bigger than some constant).

Theorem 1.5. There exists a detail-free pricing strategy such that foy &fHR demand distribution its
expected revenue is at least the offline benchmark nd&$/* poly log(k)).

2 Related Work

Dynamic pricing. Dynamic pricing problems and, more generally, revenue igament problems, have
a rich literature in Operations Research. A proper survehisfliterature is beyond our scope; seel[13] for
an overview. The main focus is on parameterized demandmistms, with priors on the parameters.

The study of dynamic pricing witunknowndemand distribution (without priors) has been initiated
in [16],[34]. Several special cases of our setting have beelest in [34 7] 18], detailed below.

First, Kleinberg and Leighto [34] consider the unlimiteghply case (building on the earlier wotk ]16]).
Among other results, they study IID valuations, i.e. outisgtwith & = n. They provide upper bounds
on regret of orde (n?/3) andO(cy /).l The latter bound is akin to Theordm1L.3 in that it assumes a
version of regularity, and depends on a distribution-dpeconstanir. Further, they prove matching lower
bounds which, in particular, imply Theorém 1.4 for the spkcase of unlimited supplﬂ

On the other extreme, Babaioff et al. [7] consider the caaetlie seller has only one item to sdll£ 1).
They provide a super-constant multiplicative lower boumduinrestricted demand distribution (with respect
to the online optimal mechanism), and a constant-factorcamation assuming MHR. Note that we also
use MHR to derive bounds that apply to the case of a very gmall

Besbes and Zeevi [13] consider a continuous-time versioichMwhen specialized to discrete time)
is essentially equivalent to our setting with= Q(n). They prove a number of upper bounds on regret
with respect to the fixed-price benchmark, with guarantbes dre inferior to ours. The key distinction
is that their pricing strategies separate exploration aqudoéation. Assuming that the demand distribu-
tion F(-) and its inverseF ! (-) are Lipschitz-continuous, they achieve regiét?/4). They improve it
to O(n?/3) if furthermore the demand distributions are parameterizedl toO(,/n) if this is a single-
parameter parametrization. Both results rely on knowimgprametrization: the mechanisms continuously
update the estimates of the parameter(s) and revise thentprice according to these estimates. The upper
bounds in[[13] should be contrasted with Gﬂlllf‘kz/ 3) upper bound that applies to an arbitrarnand makes
no assumptions on the demand distribution, andtfig- v/%) improvement for MHR demand distributions.

Also, [13] contains afi2(/n) lower bound for their notion of regret. Essentially, thig/&r bound com-
pares the best pricing strategy for a given demand disioibud the best (distribution-dependent) pricing
strategy for a fictitious environment where in every rourgitiechanism sells a fractional amount of good.
In particular, this lower bound does not have any immediatgications on regret with respect to either of
the two benchmarks that we use in this paper.

Online mechanisms. The study of online mechanisms was initiated by Lavi and N{&&], who unlike
us consider the case that each agent is interested in reuttphs, and provide a logarithmic multiplicative
approximation. Below we survey only the most relevant papethis line of work, in addition to the special
cases of our setting that we have already discussed.

®Throughout this section, we omit theg factors in regret bounds.
"The construction in[34] that proves TheorEml 1.4(a) for thimited supply case is contained in the proof of a theorem on
adversarialvaluations, but the construction itself only uses 11D véils.



Several papers[12, 16,134,/15] consider online mechanisthamlimited supply and adversarial valua-
tions (as opposed to limited supply and 11D valuations insmiting). The mechanism in the initial pager/[12]
requires the agents to submit bids and so is not posted-pfioe subsequent work [116, 134,115] provides
various improvements. In particular, Blum et al.[[16] (amanther results) design a simpt®sted-price
mechanism which achieves multiplicative approximatios ¢, for anye > 0, with an additive term that
depends on.  Blum and Hartline[[15] use a more elaborate posted-pricehar@iem to improve the ad-
ditive term. Kleinberg and Leighton [34] show that the sinpiechanism ir [16] achieves reg@¢n2/3);
moreover, they provide a nearly matching lower boun€@§%/?).

Papers([30, 23] study online mechanisms for limited supply BD valuations (same as us), but their
mechanisms are not posted-price. Hajiaghayi ef al. [30fiden an online auction model where players
arrive and depart online, and may misreport the time peniwthd which they participate in the auction. This
makes designing strategy-proof mechanisms more chatigngnd as a result their mechanisms achieve a
constant multiplicative approximation rather than additiegret. Devanur and Hartline [23] study several
variants of the limited-supply mechanism design probleapp$y is known or unknown, online or offline.
Most related to our paper is their mechanism for limited,Wwanponline supply. This mechanism is based
on random sampling and achieves constant (multiplica@m)roximation, but is not posted-price. Our
mechanism is posted-price and achieves low (additiveptegr

Other work. Absent the supply constraint, our problem (and a number lafe® formulations) fit into
the multi-armed bandi{MAB) frameworki MAB has a rich literature in Statistics, Operations Redearc
Computer Science and Economics. A proper discussion ofitéiature is beyond the scope of this paper;
a reader can refer tb [11I7,128,120] for background. Most reitet@our specific setting is the work on (prior-
free) MAB with stochastic payoffs, e.d. [35] 4], and MAB withipschitz-continuous stochastic payoffs,
e.g. [2,32[ 6] 33, 19]. The posted-price mechanism5s_in[[4615] described above are based on a well-
known MAB algorithm [5] for adversarial payoffs. The contien between online learning and online
mechanisms has been explored in a number of other papdrgjimg [40,24[ 10, 9].

Recently, [22] 211, 44] studied the problem of designing dinef sequential posted-price mechanisms
in Bayesian settings, where the distributions of valuatiare not necessarily identical, yet are known to the
seller. Chawla et al[[22] provide constant multiplicatagproximations. Yari[44] obtains a multiplicative
bound that is optimal for largk, and Chakraborty et al. [21] obtain a PTAS for Al

Dynamic pricing is superficially similar teecretary problemf26,[8] in that an algorithm is sequentially
interacting with agents, each agent’s private value is @lsinumber, and it is not known before this agent
arrives. However, in secretary problems the private vaduevealed when the agent arrives, whereas in
dynamic pricing the algorithm is much more constrained e of information: the feedback is only
whether there is a sale.

3 Prdiminaries

Throughout, we assume that agents’ valuations are dravapéerdiently from a distributiof’ with support
in [0, 1], calleddemand distributionWe usep € [0, 1] to denote a price. We lgt(p) denote the c.d.f, and
S(p) = 1 — F(p) denote thesales rateat pricep: the probability of making a sale at prige Let R(p) =
pS(p) denote theevenue functionthe expected single-round revenue at pyiagiven that there is still at
least one item left. The demand distributibris calledregularif F'(-) is twice differentiable and the revenue

8This result considers valuations in the rafyeH |, and the additive term also dependsidn

To avoid a possible confusion, we note that the supply caimétm our setting may appear similar to the budget constrai
in line of work onbudgeted MAHRsee [18[°29] for details and further references). Howether,“budget” in budgeted MAB is
essentially the duration of the experimentation phagerather than the number of rounds with positive rewasd (



function R(-) is concave:R"(-) < 0. We call F strictly regular if furthermore R”(-) < 0. ThenR(p) is
increasing fomp < p, and decreasing fgr > pr, wherep, is the uniqgue maximizer, known as tiyerson
reserve price(also known as thenonopoly pricg Moreover, the sales rat(-) is strictly decreasing, so
the inverseS—! is well-defined. We say is aMonotone Hazard Rate (MHRijstribution if F'(-) is twice
differentiable and the hazard rat&p) = F'(p)/S(p) is non-decreasing. All MHR distributions are regular.

A fixed-price strategwith » agents,k items and pricep, denoted A} (p), is a pricing strategy that
makes a fixed offer pricg to every agent so long as fewer thaitems have been sold, and stops afterwards
(equivalently, from that point always sets the pricext9. Note that for the unlimited supply cas€’(p)
sellsn S(p) items in expectation.

A pricing strategy is calledetail-freeif it does not use the knowledge of the demand distributior.avé
interested in designing detail-free pricing strategiethwiood performance faegverydemand distribution
in some (large) family of distributions. We compare our netbhms to two benchmarks that depend on
the demand distribution: the maximal expected revenue affline mechanism (theffline benchmark
and the maximal expected revenue of a fixed price mechanisefixed-price benchmajk An offline
mechanism that maximizes expected revenue was given irethimal paper of Myerson [39]; it is not an
online posted price mechanism.

Let Rev(.A) be the total expected revenue achieved by mechagisive define theegret of A with
respect to the fixed-price benchmark as folloksgret(.A) = max, Rev[A?(p)] — Rev(A). Thus, regret
is the additive loss in expected revenue compared to thdikedtprice mechanism. (Note that the regret of
A could, in principle, be a negative number, since the fixadeppenchmark is not generally the Bayesian
optimal pricing strategy for distributiof’.)

Benchmarks Comparison. We observe that for regular demand distributions, the fpxecke benchmark
is close to the offline benchmark. This result is immediatenfivan [44]; we provide a self-contained proof
in Appendix(A.

Lemma 3.1 (Yan [44]). For each regular demand distribution there exists a fixeiderstrategy whose
expected revenue is at least the offline benchmark niwsk).

Lemmal 3.1l implies that any pricing strategy with regidtR), R = Q(+/k) with respect to the fixed-
price benchmark has the same asymptotic re@r@®) with respect to the offline benchmark, as long as
the demand distribution is regular, and in particular isSiMHR. Therefore, the rest of the paper can focus
on the fixed-price benchmark. In particular, our main resttieoreni 111 for regular distributions, follows
from Theoreni 1.2 that addresses the fixed-price benchmark.

Furthermore, the expected revenue of a fixed-price meanames an easy characterization:

Claim 3.2. Let.A be the fixed-price mechanism with prigeLetv(p) = pmin(k,n .S(p))). Then
v(p) — O(p\/klog k) < Rev(A) < v(p). (1)

It follows that for a strictly regular demand distributiofe bound in Lemma_3.1 is satisfied for the fixed
price p* = argmax, v(p) = max(pr, S_l(%)), wherep, = argmax, p S(p) is the Myerson reserve price.

Proof. Let us focus on the first inequality ibl(1) (the second one idais). LetX; be the indicator variable
of sale in roundt. DenoteX = Y )" ; X; and lety, = E[X]. Then by Chernoff Bounds (Theordm#.7(a))
with probability at least — % it holds thatX > u — O(v/plog k), in which case

#sales= min(k, X)) > min(k, up — O(y/plogk)) > min(k, u) — O(\/klogk),

which implies the claim sincg = n S(p). O



4  The main technical result: the upper bound in Theorem 1.2

This section is devoted to the main technical result (theeufgound in Theorer_1.2) which asserts that
there exists a detail-free pricing strategy whose regrt veispect to the fixed-price benchmark is at most
O((klogn)?/3). This result is very general, as it makes no assumptionsevde¢mand distribution.

As discussed in Sectidi 1, we design an algorithm that drefptimizes the trade-off between explo-
ration and exploitation. We use amdex-basedilgorithm in which each arm is assigned a numerical score,
calledindex so that in each round an arm with the highest index is pickdw index of an arm depends
only on the past history of this arm. In prior work on indexsed bandit algorithms the index of an arm was
defined according to estimated expected payoff from thisiamsingle round. Instead, we define the index
according to estimated expectedal payofffrom this arm given the constraints.

We apply the above idea ttgB1. The index inUCB1 is, essentially, the best available Upper Confidence
Bound (UCB) on the expected single-round payoff from a giaen. Accordingly, we define a new index,
so that the index of a given price corresponds to a UCB on thea®d total payoff from this price (i.e.,
from a fixed-price strategy with this price), given the numbkagents and the inventory size. Such index
takes into account both the average payoff from this armp(@tation”) and the number of samples for
this arm (“exploration”), as well as the supply constralntparticular we recover the appealing property of
UCB1 that it does not separate “exploration” and “exploitaticanid instead explores arms (prices) according
to a schedule that unceasingly adapts to the observed payoff

There are several steps to make this approach more preaise while it is tempting to use the current
values for the number of agents and the inventory size toe#imindex, we adopt a non-obvious (but more
elegant) design choice to use the original values, i.entlrd thek. Second, since the exact expected total
payoff for a given price is hard to quantify, we will insteaskua natural approximation thereof provided by
v(p) in Claim[3:2. In other words, our index will be a UCB ofip). Third, in specifying the UCB we will
use non-standard estimator from|[33] to better handle prigéh very low sales rate.

The main technical hurdle in the analysis is to “charge” esudboptimal price for each time that it is
chosen, in a way that the total regret is bounded by the sutmesktcharges and this sum can be usefully
bounded from above. The analysistfB1 accomplishes this via simple (but very elegant) tricks \Wwhic
unfortunately, fail in the limited supply setting.

An additional difficulty comes from the probabilistic naguof the analysis. While we adopt a well-
known trick — we define some high-probability events and m&sthat these events hold deterministically
in the rest of the analysis — choosing an appropriate callecif events is, in our case, non-trivial. Proving
that these events indeed hold with high probability relieseme non-standard tail bounds from prior work.

4.1 Our pricing strategy

Let us define our pricing strategy, call€dppedUCB. The pricing strategy is initialized with a s@t of
“active prices”. In each rountl some pricep € P is chosen. Namely, for each prigec P we define a
numerical score, calleitidex and we pick a price with the highest index, breaking tiestiantily. Oncek
items are soldCappedUCB sets the price too and never sells any additional item.

Recall from Claini 3.2 that the expected revenue from the fixéck strategyA} (p) is approximated by
v(p) = p- min(k, n S(p)). In each round, we define théndexI;(p) as a UCB onv(p):

Ii(p) £ p- min(k, n S (p)).

HereSP®(p) is a UCB on the sales rat#(p), as defined below.
For eachp € P, let Ny(p) be the number of rounds bgfotein which pricep has been chosen, and
let k(p) be the number of items sold in these rounds. THgip) = k:(p)/N:(p) is the current average



sales rate. To avoid division by zero, we defiﬁép) to be equal to 1 wheV;(p) = 0. We will define
SPB(p) = Si(p) + r(p), wherer,(p) is aconfidence radiussome number such that

~

1S(p) = Si(p)| <re(p) (VpeP,t <n). 2

holds with high probability, namely with probability at ktd — n 2.

We need to define a suitable confidence radjyg), which we want to be as small as possible subject
to (2). Note that(p) must be defined in terms of quantities that are observabimattsuch asV;(p) and
S,(p). A standard confidence radius used in the literature is isdlg) r;(p) = 2&‘;%2

Instead, we use a more elaborate confidence radius fram [33]:

a o n ozgt(p)
Ni(p) +1 Ni(p) + 1

re(p) for somea = O(log n). 3

O(logn)
Ne(p)+17

see Appendik4]3 for a self-contained proof.

The confidence radius ifil(3) performs as well as the standadnothe worst case (p) < and

O(logn) .
Ni(p)+1°

much better for very small sales ratesg(p) <
To recap, we have

I(p) £ p - min(k, n (Sy(p) + r¢(p))), wherer(p) is from (3). (@)
Finally, the active prices are given by
P ={0(1+6)" €[0,1] : i € N}, wheres € (0,1) is a parameter (5)

This completes the specification @ppedUCB. See Mechanisil 1 for the pseudocode.

M echanism 1 Pricing strategyCappedUCB for n agents and items
Parameter: § € (0,1)
1. P« {6(1+6) €0,1] : i € N} {“active prices?
2: While there is at least one item left, in each rodnd
pick any pricep € argmax,p I;(p), wherel;(p) is the “index” given byI(#).
3: For all remaining agents, set pripe= co.

4.2 Analysisof the pricing strategy

Our goal is to bound from above thegret of CappedUCB, which is the difference between the optimal ex-
pected revenue of a fixed-price strategy and the expecteduewfCappedUCB. We prove thatappedUCB
achieves regred (k log n)%/? for a suitable choice of paramet@in ().

Lemma4.1. CappedUCB with parameters = k~1/3 (log n)*/? achieves regre® (klog n)%/3.

Since the bound in Lemnia4.1 is trivial for< log? n, we will assume that > log? n from now on.

Note thatCappedUCB “exits” (sets the price tax) after it sellsk items. For a thought experiment,
consider a version of this pricing strategy that does noit™@nd continues running as if it has unlimited
supply of items; let us call this versiateppedUCB’. Then the realized revenue G4ppedUCB is exactly
equal to the realized revenue obtaineddappedUCB’ from selling the first: items. Thus from here on we
focus on analyzing the latter.



We will use the following notation. LeX; be the indicator variable of the random event thgipedUCB’
makes a sale in round Note thatX; is a 0-1 random variable with expectatidfip,), wherep; depends
onXi,..., X, 1. LetX & > iy X; be the total number of sales if the inventory were unlimitdihte
thatE[X] = S £ 31, S(p:). Going back to our original algorithm, lakv denote the realized revenue of
CappedUCB (revenue that is realized in a given execution). Then

Rev=>",p X;,  whereN =max{N <n: YN X, <k} (6)

High-probability events. We tame the randomness inherent in the saledy setting up three high-
probability events, as described below. In the rest of tredysis, we will argue deterministically under
the assumption that these three events hold. It sufficesibedhe expected loss in revenue from the low-
probability failure events will be negligible. The threesets are summarized in the following claim:

Claim 4.2. With probability at least — n—2 holds, for each round and each price» € P:

150) = 5001 < 100) <3 (e + /R ) ™
|X — S| < O(y/S logn + logn), (8)
1> pe(Xe — S(pe))| < O(y/S logn + logn). 9)

The probability bounds on the three events in CIaim 4.2 arwet via appropriate concentration in-
equalities, some of which are non-standard; see Sdctibiod{@rther discussion. In the first event, the left
inequality asserts that(p) is a confidence radius, and the right inequality gives théopmance guarantee
for it. The other two events focus d@appedUCB’, and bound the deviation of the total number of sal€} (
and the realized revenug J;", p: X;) from their respective expectations; importantly, thesartal are in
terms ofy/S rather than,/n.

In the rest of the analysis we will assume that the three svar€laim 4.2 hold deterministically.

Single-round analysis. Let us analyze what happens in a particular rotnélithe pricing strategy. Let;
be the price chosen in rourtdLet p; € argmax,.p v(p) be the best active price accordingt0), and let

Vi = v(Phe)- Let A(p) £ max(0, 2 vz, — p S(p)) be our notion of “badness” of prige compared to the
optimal approximate revenue'. We will use this notation throughout the analysis, and &ty we will
bound regret in terms of A(p) N(p), whereN(p) is the total number of times prigeis chosen.

pEP
Claim 4.3. For each pricep € P it holds that
E_1
N(p) A(p) < Ollogn) (1+ £ 51 (10)
Proof. By definition [2) of the confidence radius, for each price P and each roundwe have
v(p) < It(p) < p-min(k, n (S(p) +27:(p))) - (11)

Let us use this to connect each chaigavith /5
Li(pt) > L(Paed) = v(Pae) = Vaar
Ii(pe) < pe-min (k, n (S(pe) +27¢(pr))) -

Combining these two inequalities, we obtain the key indgual

L Ve < pe-min (£, S(py) +214(pr)) - (12)
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There are several consequencespfaandA (p;):

Dt > Ve
A(pt) < 2pere(pe) (13)
A(pt) >0 = S(p) < %

The first two lines in[(IB) follow immediately froni (IL2). To w@iin the third line, note thaf\(p;) > 0

impliesp; k > v > np: S(p:), which in turn impliesS(p;) < %
Note that we have not yet used the definitioh (3) of the confideadius. For each prige= p;, lett be
the last round in which this price has been selected by tlethgrstrategy. Note tha¥ (p) (the total number

of times pricep is chosen) is equal td;(p) + 1. Then using the second line I {13) to boutrdp), Eq. ()
to bound the confidence radiugp), and the third line in[(I3) to bound the sales rate, we obtain:

A(p) < O(p) x max (155, /5 3985 ) .

Rearranging the terms, we can bouldp) in terms ofA(p) and obtain[(ID). O

Analyzing the total revenue. A key step is the following claim that allows us to consigef’_, p: S(p+)
instead of the realized revenaev, effectively ignoring the capacity constraint. This is wheve use the
high-probability events[{8) andl(9). For brevity, let us den3(S) = O(v/Slogn + logn).

Claim 4.4. Rev > min(vig, S7, v S(pe)) — B(k).

Proof. Recall thatp, > 74 by (I3). It follows thatRev > vy whenevery ) | X; > k. Therefore, if

Rev < vigthend ! | X, < k and scRev = .1, p; X;. Thus, by[[®) it holds that
Rev > min (Vi Dty pe X¢) > min (Vi Y1y e S(pe) — B(S)).
So the claim holds whefi < k. On the other hand, i > k then by [8) it holds that
X =5-p(5) =z k- B(k)
Rev > min(k, X) (+ vie) > vie — B(k). O
In light of Claim[4.4, we can now focus On,", p: S(pt).

Z?:1 pe S(pt) > Z?:l % Vaet— A(pr)
= Vpct— Zl‘:l A(pt)
= Vact— 2_pep A(p) N(p). (14)

Fix a parametet > 0 to be specified later, and denote

Psel é{pe’P: N(p)zl}
P 2 {p € Pser: Alp) > €}

to be, respectively, be the set of prices that have beentsdlatleast once and the set of prices of badness
at leaste that have been selected at least once. Plug@idg (10)injpwWkdobtain

2 pep AP)N(P) < X pepp. AP) N(p) + X pep, Alp) N(p)
< en+ O(logn) ZpePE (1 + %ﬁ)
< en+ O(logn) (\775] + k& > pep. ﬁ) . (15)

Combining [(14), [(1b) and Claiin 4.4 yields a claim that sumieees our findings so far.
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Claim 4.5. For any setP of active prices and any parameter- 0 it holds that

Vier— E[Rev] < en+ O(logn) (IPe| + £ Y pep, ) + B(K).

Interestingly, this claim holds for any set of active pric€éke following claim, however, takes advantage
of the fact that the active prices are given by (5).

Claim 4.6. v > v* — §k, wherev* = max, v(p).

Proof. Let p* € argmax, v(p) denote the best fixed price with respectAp), ties broken arbitrarily. If
p* < ¢ thenv* < ok. Else, lettingpy = max{p € P : p < p*} we havepy/p > ﬁ >1-4,andso

Vact = V(po) = B¢ v(p") 2 v*(1—6) = v* — k. O
It follows that for anye > 0 andé € (0, 1) we have:
Regret < O(logn) (\775] + % > pep. ﬁ) +en + 0k + B(k). (16)
The rest is a standard computation. Plugging\ipp) > ¢ for eachp € P, in (16), we obtain:
Regret < O(|Pe|logn) (1 + L ) + en + ok + B(k).

Note that|P| < % log n. To simplify the computation, we will assume thiat- % ande = ¢ % Then
Regret < O <5k + %(log n)? 4+ klog n> . a7

Finally, it remains to picki to minimize the right-hand side df(IL7). Let us simply taksuch that the first
two summands are equal:= k~'/3 (log n)?/3. Then the two summands are equali( log n)*?. This
completes the proof of Lemnha 4.1.

4.3 Concentration inequalities and the proof of Claim

We use an elementary concentration inequality know@leernoff Boundsin a formulation from[[38].

Theorem 4.7 (Chernoff Bounds) Considern i.i.d. random variablesX; ... X,, with values in[0, 1]. Let
X =137 | X; be their average, and lgt = E[X]. Then:

@) Pr[|X — u| > 6] < 2e+n9*/3 for anys € (0,1).

(b) Pr[X > a] < 27" for anya > 6pu.

Further, we use a non-standard corollary froml @Which provides us with a sharper (i.e., smaller)
confidence radius whemis small; we include the proof for the sake of completeness.

Theorem 4.8 ([33]). Considern i.i.d. random variablesX; ... X,, on [0, 1]. Let X be their average, and
let x = E[X]. Then for anyn > 0, lettingr (o, z) = & 4 /%5, we have:

Pr|X —p| < r(a, X) < 3r(a,p)] >1—e ),

T his is Lemma 4.9 in the full (arXiv) version df [33].
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Proof. First, suppose: > . Apply Theoreni 4]7(a) with = %1 /6%. Thus with probability at least
1 — e~ we have| X — u| < 6u < /2. Plugging in the,

X —pl < 33/% <\ /2 <r(a, X) < L5r(a, p).

Now supposg: < &-. Then using Theorein 4.7(b) with= <, we obtain that with probability at least
1 —27%) we haveX < 2, and thereforéX — u| < ¢ < r(a, X) and

X —pl <2 <r(a,X)<(1+V2) 2 <3r(a,p). O

Proof of (7) in Claim[d2 For each pricep € P let {Z; ,}i<,, be a family of independent 0-1 random
variables with expectatio§(p). Without loss of generality, let us pretend that thié time that pricep is
selected by the pricing strategy, sale happens if and ody,jf= 1. Then by Lemm&4]8 after theth play
of pricep the bound[{I7) holds with probability at leaist- n~*. Taking the Union Bound over all choices of
i and all choices of, we obtain that [7) holds with probability at ledst- n=2 as long agP| < n (which
is the case for us). O

Sharper Azuma-Hoeffding inequality. We use a concentration inequality on the sum. @dndom vari-
ablesX; € {0,1} such that each variabl¥, is a random coin toss with probability/; that depends on the
previous variables(y, ..., X;_;. We are interested in bounding the deviatjgh— M|, whereX =), X;
andM = Y, M,;. The well-known Azuma-Hoeffding inequality states thathatiigh probability we have
|X — M| < O(y/nlogn). However, we need a sharper high-probability boudd:=— M| < O(v/M logn).
Moreover, we need an extension of such bound which consitésiation| Y ";" | a;(X; — M;)|, where each
multiplier a; € [0, 1] is determined byX, ..., X;_4.

We use the following concentration inequality from therktire.

Theorem 4.9 (Theorem 3.15in[37])Let 74, . .., Z,, be random variables which take valueginl, 1]. Let
Z=>7",Z,p=E[Z.LetV =37 Var(Z]|Z, ..., Z1). Then for any. > 0,v > 0 we have

a2

Pr((|Z — | > a) A (V <v)] < e Hora),
We use the above bound to bound the deviatiorj Joi" ; o (X; — My)|.

Theorem 4.10. Let X,...,X,, be 0-1 random variables. For eadhlet a; € [0, 1] be the multiplier
determined byX,..., X, 1. LetM = > | M;, whereM; = E[X;|X;, ..., X;_4] for eacht. Then for
anyb > 1 the event

1>y ae( Xy — My)| < b(y/M Togn + logn).
holds with probability at least — n=®).

Proof. Let Z, = X; — y, wherey, € [0,1] is a function ofX,..., X;_;,and letZ = Y} | Z;.
We claim that

Pr (|30, au(Ze — E[Z)])| < b(vM Togn +logn)] > 1 —n=*®) foranyb > 1. (18)

To prove [IB), letF; = o(Xq, ..., X;) be theo-algebra generated b, ..., X;, and letM; =
E[X¢ Xy, ..., X;—1]. Then conditional onF;_;, Z; is a random variable with expectatiav; — y; and
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two possible values;-a; y; anday (1 — ), wherea, andy, are constants. It follows that Mar; | F;—1) =
o?(M; — M?) < M, and thereford” = >°7 | Var(Z;|Fi—1) < M.
Taking Theoreri 4]9 with = b(y/v Togn + log n), we have that for any > 1 the event

(|1Z — E[Z]] > b(\/v logn+logn)) A (V <w).

holds with probability at most =), Finally, we take the Union Bound over (say) all integebetween
log n andn, noting thatl” < M. This completes the proof df (1.8).
Finally, to prove the theorem take (18) wigh= M, and note thaZ, = X; — M; and saE[Z;] = 0. O

Proof of (8)and (@)in Claim[4d.2l Recall that for eacht, X; is a 0-1 random variable with expectation
S(pt), wherep, depends onXy,...,X; 1. Using Lemmd4.10 withvy = 1 we obtain [(B). Using
Lemmd4.ID withh, = p; we obtain[(D). O

5 TheO(vVklogn) regret bound (Theorem [L.3)

We show that the pricing strategy from Sectidn 4 (with a défe parameter) satisfies an improved regret
bound,O(vk log n), if the demand distribution is regular and moreover th@r@lis sufficiently small. The
regret bound depends on a distribution-specific constant.

Theorem 5.1. For any regular demand distributiot” there exist positive constantg: and cr such that
CappedUCB with parameters = k~%/2 log(n) achieves regreO(cp v'klogn) whenevert < sp. For
monotone hazard rate distributions we can take= i.

Proof. Letg(s) = s S~!(s) be a function froniS(1), 1] to [0, 1] that maps a sales rate to the corresponding
revenue. Regularity implieg”(-) < 0. Sinceg’(0) > 0, we can pick a constantz > 0 such that
C £ ¢/(sp) > 0. For monotone hazard rate distributions we can take= i because for any maximizer
s of g(-) it holds thats > 1 (see Clain{BR). Now, for an§ < sp we have thay'(£) > C. We will
use this to obtain a lower bound dx(p); any such lower bound is absent in the analysis in SeCtiorhi& T
improvement results in savings [0_{16), which in turn impltee claimed regret bound.
We will use the notation from Sectidn 4.2, particularly thmtiness’A(p) and the se®, of arms of
badness> € that have been selected at least once. Note that by regujgiit > C for anys € (0, %). Let
p* = S‘l(%) andp € P.. By the third line in[(18) it holds thaf(p) < % and therp > p*.
First, we claim thaiS(p) < Z-£. Indeed, this is becauges (p) = g(S(p)) < g(£) = p* £.
Second, we bound (p) from below:

1> (1=0)% > (1-0)g(%)
A(p) > (1—6)g(%£) — g(S(p))
> [g9(E) — g(S(p)] - 6g(%)
>C(E - S(p) —6Ep*
>Ck(1-2)—skp
>CE(1-Z(1+2).

SinceP is given by [3), it holds thaP, C {p*a (1 + §)* : i € N} for somea > 1. Define

P E{pePe:p=pa(l+d)withi> 2}
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Then for anyp € P’ it holds thatp/p* = a(1 + §)* > 1 + i6 and therefore

k 1+6/C C k i
A(p) > Cﬁ (1- 1+ ) = 2n 1—ZH'5'

Therefore, noting that?’| < [P| < O(3 log 1), we have

B> pepr x5 S & Lpep L+ 55) < & (1P| + 5 log [P']) < O3 log 3)
2 peP P! ﬁ <HPAPI< @G+ ).

Plugging this into[(Z6) witke = & £, we obtain:

" Lper. a6y < O log 5)(1+2)
Regret < O(0k + (1 + %)(logn)? + /klogn) (19)
< O(cr Vklogn), wherecy = 1+ 1/C.

The regret bound(19) improves over the corresponding b@lifxin Sectio¥. We obtain the final bound
by pluggings = k~1/2 log n. O

It is desirable to achieve the bounds in Theofem 1.2 and Enegl®:] using the same pricing strategy.
Unfortunately, the choice of parametem Theoren{ 5l results in a trivigd (k) regret guarantee for arbi-
trary demand distributions (as per Equatipn] (17)). Howevarying 6 and using Equation§ (1L7) arld {19)
we obtain a family of pricing strategies that improve over found in Theorein 1.2 for the “nice” setting in
Theoreni 5.1, and moreover have non-trivial regret boundarfutrary demand distributions.

Theorem 5.2. For eachy € [%, %], consider pricing strategg@appedUCB with parameten = 5(1(’7). This
pricing strategy achieves regréx(k'=7)(1 + 1/g’(§)) if the demand distribution is regular aryﬂ(%) > 0,
and regretO (k%) for arbitrary demand distributions.

6 Lower Bounds

We prove two lower bounds on regret over all demand disinbstwhich match the upper bounds in Theo-
rem[1.2 and Theorem 1.3, respectively. (Note that the lafiper bound is specific to regular distributions.)
Throughout this sectiomegretis with respect to the fixed-price benchmark.

Theorem 6.1. Consider the dynamic pricing problem with limited supplythw: agents and: < n items.
(a) No detail-free pricing strategy can achieve regm(‘:k?/ 3) for arbitrarily large k, n.
(b) For anyy < % no detail-free pricing strategy can achieve regétcr £7) for all demand distri-
butions F' and arbitrarily large k, n, where the constantz can depend oI

Our proof is a black-box reduction to the unlimited supplge#& = n). The unlimited supply case of
Theoreni 6.1 is proved in [34] (see Footniate 7 on pdge 5).

Proof. Suppose that some pricing stratedyiolates part (a). Then there is a sequefike n; };cn, Where
k; < n; and{k;};cn is strictly increasing, such that achieves regret(k2/3) for all problem instances with
n; agents and; items, for eachi € N. To obtain a contradiction, let us ugkto solve the unlimited supply
problem with regreb(n?/3). Specifically, we will solve problem instances witfy4 agents, for each

Fix i € N and letk = k; andn = n;. Consider a problem instan@ewith unlimited supply and:/4
agents and sales ratd-). LetZ’ be an artificial problem instance with unlimited supply andgents, so
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that the firstk/4 agents inZ’ correspond t&. Form an artificial problem instancg with & items andn
agents as follows: in each round,outputs a price, then with probabilityy/2n this price is offered to the
next agent inZ’, and with the remaining probability there is no interactieith agents inZ’ and no sale.
Since the demand distribution fgr is a mixture of the “no sale” event which happens with proligbi
11— and the original demand distribution f@r the sales rate fof is given byS 7 (p) = —S( )

RunnlngA on problem instance induces a pricing strategyl’ on the original problem instance1]
In the rest of the proof we show thall achieves regrei(k*/3) onZ.

Let Rev7(A) andRev/(A) be, respectively, the expected revenue and the realizeshuevof.A on
problem instance/. Letr = argmax, pS(p) be the Myerson reserve price, and Jgt be the fixed-price
strategy with price~. By our assumption, we have theév;(A) > Rev;(A,) — o(k*/?). We need to
deduce thakevz(A') > Revz(A,) — o(k*/3).

Let N be the number of rounds iff in which A interacts with the agents ifY. With high probability
% < N < k. Letus condition onV and the evenfy = {k/4 < N < k}:

E[Revy(A.) | N,En] = NrS(r)
E[Revs(A) —Revr(A) | N,En] < (N — E)rS(r).

SinceE[N] = 4, it follows that

Revz(A') > Revy(A) — % S(r) —o(1)
> Revy(A,) — 5 rS(r) — o(k*?)
= %rS(r) — o(k*/?)
= Revz(A,) — o(k*?),

as required. The reduction for part (b) proceeds similarly. O

7 Sdling very few items: proof of Theorem (1.5

In this section we target a case when very few items are &laifar sale (roughlyk < O(log? n)), so that
the bound in Theoref 1.1 becomes trivial. We provide a diffepricing strategy whose regret does not
depend om, under the mild assumption of monotone hazard rate.

We rely on the characterization in ClaimB.2: we look for thie@p* = max(pr, S~1(£)), wherep, =
argmax, p S(p) is the Myerson reserve price. The pricing strategy procasdsllows (see Mechanisim 2 on
page 1¥). It considers prices = (1 — )%, ¢ € N sequentially in the descending order. For eadhoffers
the pricep, to a fixed number of agents. The loop stops once the pricirdesly detects that, essentially,
the “best’p, has been reached: eith€(py) is close to%, or we are near a maximum pfS(p). Parameters
are chosen so as to minimize regret.

Theorem 7.1. For some parametersands, Mechanisni2 achieves regi@t(k3/4 poly log(k)) with respect
to the offline benchmark, for any demand distribution thais§as the monotone hazard rate condition.

The rest of this section is devoted to proving Thedrerh 7. pdoameters = k~/4 andd = (+ log k)/4.
We will assume that the demand distribution is MHR, withaurthier notice. We derive Theordm17.1 from
the following multiplicative bound; it appears difficult fwove the additive version directly.

Hif A stops before it iterates through all agent&irthe remaining agents if are offered a price afo.
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Mechanism 2 Descending prices
Parameter: Approximation parametei e € [0, 1]

1: Leta = (%)1_6, v = min(a, 1/e).
2: £+ 0, lpax < 0, Rpax < 0.
3: repeat

4 L L+1, p (1467

Offer pricep, tom = [ m} agents.

Let .S, be the fraction of them who accept.

Let R, = p¢Sy be the average per agent revenue.
If Sp > (1+ 5)_1’}/ andR; > Rmax

9: thenRuax < Ry, lmax < £

10: until py < eor Sy > (1 4+ 8)aor Ry < (1 +6) 2 Rmax
11: Offer pricep = p, so long as unsold items remain.

Lemma7.2. Assume* > e. Set) = Q/% log klog L loglog 1. Then the expected revenue of Mechaifilsm 2
is at leastl — O(9) fraction of the offline benchmark.
Proof of Theorerh 7111f p* < e then the expected loss in revenue is at mastElse by Lemma7]2 the

expected loss in revenue is at méxtok), whered is from Lemmd_7Z.R. In both cases the additive regret
compared to the offline benchmark is at mostx(ek, O(kd)). Finally, picke = k~1/4, O

7.1 Proof of Lemmal7.2

We use a multiplicative bound in which fixed-price stratedier limited supply are compared to those for
unlimited supply (which in turn can be compared to the offtieachmark using Claiin’Al.2).

Lemma 7.3. Assume the demand distribution is regular. et p be two prices such that > S~1(k/n).

Letn’ < n. ThenRev(AY (p')) > %% (1 - ﬁ) Rev(A%(p)).

The proof uses a technique from [44], see AppehQdix A. Alsotale advantage of several properties of
MHR distributions, detailed in AppendixB.
We say the exploration phasedjspproximateif

S(pe) > v = 195 < Se/S(pe) <1+

Claim 7.4. The exploration phase iapproximate with probability at least— 2 (log, 5 +) e=0*17/4,

Proof. This follows directly by applying Chernoff bounds (both tingper and lower tail form) to the event
that someS; violates the condition, then applying the union bound oVesteices of?. O

Claim 7.5. When the exploration phasedsapproximate, we havel — 75)S~! (£) < p < p*.

Proof. It is easy to see that none of the stopping conditions of tipdoeation phase can be triggered until
the price goes below*. Thereforep < p*. For the other inequality observe that, by Claim|B.3 it hdluks
S7Y(a) > (1 — &) S~1(£). Therefore it suffices to show that> (1 — 65) S~1().

Assume for a contradiction that the stopping conditionsrenetriggered in some phagesuch that
per1 < (1+6)7%571(a). Therefore, at round we have

pe=(148)pes1 < (1+6)7°S a) (20)
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Examining the stopping conditions, and using our assumghmve, we deduce that:

Sy < (14 0)a (21)
Rmax/ Ry < (14 6)?, (22)

Combining [20) and(21), we get
Ry =peSe < (146)*as™ () (23)

Note that, since we chose roudcuch thatp, < S~!(«), the pricing strategy already encountered some
roundt < ¢ such thap; is“close” to.S~!(a) —in particular

(146718 (a) < py < 5 (a) (24)

and therefore als§(p;) > «. Since we assume the exploration phaseapproximate, the estimated sales
rate at round satisfiesS; > (14 8)"1S(p;) > (1 + §)~'a. Combining this with[[24), we get that the
estimated revenuf; at roundt satisfies

Ry = piSy > (1 +6)2aS 1 (a) (25)

The value ofRmnax in round/ is at leastR;. Combining [(25) with[(2B), this shows that at roufgve
haveZiz= > (1 4 §)%, contradicting[(22). O

Claim 7.6. When the exploration phasedsapproximate, we hav&(p) > (1 — 75)R(p*).

Proof. By Claim[7.5, we are done wherf = S—! (%) Therefore, assumg* = p, the Myerson reserve
price. Itis easy to see th&t(py, 1) > ﬁ R(py) for each?. Lett be the first integer such that < p* = py.

Note that(1 + &) ~'p* < p, < p*. Claim[Z.5 says that < p* = p,, therefore/ > ¢ and by Clain{B.R
S(pe) > S(pr) > 1/e > ~. It suffices to show that a stopping condition must be trigddyeforeR(p,) gets
too small.

Assume for a contradiction that the stopping condition is tnggered by phasé > ¢, for some/
such thatR(ps+1) < (1 — 70)R(p*). SinceR decreases slowly as described above, it follows that /.
Moreover, since we assumed the exploration phaseajgproximate,S; > Fl(s S(pt) > Fl(s ~. Therefore,
during phase¢ we haveR,,,., > R; = Sipr > (ﬁ)2 R(p*). Since no stopping condition is triggered
for phaser, it must be thatR, > (115)? Rmax > (135)* R(p*). MoreoverR(p,y1) > 5 R(pe) >

(135)? Re > (135)°R(p*), a contradiction. O

We can now complete the proof of Lemial7.2.

We condition on the exploration phase beiRgpproximate. Let’ andk’ be the number of players and
items left after the exploration phase, respectively. & éRploitation phase, we attain expected revenue
Rev(A?, (p)). Moreover, in the exploration phase we attained revenussat(k — &')p, since we only used
prices greater than or equal fo Therefore, the total expected revenue of our pricing exfsais at least
Rev(AY (D)) + (K — k)p. Itis easy to see that this is at le@str(A} (p))-

It remains to bound the expected revenueAzf(ﬁ). Observe thaf% > 1 — 6. For brevity, denote
A 1
There are two cases. In the first case= S~!(£). Lemm&Z.B and Claifi 7.5 imply that

) ~

Rev(AY (7)) > - Rev(AG(p")) > 8 (1 - 80) Rev(A5(p").
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The second case j§ = p;. By Claim[Z.6 and unimodality oR, we have that
Rev (A} (max(S™' (%), 1)) = Rev(AL(p)) > (1 — 75) Rev(A7(p")).
Moreover, using Lemma 4.3, Claim 7.5, and the equation atx@/show that
Rev(Af' (§)) = B (1 — 85) Rev(Aj(max(5~"(£).5))) = 8 (1 - 156) Rev(A;(p*))-

By Lemma A.2, Mechanist] 2 achieves, in expectation, at lémsfollowing fraction of the expected
revenue of the offline benchmark:

B(1=0(5) (1—2logs(¢) exp(—16°ym)) .

Now, plugé into LemmdZ.R, andh as defined in the pricing strategy. Note that= @(loff/e). We obtain

the final bound replacing by the lesser quantitg, and using the fact thabg, s(x) = @(% log ).

8 Conclusions and open questions

We consider dynamic pricing with limited supply and achieear-optimal performance using an index-
based bandit-style algorithm. A key idea in designing thge@thm is that we define the index of an arm
(price) according to the estimated expedietdl payofffrom this arm given the known constraints.

While in this paper we apply the above key idea to a specifiexrshsed algorithmU(B1), it can be
seen as an (informal) general reduction for index-basedrigthgns for dynamic pricing, from unlimited
supply to limited supply. This reduction may help with moemgral dynamic pricing settings (more on that
below), and moreover it might be extended to other bangiestettings where the “best arm”netan arm
with the best expected per-round payoff. In particular,Udés a version of this reduction in the context of
adaptive quality control in crowdsourcing.

It is an interesting open question whether a reduction ssetbave can be made more formal, and which
algorithms and which settings it can be applied to. An ambgiconjecture for our setting is that there is
a simple black-box reduction from unlimited supply to liedtsupply that applies to arbitrary “reasonable”
algorithms. In the full generality this conjecture appganeblematic; in particular, some reasonable bandit
algorithms such aBXP3 are hard-coded to spend a prohibitively large amount of bmexploration.

This paper gives rise to a number of more concrete open gusstlThe most immediate ones concern
extending our upper and lower bounds for, respectively,engeneral and more specific classes of demand
functions. First, it is desirable to extend Theorem 1.1 tesjiay irregular distributions, i.e. obtain non-
trivial regret bounds with respect to the offline benchmaBecond, one wonders whether the optimal
O(cr V'k) regret rate from Theorefn 1.3 can be extended to all reguimadd distributions. Third, it is
open whether our lower bounds can be strengthened to regdgiaand distributions.

For arbitrary (possibly irregular) distributions, one cdiow that, essentially, the appropriate benchmark
is amixtureof two fixed prices rather than one fixed price. In a recenofllp work [11], the authors design
regret-minimizing algorithms that compete with this ramiloed benchmark. In fact, their results extend to
a much more general setting of explore-exploit problemb vasource utilization constraints.

Further, it is desirable to extend dynamic pricing with lieai supply beyond IID valuations. For ex-
ample, most results on secretary problefs [8] hold under akereassumption: random permutation of
adversarially chosen values; however, our results do notadiately extend to this model. More generally,
one would like to handle adversarial valuations, or perhdestify assumptions which make the problem
tractable. One natural direction is to bound the numberemuency of changes. An initial result in this
direction [14] allows the demand distribution to change ashonce, at some point in time that is unknown
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to the mechanism. Alternatively, one could bound the ratshahge. A promising approach here is to apply
the reduction from this paper to index-based algorithmsHercorresponding bandit settirig [42] 41].

On a final note, we observe that selling at a given price pes/gbme information about the smaller
prices, whereas our algorithms do not directly use thigimfdion (and neither does the prior work [34} 13]).
Likewise, our algorithms do not update the estimates fowvargprice using the estimates for other prices
using the fact that the sales rai€p) is non-increasing in the price It is somewhat surprising that our
main algorithm achieves near-optimal regret without tglkadvantage of this additional information. While
such information might help in practice, the extent to whitatan possibly help is an open question.

Acknowledgements. We are grateful to Jason Hartline, Qigi Yan and Assaf Zeavitfeir comments.
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Appendix A: Benchmark comparison

We start with a self-contained proof of a slightly weakersien of Lemma 3]1 (which suffices for the
purposes of this paper).

Lemma A.1 (Yan [44]). For each regular demand distribution there exists a fixedeistrategy whose
expected revenue is at least the offline benchmark nty&: log k).

Recall that4} (p) denotes the fixed-price strategy witlitems,» agents, and fixed prige Let M’ de-
note the optimal (expected revenue maximizing) offlineianatith n-players and-items. Asin Claini 3.2,
let p* = max(pr, S—l(g)), wherep, = argmax, p S(p) is the Myerson reserve price.

Claim A.2. If the demand distribution is regular theéxev(A; (p*)) > Rev(M}}).

Proof of ClainTA.2.Let ¢; be the probability thad/;* sells to agent. By symmetryg; = g; for all playersi
and;j, so we simply denote this probability gy Letp = S~'(¢) be the single price we would need to offer
a agent in order to sell to him with probability SinceR is a concave function of the selling probability,
Jensen’s inequality implies tha&t(p) is an upper bound on the revenue collected by the Myersotoauct
from a single agent. Equivalently:R(p) > Rev(M}').

Now, observe that the expected number of items soldAjyis nq. SinceM;' never sells more thak
items, it must be thag < % Therefore,p > 5—1(§)_ By definition of p*, we deduce that there are two
cases: (1p* = pr,or 2)pr < p* = S—l(%) < p. Incase (1) itis clear thak(p*) > R(p). In case (2) we
get thatR(p*) > R(p) sinceR(z) is decreasing fox > p;. Then

Rev(A](p*)) = nR(p*) > nR(p) > Rev(M}}). O
Lemmd& A1 follows from Claini AR and Claiin 3.2 becausejor p* we haveS(p) < % and so

v(p) = p min(k,n S(p)) = np* S(p*) = Rev(A7 (p*)) > Rev(M).

Multiplicative bounds. Further, we derive a multiplicative bound in which fixedegristrategies for lim-
ited supply are compared to those for unlimited supply. Wethis bound to prove Lemnha¥.3.

Claim A.3. For any regular demand distribution and apy> S‘l(é) it holds that

Rev(A1(p)) = (1 - i ) Rev(AL(p).

Proof. The proof uses a technique from [44]. As a thought experinuamtsider an environment where agent
valuations areorrelatedas follows: The joint distribution of agent valuations candampled by choosing a
setS’ of k players uniformly at random, then for each agent’isampling from the conditional distribution
F(x)|y>s-1(k/n)» and for each agent not i sampling from the conditional distributioR(z)|,«g-1 (s /n)-
Observe that each agent’s valuation is distributed acogrth F', yet at any point exactly players have
value exceeding ! (k/n).

Let 7" be the set of players in this correlated environment whokeatian exceedg. The probability
of a particular agent being included i is S(p), andE[|T’|] = nS(p). Sincep > S~!(k/n), it is clear
that7” C S’ and thereforé) < |T"| < k.

Now consider our original environment where each agentisat®mn is drawn i.i.d fromF. LetT be
the set of players in this environment whose valuationsexpeThe probability of a agent being included
in T is S(p) — the same as the probability of being included/in However, each agent is included’ih
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independentlyvith probability S(p). As a result, some of the playersihdo not win an item — this happens
when|T'| > k. We can write the revenue of}(p) in this i.i.d environment as follows.

Rev(AJ (p)) = pE[min(|T], k)] (26)

Now, observe that(Y) = min(|Y'|, k) is the rank function of thé-uniform matroid. Moreover, it was
shown in [44] that the correlation gap of this functionsis= (1 — ﬁ) Therefore, since each agent is
included inT independently, we know by the definition of the correlati@p @nd the fact thaf’ and 7’

have the same marginals that
E[r(T)] = B E[r(T")]. (27)

Recall that7” is always bounded betweérandk, thereforer(7”) = |T’|. Combining [26) and (27), we get

Rev(Aj(p)) = p E[min(|T|, k)] > B pE[|T"|] = 8 pnS(p)) = B Rev(Az(p))). O
Corollary (LemmalZ.8) Assume the demand distribution is regular. pet p’ be two prices such that
p > S~L(k/n). Letn’ < n. ThenRev(AY (p)) > 22 (1 - ﬁ) Rev(A”(p)).
Proof. Observe thatd} (p') sells at least as many items 4§ (p) for every realization of the bids, but at
pricep’ instead ofp. ThereforeRev(A}(p')) > %Rev(AZ(p)). Combining with Claini’A.B we get that

Rev(AL(1) 2 & (1 - ) Rev(A5()).

Next, a simple (omitted) argument shows that the reveRmg A} (p)) of a fixed price auction exhibits
diminishing marginal returns in the numbeof players. Thereforgev(AY (p)) > %’Rev(AQ(p)). O

Let us note in passing that Claim A.3 and Claim 3.2 imply argjew, multiplicative version of Lemnia 3.1,
which is also immediate froni [44].

Lemma A.4 (Yan [44]). Assume that the demand distribution is regular. Then thgistea fixed-price

strategy whose expected revenue approximates the offlnehierk up to a factot — ;ﬁk.

Appendix B: Monotone Hazard Rate distributions

Let us state and prove several properties of Monotone H&atel (MHR) distributions which we use in
Sectiorlb and Sectidn 7. Throughout, for a distributtowe useF'(z) to denote the c.d.f§(z) = 1— F(x)
to denote the sales rate, afiflr) to denote the p.d.f.

We begin with a simple known characterization of MHR disitibns.

Fact B.1. A distribution is MHR if and only if(-) is log-concave (i.elog S(x) is a concave function af).
Next, we bound the sales rate at the Myerson reserve price.

Claim B.2. Let F' be an MHR distribution with support off), o], and letS(z) = 1 — F(z). Letr €
argmax R(-) whereR(z) = x S(x). ThenS(r) > 1/e.

Proof. We haveR'(r) = S(r) + rS’(r) = 0. Moreover, by FadiBl1 we deduce that

logS(r) _ d S'(r)
> =
2 og(S(x))| S0
Combining with the previous equality, we ha#é < w which is equivalent t&(r) > 1. O
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We now use log-concavity to bound the sensitivity of the reeeof the sales rate.

Claim B.3. Let F' be an MHR distribution with support df, oc], and leta, 8 € [0, 1] with 5 > «. Then

- log(8) (-
13 > 1

STB) 2 for S )
Proof. By Fact[B.1, f(xz) = log(S(x)) is a concave, decreasing function :ofsuch thatf(0) = 0 and
f(z) — —ocasx — co. By Jensen’s inequality, for everyb € [0, oo] with b < a we havef (b)/f(a) < .
Plugginga = S~!(a) andb = S~1(p) into this inequality completes the proof. O
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