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Abstract

We consider the problem of designing revenue maximizing online posted-price mechanisms when
the seller has limited supply. A seller hask identical items for sale and is facingn potential buyers
(“agents”) that are arriving sequentially. Each agent is interested in buying one item. Each agent’s value
for an item is an independent sample from some fixed (but unknown) distribution with support[0, 1].
The seller offers a take-it-or-leave-it price to each arriving agent (possibly different for different agents),
and aims to maximize his expected revenue.

We focus on mechanisms that do not use any information about the distribution; such mechanisms
are calleddetail-free(or prior-independent). They are desirable because knowing the distribution is
unrealistic in many practical scenarios. We study how the revenue of such mechanisms compares to the
revenue of the optimal offline mechanism that knows the distribution (“offline benchmark”).

We present a detail-free online posted-price mechanism whose revenue is at mostO((k logn)2/3)
less than the offline benchmark, for every distribution thatis regular. In fact, this guarantee holds without
anyassumptions if the benchmark is relaxed to fixed-price mechanisms. Further, we prove a matching
lower bound. The performance guarantee for the same mechanism can be improved toO(

√
k logn), with

a distribution-dependent constant, if the ratiok
n is sufficiently small. We show that, in the worst case over

all demand distributions, this is essentially the best ratethat can be obtained with a distribution-specific
constant.

On a technical level, we exploit the connection to multi-armed bandits (MAB). While dynamic pric-
ing with unlimited supply can easily be seen as an MAB problem, the intuition behind MAB approaches
breaks when applied to the setting with limited supply. Our high-level conceptual contribution is that
even the limited supply setting can be fruitfully treated asa bandit problem.
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1 Introduction

Consider a promoter that is interested in sellingk tickets for a given concert. The seller is interested in max-
imizing her revenue from selling these tickets, and is offering the tickets on a website such as Ticketmaster.
Potential buyers (“agents”) arrive one after another, eachwith the goal of purchasing a ticket if the price is
smaller than the agent’s valuation. The seller expectsn such agents to arrive. Whenever an agent arrives the
seller presents to him a take-it-or-leave-it price, and theagent makes a purchasing decision according to that
price. The seller can update the price taking into account the observed history and the number of remaining
items and agents.

We adopt a Bayesian view that the valuations of the buyers areIID samples from a fixed distribution,
calleddemand distribution. A standard assumption in a Bayesian setting is that the demand distribution is
known to the seller, who can design a specific mechanism tailored to this knowledge. (For example, the
Myerson optimal auction for one item sets a reserve price that is a function of the distribution). However, in
some settings this assumption is very strong, and should be avoided if possible. For example, when the seller
enters a new market, she might not know the demand distribution, and learning it through market research
might be costly. Likewise, when the market has experienced asignificant recent change, the new demand
function might not be easily derived from the old data.

Ideally we would like to design mechanisms that perform wellfor any demand distribution, and yet do
not rely on knowing it. Such mechanisms are calleddetail-free,1 in the sense that the specification of the
mechanism does not depend on the details of the “environment”, in the spirit of Wilson’s Doctrine [43].
Learning about the demand distribution is an integral part of the problem that a detail-free mechanism faces.
The performance of such mechanisms is compared to a benchmark thatdoesdepend on the specific demand
distribution, as in [34, 31, 13, 25] and many other papers.

In this paper we take this approach and design detail-free, online posted-price mechanisms with revenue
that is close to the revenue of the optimal offline mechanism (that can depend on the demand distribution
and is not restricted to be posted price). Our main results are for any demand distribution that is regular, or
any demand distribution that satisfies the stronger condition of “monotone hazard rate”. Both conditions are
mild and standard, and even the stronger one is satisfied by most common distributions, such as the normal,
uniform, and exponential distributions.

Posted price mechanisms are commonly used in practice, and are appealing for several reasons. First, an
agent only needs to evaluate her offer rather than compute her private value exactly. Human agents tend to
find the former task much easier than the latter. Second, agents do not reveal their entire private information
to the seller: rather, they only reveal whether their private value is larger than the posted price. Third, posted-
price mechanisms are truthful (in dominant strategies) andmoreover also group strategy-proof (a notion of
collusion resistance when side payments are not allowed). Further, detail-free posted-price mechanisms are
particularly useful in practice as the seller is not required to estimate the demand distribution in advance.
Similar arguments can be found in prior work, e.g. [22].

Our model. We consider the following limited supply auction model, which we termdynamic pricing with
limited supply. A seller hask items she can sell to a set ofn agents (potential buyers), aiming to maximize
her expected revenue. The agents arrive sequentially to themarket and the seller interacts with each agent
before observing future agents (in an online manner). We make the simplifying assumption that each agent
interacts with the seller only once, and the timing of the interaction cannot be influenced by the agent. (This
assumption is also made in other papers that consider our problem for special supply amounts [34, 7, 13].)
Each agenti (1 ≤ i ≤ n) is interested in buying one item, and has a private valuevi for an item. The
private values are independently drawn from the samedemand distributionF . The demand distributionF is

1An alternative term used to describe these mechanisms isprior-independent.
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unknownto the seller. We assume thatF has bounded support, and an upper bound on the support is known
to the seller;2 by normalizing, it is known to the seller thatsupport(F ) ⊂ [0, 1].

Whenever agenti arrives to the market the seller offers him a pricepi for an item. The agent buys
the item if and only ifvi ≥ pi, and in case she buys the item she payspi (so the mechanism is incentive-
compatible). The seller never learns the exact value ofvi, she only observes the agent’s binary decision
to buy the item or not. The seller selects pricespi using an online algorithm, that we henceforth call
pricing strategy. We are interested in designing pricing strategies with high revenue compared to a natural
benchmark, with minimal assumptions on the demand distribution.

Our main benchmark is the maximal expected revenue of an offline mechanism that is allowed to use
the demand distribution; henceforth, we will call itoffline benchmark. This is a very strong benchmark, as
it has the following advantages over our mechanism: it is allowed to use the demand distribution, it is not
constrained to posted prices and is not constrained to run online. It is realized by a well-known Myerson
Auction [39] (whichdoesrely on knowing the demand distribution).

High-level discussion. Absent the supply constraint, our problem fits into themulti-armed bandit(MAB)
framework [20]: in each round, an algorithm chooses among a fixed set of alternatives (“arms”) and observes
a payoff, and the objective is to maximize the total payoff over a given time horizon. Our setting corresponds
to (prior-free) MAB withstochastic payoffs[35]: in each round, the payoff is an independent sample from
some unknown distribution that depends on the chosen “arm” (price). This connection is exploited in [34,
16] for the special case of unlimited supply (k = n). The authors use a standard algorithm for MAB with
stochastic payoffs, calledUCB1 [4]. Specifically, they focus on the prices{iδ : i ∈ N}, for some parameter
δ, and runUCB1 with these prices as “arms”. The analysis relies on the regret bound from [4].

However, neither the analysis nor the intuition behindUCB1 and similar MAB algorithms is directly
applicable for the setting with limited supply. Informally, the goal of an MAB algorithm would be to
converge to a pricep that maximizes the expected per-round revenueR(p) , p(1 − F (p)). This is, in
general, a wrong approach if the supply is limited: indeed, selling at a price that maximizesR(·) may
quickly exhaust the inventory, in which case a higher price would be more profitable.

Our high-level conceptual contribution is showing that even the limited supply setting can be fruitfully
treated as a bandit problem. The MAB perspective here is thatwe focus on the trade-off betweenexploration
(acquiring new information) andexploitation (taking advantage of the information available so far). In
particular, we recover an essential feature ofUCB1 that it does not separate exploration and exploitation, and
instead explores arms (prices) according to a schedule thatunceasingly adapts to the observed payoffs. This
feature results, both forUCB1 and for our algorithm, in a much more efficient exploration ofsuboptimal
arms: very suboptimal arms are chosen very rarely even whilethey are being “explored”.

We use an “index-based” algorithm where each arm is deterministically assigned a numerical score
(“index”) based on the past history, and in each round an arm with a maximal index is chosen; the index of
an arm depends on the past history of this arm (and not on otherarms). One key idea is that we define the
index of an arm according to the estimated expected total payoff from this arm given the known constraints,
rather than according to its estimated expected payoff in a single round. This idea leads to an algorithm that
is simple and (we believe) very natural. However, while the algorithm is simple its analysis is not: some new
ideas are needed, as the elegant tricks from prior work do notapply (see Section 4 for further discussion).

It is worth noting that a good index-based algorithm did nothaveto exist in our setting. Indeed, many
bandit algorithms in the literature are not index-based, e.g. EXP3 [5] and “zooming algorithm” [33] and their
respective variants. The fact that Gittins algorithm [27] and UCB1 [4] achieve (near-)optimal performance
with index-based algorithms was widely seen as an impressive contribution.

2This assumption enables concentration inequalities such as Chernoff Bounds. It corresponds to the assumption of bounded
rewards, which is very common in the literature on multi-armed bandits.
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Contributions. In all results below, we consider the dynamic pricing problem with limited supply: n
agents andk ≤ n items. We present pricing strategies with expected revenuethat is close to the offline
benchmark, for large families of natural distributions. All our pricing strategies are deterministic and (triv-
ially) run in polynomial time. Our main result follows.

Theorem 1.1. There exists a detail-free pricing strategy such that for any regular demand distribution its
expected revenue is at least the offline benchmark minusO((k log n)2/3).

We emphasize that Theorem 1.1 holds for a pricing strategy that doesnotknow the demand distribution.
The resulting mechanism is incentive-compatible as it is a posted price mechanism. The specific bound
O((k log n)2/3) is most informative whenk ≫ log n, so that the dependence onn is insignificant; the focus
here is to optimize the power ofk. (Note that any non-trivial bound must be belowk.)

The proof of Theorem 1.1 consists of two stages. The first stage (immediate from Yan [44]) is to
observe that for any regular demand distribution the expected revenue of the best fixed-price strategy3 is
close to the offline benchmark. Henceforth, the expected revenue of the best fixed-price strategy will be
called thefixed-price benchmark. The second stage, which is our main technical contribution, is to show
that our pricing strategy achieves expected revenue that isclose to the fixed-price benchmark. Surprisingly,
this holds withoutanyassumptions on the demand distribution.

Theorem 1.2. There exists a detail-free pricing strategy whose expectedrevenue is at least the fixed-price
benchmark minusO((k log n)2/3). This result holds for every demand distribution. Moreover, this result is
the best possible up to a factor ofO(log n).

As discussed above, we recover the MAB technique from [4] forthe unlimited supply setting. The
corresponding contribution to the literature on MAB may be of independent interest.

If the demand distribution is regular and moreover the ratiok
n is sufficiently small then the guarantee in

Theorem 1.1 can be improved toO(
√
k log n), with a distribution-specific constant.

Theorem 1.3. There exists a detail-free pricing strategy whose expectedrevenue, for any regular demand
distributionF , is at least the offline benchmark minusO(cF

√
k log n) wheneverkn ≤ sF , wherecF andsF

are positive constants that depend onF . For monotone hazard rate distributions one can takesF = 1
4 .

The bound in Theorem 1.3 is achieved using the pricing strategy from Theorem 1.1 with a different
parameter. Varying this parameter, we obtain a family of strategies that improve over the bound in Theo-
rem 1.1 in the “nice” setting of Theorem 1.3, and moreover have non-trivial additive guarantees for arbitrary
demand distributions. However, we cannot match both theorems with the same parameter.

Note that the rate-
√
k dependence onk in Theorem 1.3 contains a distribution-dependent constantcF

(which can be arbitrarily large, depending onF ), and thus is not directly comparable to the rate-k2/3 depen-
dence in Theorem 1.2. The distinction (and a significant gap)between bounds with and without distribution-
dependent constants is not uncommon in the literature on sequential decision problems, e.g. in [4, 34, 33].4

In fact, we show that thecF
√
k dependence onk is essentially the best possible.5 We focus on the

fixed-price benchmark (which is a weaker benchmark, so it gives to a stronger lower bound). Following the
literature, we defineregretas the fixed-price benchmark minus the expected revenue of our pricing strategy.

Theorem 1.4. For anyγ < 1
2 , no detail-free pricing strategy can achieve regretO(cF kγ) for all demand

distributionsF and arbitrarily largek, n, where the constantcF can depend onF .

3A fixed-price strategy is a pricing strategy that offers the same price to all agents, as long as it has items to sell. The “best”
fixed-price strategy is one with the maximal expected revenue for a given demand distribution.

4For a particularly pronounced example, for theK-armed bandit problem with stochastic payoffs the best possible rates for
regret with and without a distribution dependent constant are respectivelyO(cF log n) andO(

√
Kn) [4, 5, 3].

5However, the lower bound in Theorem 1.4 does not match the upper bound in Theorem 1.3 since the latter assumes regularity.
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The bounds in Theorem 1.1 and Theorem 1.2 are uninformative whenk = O(log2 n). We next provide
another detail-free, online posted-price mechanism that gives meaningful bounds – not depending onn – in
the case thatk is very small (but bigger than some constant).

Theorem 1.5. There exists a detail-free pricing strategy such that for any MHR demand distribution its
expected revenue is at least the offline benchmark minusO(k3/4 poly log(k)).

2 Related Work

Dynamic pricing. Dynamic pricing problems and, more generally, revenue management problems, have
a rich literature in Operations Research. A proper survey ofthis literature is beyond our scope; see [13] for
an overview. The main focus is on parameterized demand distributions, with priors on the parameters.

The study of dynamic pricing withunknowndemand distribution (without priors) has been initiated
in [16, 34]. Several special cases of our setting have been studied in [34, 7, 13], detailed below.

First, Kleinberg and Leighton [34] consider the unlimited supply case (building on the earlier work [16]).
Among other results, they study IID valuations, i.e. our setting with k = n. They provide upper bounds
on regret of orderO(n2/3) andO(cF

√
n). 6 The latter bound is akin to Theorem 1.3 in that it assumes a

version of regularity, and depends on a distribution-specific constantcF . Further, they prove matching lower
bounds which, in particular, imply Theorem 1.4 for the special case of unlimited supply.7

On the other extreme, Babaioff et al. [7] consider the case that the seller has only one item to sell (k = 1).
They provide a super-constant multiplicative lower bound for unrestricted demand distribution (with respect
to the online optimal mechanism), and a constant-factor approximation assuming MHR. Note that we also
use MHR to derive bounds that apply to the case of a very smallk.

Besbes and Zeevi [13] consider a continuous-time version which (when specialized to discrete time)
is essentially equivalent to our setting withk = Ω(n). They prove a number of upper bounds on regret
with respect to the fixed-price benchmark, with guarantees that are inferior to ours. The key distinction
is that their pricing strategies separate exploration and exploitation. Assuming that the demand distribu-
tion F (·) and its inverseF−1(·) are Lipschitz-continuous, they achieve regretO(n3/4). They improve it
to O(n2/3) if furthermore the demand distributions are parameterized, and toO(

√
n) if this is a single-

parameter parametrization. Both results rely on knowing the parametrization: the mechanisms continuously
update the estimates of the parameter(s) and revise the current price according to these estimates. The upper
bounds in [13] should be contrasted with ourO(k2/3) upper bound that applies to an arbitraryk and makes
no assumptions on the demand distribution, and theO(cF

√
k) improvement for MHR demand distributions.

Also, [13] contains anΩ(
√
n) lower bound for their notion of regret. Essentially, this lower bound com-

pares the best pricing strategy for a given demand distribution to the best (distribution-dependent) pricing
strategy for a fictitious environment where in every round the mechanism sells a fractional amount of good.
In particular, this lower bound does not have any immediate implications on regret with respect to either of
the two benchmarks that we use in this paper.

Online mechanisms. The study of online mechanisms was initiated by Lavi and Nisan [36], who unlike
us consider the case that each agent is interested in multiple items, and provide a logarithmic multiplicative
approximation. Below we survey only the most relevant papers in this line of work, in addition to the special
cases of our setting that we have already discussed.

6Throughout this section, we omit thelog factors in regret bounds.
7The construction in [34] that proves Theorem 1.4(a) for the unlimited supply case is contained in the proof of a theorem on

adversarialvaluations, but the construction itself only uses IID valuations.
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Several papers [12, 16, 34, 15] consider online mechanisms with unlimited supply and adversarial valua-
tions (as opposed to limited supply and IID valuations in oursetting). The mechanism in the initial paper [12]
requires the agents to submit bids and so is not posted-price. The subsequent work [16, 34, 15] provides
various improvements. In particular, Blum et al. [16] (among other results) design a simpleposted-price
mechanism which achieves multiplicative approximation1 + ǫ, for anyǫ > 0, with an additive term that
depends onǫ. 8 Blum and Hartline [15] use a more elaborate posted-price mechanism to improve the ad-
ditive term. Kleinberg and Leighton [34] show that the simple mechanism in [16] achieves regretO(n2/3);
moreover, they provide a nearly matching lower bound ofΩ(n2/3).

Papers [30, 23] study online mechanisms for limited supply and IID valuations (same as us), but their
mechanisms are not posted-price. Hajiaghayi et al. [30] consider an online auction model where players
arrive and depart online, and may misreport the time period during which they participate in the auction. This
makes designing strategy-proof mechanisms more challenging, and as a result their mechanisms achieve a
constant multiplicative approximation rather than additive regret. Devanur and Hartline [23] study several
variants of the limited-supply mechanism design problem: supply is known or unknown, online or offline.
Most related to our paper is their mechanism for limited, known, online supply. This mechanism is based
on random sampling and achieves constant (multiplicative)approximation, but is not posted-price. Our
mechanism is posted-price and achieves low (additive) regret.

Other work. Absent the supply constraint, our problem (and a number of related formulations) fit into
themulti-armed bandit(MAB) framework.9 MAB has a rich literature in Statistics, Operations Research,
Computer Science and Economics. A proper discussion of thisliterature is beyond the scope of this paper;
a reader can refer to [17, 28, 20] for background. Most relevant to our specific setting is the work on (prior-
free) MAB with stochastic payoffs, e.g. [35, 4], and MAB withLipschitz-continuous stochastic payoffs,
e.g. [2, 32, 6, 33, 19]. The posted-price mechanisms in [16, 34, 15] described above are based on a well-
known MAB algorithm [5] for adversarial payoffs. The connection between online learning and online
mechanisms has been explored in a number of other papers, including [40, 24, 10, 9].

Recently, [22, 21, 44] studied the problem of designing an offline, sequential posted-price mechanisms
in Bayesian settings, where the distributions of valuations are not necessarily identical, yet are known to the
seller. Chawla et al. [22] provide constant multiplicativeapproximations. Yan [44] obtains a multiplicative
bound that is optimal for largek, and Chakraborty et al. [21] obtain a PTAS for allk.

Dynamic pricing is superficially similar tosecretary problems[26, 8] in that an algorithm is sequentially
interacting with agents, each agent’s private value is a single number, and it is not known before this agent
arrives. However, in secretary problems the private value is revealed when the agent arrives, whereas in
dynamic pricing the algorithm is much more constrained in terms of information: the feedback is only
whether there is a sale.

3 Preliminaries

Throughout, we assume that agents’ valuations are drawn independently from a distributionF with support
in [0, 1], calleddemand distribution. We usep ∈ [0, 1] to denote a price. We letF (p) denote the c.d.f, and
S(p) = 1 − F (p) denote thesales rateat pricep: the probability of making a sale at pricep. Let R(p) =
p S(p) denote therevenue function: the expected single-round revenue at pricep given that there is still at
least one item left. The demand distributionF is calledregular if F (·) is twice differentiable and the revenue

8This result considers valuations in the range[1, H ], and the additive term also depends onH .
9To avoid a possible confusion, we note that the supply constraint in our setting may appear similar to the budget constraint

in line of work onbudgeted MAB(see [18, 29] for details and further references). However,the “budget” in budgeted MAB is
essentially the duration of the experimentation phase (n), rather than the number of rounds with positive reward (k).
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functionR(·) is concave:R′′(·) ≤ 0. We callF strictly regular if furthermoreR′′(·) < 0. ThenR(p) is
increasing forp ≤ pr and decreasing forp ≥ pr, wherepr is the unique maximizer, known as theMyerson
reserve price(also known as themonopoly price). Moreover, the sales rateS(·) is strictly decreasing, so
the inverseS−1 is well-defined. We sayF is aMonotone Hazard Rate (MHR)distribution ifF (·) is twice
differentiable and the hazard rateH(p) , F ′(p)/S(p) is non-decreasing. All MHR distributions are regular.

A fixed-price strategywith n agents,k items and pricep, denotedAn
k(p), is a pricing strategy that

makes a fixed offer pricep to every agent so long as fewer thank items have been sold, and stops afterwards
(equivalently, from that point always sets the price to∞). Note that for the unlimited supply caseAn

n(p)
sellsnS(p) items in expectation.

A pricing strategy is calleddetail-freeif it does not use the knowledge of the demand distribution. We are
interested in designing detail-free pricing strategies with good performance foreverydemand distribution
in some (large) family of distributions. We compare our mechanisms to two benchmarks that depend on
the demand distribution: the maximal expected revenue of anoffline mechanism (theoffline benchmark),
and the maximal expected revenue of a fixed price mechanism (the fixed-price benchmark). An offline
mechanism that maximizes expected revenue was given in the seminal paper of Myerson [39]; it is not an
online posted price mechanism.

Let Rev(A) be the total expected revenue achieved by mechanismA. We define theregret of A with
respect to the fixed-price benchmark as follows:Regret(A) , maxp Rev[An

k(p)] − Rev(A). Thus, regret
is the additive loss in expected revenue compared to the bestfixed-price mechanism. (Note that the regret of
A could, in principle, be a negative number, since the fixed-price benchmark is not generally the Bayesian
optimal pricing strategy for distributionF .)

Benchmarks Comparison. We observe that for regular demand distributions, the fixed-price benchmark
is close to the offline benchmark. This result is immediate from Yan [44]; we provide a self-contained proof
in Appendix A.

Lemma 3.1 (Yan [44]). For each regular demand distribution there exists a fixed-price strategy whose
expected revenue is at least the offline benchmark minusO(

√
k).

Lemma 3.1 implies that any pricing strategy with regretO(R), R = Ω(
√
k) with respect to the fixed-

price benchmark has the same asymptotic regretO(R) with respect to the offline benchmark, as long as
the demand distribution is regular, and in particular if it is MHR. Therefore, the rest of the paper can focus
on the fixed-price benchmark. In particular, our main result, Theorem 1.1 for regular distributions, follows
from Theorem 1.2 that addresses the fixed-price benchmark.

Furthermore, the expected revenue of a fixed-price mechanism has an easy characterization:

Claim 3.2. LetA be the fixed-price mechanism with pricep. Letν(p) = pmin(k, n S(p))). Then

ν(p)−O(p
√

k log k) ≤ Rev(A) ≤ ν(p). (1)

It follows that for a strictly regular demand distribution the bound in Lemma 3.1 is satisfied for the fixed
price p∗ = argmaxp ν(p) = max(pr , S

−1( kn)), wherepr = argmaxp p S(p) is the Myerson reserve price.

Proof. Let us focus on the first inequality in (1) (the second one is obvious). LetXt be the indicator variable
of sale in roundt. DenoteX =

∑n
t=1 Xt and letµ = E[X]. Then by Chernoff Bounds (Theorem 4.7(a))

with probability at least1− 1
k it holds thatX ≥ µ−O(

√
µ log k), in which case

#sales= min(k,X) ≥ min(k, µ −O(
√

µ log k)) ≥ min(k, µ)−O(
√

k log k),

which implies the claim sinceµ = nS(p).
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4 The main technical result: the upper bound in Theorem 1.2

This section is devoted to the main technical result (the upper bound in Theorem 1.2) which asserts that
there exists a detail-free pricing strategy whose regret with respect to the fixed-price benchmark is at most
O((k log n)2/3). This result is very general, as it makes no assumptions on the demand distribution.

As discussed in Section 1, we design an algorithm that carefully optimizes the trade-off between explo-
ration and exploitation. We use anindex-basedalgorithm in which each arm is assigned a numerical score,
called index, so that in each round an arm with the highest index is picked.The index of an arm depends
only on the past history of this arm. In prior work on index-based bandit algorithms the index of an arm was
defined according to estimated expected payoff from this armin a single round. Instead, we define the index
according to estimated expectedtotal payoff from this arm given the constraints.

We apply the above idea toUCB1. The index inUCB1 is, essentially, the best available Upper Confidence
Bound (UCB) on the expected single-round payoff from a givenarm. Accordingly, we define a new index,
so that the index of a given price corresponds to a UCB on the expected total payoff from this price (i.e.,
from a fixed-price strategy with this price), given the number of agents and the inventory size. Such index
takes into account both the average payoff from this arm (“exploitation”) and the number of samples for
this arm (“exploration”), as well as the supply constraint.In particular we recover the appealing property of
UCB1 that it does not separate “exploration” and “exploitation”, and instead explores arms (prices) according
to a schedule that unceasingly adapts to the observed payoffs.

There are several steps to make this approach more precise. First, while it is tempting to use the current
values for the number of agents and the inventory size to define the index, we adopt a non-obvious (but more
elegant) design choice to use the original values, i.e. then and thek. Second, since the exact expected total
payoff for a given price is hard to quantify, we will instead use a natural approximation thereof provided by
ν(p) in Claim 3.2. In other words, our index will be a UCB onν(p). Third, in specifying the UCB we will
use non-standard estimator from [33] to better handle prices with very low sales rate.

The main technical hurdle in the analysis is to “charge” eachsuboptimal price for each time that it is
chosen, in a way that the total regret is bounded by the sum of these charges and this sum can be usefully
bounded from above. The analysis ofUCB1 accomplishes this via simple (but very elegant) tricks which,
unfortunately, fail in the limited supply setting.

An additional difficulty comes from the probabilistic nature of the analysis. While we adopt a well-
known trick – we define some high-probability events and assume that these events hold deterministically
in the rest of the analysis – choosing an appropriate collection of events is, in our case, non-trivial. Proving
that these events indeed hold with high probability relies on some non-standard tail bounds from prior work.

4.1 Our pricing strategy

Let us define our pricing strategy, calledCappedUCB. The pricing strategy is initialized with a setP of
“active prices”. In each roundt, some pricep ∈ P is chosen. Namely, for each pricep ∈ P we define a
numerical score, calledindex, and we pick a price with the highest index, breaking ties arbitrarily. Oncek
items are sold,CappedUCB sets the price to∞ and never sells any additional item.

Recall from Claim 3.2 that the expected revenue from the fixed-price strategyAn
k(p) is approximated by

ν(p) , p ·min(k, n S(p)). In each roundt, we define theindexIt(p) as a UCB onν(p):

It(p) , p ·min(k, n SUB

t (p)).

HereSUB

t (p) is a UCB on the sales rateS(p), as defined below.
For eachp ∈ P, let Nt(p) be the number of rounds beforet in which pricep has been chosen, and

let kt(p) be the number of items sold in these rounds. ThenŜt(p) , kt(p)/Nt(p) is the current average
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sales rate. To avoid division by zero, we defineŜt(p) to be equal to 1 whenNt(p) = 0. We will define
SUB

t (p) = Ŝt(p) + rt(p), wherert(p) is aconfidence radius: some number such that

|S(p)− Ŝt(p)| ≤ rt(p) (∀ p ∈ P, t ≤ n). (2)

holds with high probability, namely with probability at least 1− n−2.
We need to define a suitable confidence radiusrt(p), which we want to be as small as possible subject

to (2). Note thatrt(p) must be defined in terms of quantities that are observable at time t, such asNt(p) and

Ŝt(p). A standard confidence radius used in the literature is (essentially) rt(p) =
√

Θ(log n)
Nt(p)+1 .

Instead, we use a more elaborate confidence radius from [33]:

rt(p) ,
α

Nt(p) + 1
+

√
α Ŝt(p)

Nt(p) + 1
, for someα = Θ(log n). (3)

The confidence radius in (3) performs as well as the standard one in the worst case:rt(p) ≤
√

O(logn)
Nt(p)+1 , and

much better for very small sales rates:rt(p) ≤ O(logn)
Nt(p)+1 ; see Appendix 4.3 for a self-contained proof.

To recap, we have

It(p) , p ·min(k, n (Ŝt(p) + rt(p))), wherert(p) is from (3). (4)

Finally, the active prices are given by

P = {δ(1 + δ)i ∈ [0, 1] : i ∈ N}, whereδ ∈ (0, 1) is a parameter. (5)

This completes the specification ofCappedUCB. See Mechanism 1 for the pseudocode.

Mechanism 1 Pricing strategyCappedUCB for n agents andk items
Parameter: δ ∈ (0, 1)

1: P ← {δ(1 + δ)i ∈ [0, 1] : i ∈ N} {“active prices”}
2: While there is at least one item left, in each roundt

pick any pricep ∈ argmaxp∈P It(p), whereIt(p) is the “index” given by (4).
3: For all remaining agents, set pricep =∞.

4.2 Analysis of the pricing strategy

Our goal is to bound from above theregretof CappedUCB, which is the difference between the optimal ex-
pected revenue of a fixed-price strategy and the expected revenue ofCappedUCB. We prove thatCappedUCB
achieves regretO(k log n)2/3 for a suitable choice of parameterδ in (5).

Lemma 4.1. CappedUCB with parameterδ = k−1/3 (log n)2/3 achieves regretO(k log n)2/3.

Since the bound in Lemma 4.1 is trivial fork < log2 n, we will assume thatk ≥ log2 n from now on.
Note thatCappedUCB “exits” (sets the price to∞) after it sellsk items. For a thought experiment,

consider a version of this pricing strategy that does not “exit” and continues running as if it has unlimited
supply of items; let us call this versionCappedUCB′. Then the realized revenue ofCappedUCB is exactly
equal to the realized revenue obtained byCappedUCB′ from selling the firstk items. Thus from here on we
focus on analyzing the latter.

9



We will use the following notation. LetXt be the indicator variable of the random event thatCappedUCB′

makes a sale in roundt. Note thatXt is a 0-1 random variable with expectationS(pt), wherept depends
on X1, . . . ,Xt−1. Let X ,

∑n
t=1 Xt be the total number of sales if the inventory were unlimited.Note

thatE[X] = S ,
∑n

t=1 S(pt). Going back to our original algorithm, let̂Rev denote the realized revenue of
CappedUCB (revenue that is realized in a given execution). Then

R̂ev =
∑N

t=1 ptXt, whereN = max{N ≤ n :
∑N

t=1Xt ≤ k}. (6)

High-probability events. We tame the randomness inherent in the salesXt by setting up three high-
probability events, as described below. In the rest of the analysis, we will argue deterministically under
the assumption that these three events hold. It suffices because the expected loss in revenue from the low-
probability failure events will be negligible. The three events are summarized in the following claim:

Claim 4.2. With probability at least1− n−2 holds, for each roundt and each pricep ∈ P:

|S(p)− Ŝt(p)| ≤ rt(p) ≤ 3

(
α

Nt(p)+1 +
√

αSt(p)
Nt(p)+1

)
, (7)

|X − S| < O(
√

S log n+ log n), (8)

|∑n
t=1 pt(Xt − S(pt))| < O(

√
S log n+ log n). (9)

The probability bounds on the three events in Claim 4.2 are derived via appropriate concentration in-
equalities, some of which are non-standard; see Section 4.3for further discussion. In the first event, the left
inequality asserts thatrt(p) is a confidence radius, and the right inequality gives the performance guarantee
for it. The other two events focus onCappedUCB′, and bound the deviation of the total number of sales (X)
and the realized revenue (

∑n
t=1 ptXt) from their respective expectations; importantly, these bound are in

terms of
√
S rather than

√
n.

In the rest of the analysis we will assume that the three events in Claim 4.2 hold deterministically.

Single-round analysis. Let us analyze what happens in a particular roundt of the pricing strategy. Letpt
be the price chosen in roundt. Letp∗act ∈ argmaxp∈P ν(p) be the best active price according toν(·), and let

ν∗act , ν(p∗act). Let∆(p) , max(0, 1
n ν∗act− p S(p)) be our notion of “badness” of pricep, compared to the

optimal approximate revenueν∗. We will use this notation throughout the analysis, and eventually we will
bound regret in terms of

∑
p∈P ∆(p)N(p), whereN(p) is the total number of times pricep is chosen.

Claim 4.3. For each pricep ∈ P it holds that

N(p)∆(p) ≤ O(log n)
(
1 + k

n
1

∆(p)

)
. (10)

Proof. By definition (2) of the confidence radius, for each pricep ∈ P and each roundt we have

ν(p) ≤ It(p) ≤ p ·min (k, n (S(p) + 2 rt(p))) . (11)

Let us use this to connect each choicept with ν∗act:
{
It(pt) ≥ It(p

∗
act) ≥ ν(p∗act) , ν∗act

It(pt) ≤ pt ·min (k, n (S(pt) + 2 rt(pt))) .

Combining these two inequalities, we obtain the key inequality:

1
n ν∗act≤ pt ·min

(
k
n , S(pt) + 2 rt(pt)

)
. (12)
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There are several consequences forpt and∆(pt):




pt ≥ 1
k ν

∗
act

∆(pt) ≤ 2 pt rt(pt)

∆(pt) > 0 ⇒ S(pt) <
k
n

. (13)

The first two lines in (13) follow immediately from (12). To obtain the third line, note that∆(pt) > 0
impliespt k ≥ ν∗act > npt S(pt), which in turn impliesS(pt) < k

n .
Note that we have not yet used the definition (3) of the confidence radius. For each pricep = pt, let t be

the last round in which this price has been selected by the pricing strategy. Note thatN(p) (the total number
of times pricep is chosen) is equal toNt(p) + 1. Then using the second line in (13) to bound∆(p), Eq. (7)
to bound the confidence radiusrt(p), and the third line in (13) to bound the sales rate, we obtain:

∆(p) ≤ O(p)×max
(

logn
N(p) ,

√
k
n

logn
N(p)

)
.

Rearranging the terms, we can boundN(p) in terms of∆(p) and obtain (10).

Analyzing the total revenue. A key step is the following claim that allows us to consider
∑n

t=1 pt S(pt)
instead of the realized revenuêRev, effectively ignoring the capacity constraint. This is where we use the
high-probability events (8) and (9). For brevity, let us denoteβ(S) = O(

√
S log n+ log n).

Claim 4.4. R̂ev ≥ min(ν∗act,
∑n

t=1 pt S(pt))− β(k).

Proof. Recall thatpt ≥ 1
kν

∗
act by (13). It follows thatR̂ev ≥ ν∗act whenever

∑n
t=1 Xt > k. Therefore, if

R̂ev < ν∗act then
∑n

t=1 Xt ≤ k and soR̂ev =
∑n

t=1 ptXt. Thus, by (9) it holds that

R̂ev ≥ min (ν∗act,
∑n

t=1 ptXt) ≥ min (ν∗act,
∑n

t=1 pt S(pt)− β(S)) .

So the claim holds whenS ≤ k. On the other hand, ifS > k then by (8) it holds that

X ≥ S − β(S) ≥ k − β(k)

R̂ev ≥ min(k,X) ( 1k ν
∗
act) ≥ ν∗act− β(k).

In light of Claim 4.4, we can now focus on
∑n

t=1 pt S(pt).
∑n

t=1 pt S(pt) ≥
∑n

t=1
1
n ν∗act−∆(pt)

= ν∗act−
∑n

t=1 ∆(pt)

= ν∗act−
∑

p∈P ∆(p)N(p). (14)

Fix a parameterǫ > 0 to be specified later, and denote
{
Psel , {p ∈ P : N(p) ≥ 1}
Pǫ , {p ∈ Psel : ∆(p) ≥ ǫ}

to be, respectively, be the set of prices that have been selected at least once and the set of prices of badness
at leastǫ that have been selected at least once. Plugging (10) into (14), we obtain

∑
p∈P ∆(p)N(p) ≤∑

p∈Psel\Pǫ
∆(p)N(p) +

∑
p∈Pǫ

∆(p)N(p)

≤ ǫn+O(log n)
∑

p∈Pǫ

(
1 + k

n
1

∆(p)

)

≤ ǫn+O(log n)
(
|Pǫ|+ k

n

∑
p∈Pǫ

1
∆(p)

)
. (15)

Combining (14), (15) and Claim 4.4 yields a claim that summarizes our findings so far.
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Claim 4.5. For any setP of active prices and any parameterǫ > 0 it holds that

ν∗act− E[R̂ev] ≤ ǫn+O(log n)
(
|Pǫ|+ k

n

∑
p∈Pǫ

1
∆(p)

)
+ β(k).

Interestingly, this claim holds for any set of active prices. The following claim, however, takes advantage
of the fact that the active prices are given by (5).

Claim 4.6. ν∗act ≥ ν∗ − δk, whereν∗ , maxp ν(p).

Proof. Let p∗ ∈ argmaxp ν(p) denote the best fixed price with respect toν(·), ties broken arbitrarily. If
p∗ ≤ δ thenν∗ ≤ δk. Else, lettingp0 = max{p ∈ P : p ≤ p∗} we havep0/p ≥ 1

1+δ ≥ 1− δ, and so

ν∗act≥ ν(p0) ≥ p0
p∗ ν(p∗) ≥ ν∗(1− δ) ≥ ν∗ − δk.

It follows that for anyǫ > 0 andδ ∈ (0, 1) we have:

Regret ≤ O(log n)
(
|Pǫ|+ k

n

∑
p∈Pǫ

1
∆(p)

)
+ ǫn+ δk + β(k). (16)

The rest is a standard computation. Plugging in∆(p) ≥ ǫ for eachp ∈ Pǫ in (16), we obtain:

Regret ≤ O(|Pǫ| log n)
(
1 + 1

ǫ
k
n

)
+ ǫn+ δk + β(k).

Note that|P| ≤ 1
δ log n. To simplify the computation, we will assume thatδ ≥ 1

n andǫ = δ k
n . Then

Regret ≤ O
(
δk + 1

δ2
(log n)2 +

√
k log n

)
. (17)

Finally, it remains to pickδ to minimize the right-hand side of (17). Let us simply takeδ such that the first
two summands are equal:δ = k−1/3 (log n)2/3. Then the two summands are equal toO(k log n)2/3. This
completes the proof of Lemma 4.1.

4.3 Concentration inequalities and the proof of Claim 4.2

We use an elementary concentration inequality known asChernoff Bounds, in a formulation from [38].

Theorem 4.7 (Chernoff Bounds). Considern i.i.d. random variablesX1 . . . Xn with values in[0, 1]. Let
X = 1

n

∑n
i=1Xi be their average, and letµ = E[X]. Then:

(a) Pr[|X − µ| > δµ] < 2 e−µnδ2/3 for anyδ ∈ (0, 1).
(b) Pr[X > a] < 2−an for anya > 6µ.

Further, we use a non-standard corollary from [33]10 which provides us with a sharper (i.e., smaller)
confidence radius whenµ is small; we include the proof for the sake of completeness.

Theorem 4.8 ([33]). Considern i.i.d. random variablesX1 . . . Xn on [0, 1]. LetX be their average, and
let µ = E[X]. Then for anyα > 0, lettingr(α, x) = α

n +
√

αx
n , we have:

Pr [ |X − µ| < r(α,X) < 3 r(α, µ) ] > 1− e−Ω(α),

10This is Lemma 4.9 in the full (arXiv) version of [33].
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Proof. First, supposeµ ≥ α
6n . Apply Theorem 4.7(a) withδ = 1

2

√
α

6µn . Thus with probability at least

1− e−Ω(α) we have|X − µ| < δµ ≤ µ/2. Plugging in theδ,

|X − µ| < 1
2

√
αµ
n ≤

√
αX
n ≤ r(α,X) < 1.5 r(α, µ).

Now supposeµ < α
6n . Then using Theorem 4.7(b) witha = α

n , we obtain that with probability at least
1− 2−Ω(α) we haveX < α

n , and therefore|X − µ| < α
n < r(α,X) and

|X − µ| < α
n < r(α,X) < (1 +

√
2) α

n < 3 r(α, µ).

Proof of (7) in Claim 4.2. For each pricep ∈ P let {Zi,p}i≤n be a family of independent 0-1 random
variables with expectationS(p). Without loss of generality, let us pretend that thei-th time that pricep is
selected by the pricing strategy, sale happens if and only ifZi,p = 1. Then by Lemma 4.8 after thei-th play
of pricep the bound (7) holds with probability at least1−n−4. Taking the Union Bound over all choices of
i and all choices ofp, we obtain that (7) holds with probability at least1− n−2 as long as|P| ≤ n (which
is the case for us).

Sharper Azuma-Hoeffding inequality. We use a concentration inequality on the sum ofn random vari-
ablesXt ∈ {0, 1} such that each variableXt is a random coin toss with probabilityMt that depends on the
previous variablesX1, . . . ,Xt−1. We are interested in bounding the deviation|X −M |, whereX =

∑
tXt

andM =
∑

tMt. The well-known Azuma-Hoeffding inequality states that with high probability we have
|X −M | ≤ O(

√
n log n). However, we need a sharper high-probability bound:|X −M | ≤ O(

√
M log n).

Moreover, we need an extension of such bound which considersdeviation|∑n
t=1 αt(Xt−Mt)|, where each

multiplier αt ∈ [0, 1] is determined byX1, . . . ,Xt−1.
We use the following concentration inequality from the literature.

Theorem 4.9 (Theorem 3.15 in [37]). LetZ1, . . . , Zn be random variables which take values in[−1, 1]. Let
Z =

∑n
t=1 Zt, µ = E[Z]. LetV =

∑n
t=1 Var(Zt|Z1, . . . , Zt−1). Then for anya > 0, v > 0 we have

Pr [(|Z − µ| ≥ a) ∧ (V ≤ v)] ≤ e
−Ω(

a2

v+a ).

We use the above bound to bound the deviation for|∑n
t=1 αt(Xt −Mt)|.

Theorem 4.10. Let X1, . . . ,Xn be 0-1 random variables. For eacht, let αt ∈ [0, 1] be the multiplier
determined byX1, . . . ,Xt−1. LetM =

∑n
t=1 Mt, whereMt = E[Xt|X1, . . . ,Xt−1] for eacht. Then for

anyb ≥ 1 the event

|∑n
t=1 αt(Xt −Mt)| ≤ b(

√
M log n+ log n).

holds with probability at least1− n−Ω(b).

Proof. LetZt = Xt − yt, whereyt ∈ [0, 1] is a function ofX1, . . . ,Xt−1, and letZ =
∑n

t=1 Zt.
We claim that

Pr
[
|
∑n

t=1 αt(Zt − E[Zt])| ≤ b(
√
M log n+ log n)

]
≥ 1− n−Ω(b), for anyb ≥ 1. (18)

To prove (18), letFt = σ(X1, . . . ,Xt) be theσ-algebra generated byX1, . . . ,Xt, and letMt =
E[Xt|X1, . . . ,Xt−1]. Then conditional onFt−1, Zt is a random variable with expectationMt − yt and
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two possible values,−αt yt andαt (1 − yt), whereαt andyt are constants. It follows that Var(Zt|Ft−1) =
α2
t (Mt −M2

t ) ≤Mt, and thereforeV ,
∑n

t=1 Var(Zt|Ft−1) ≤M .
Taking Theorem 4.9 witha = b(

√
v log n+ log n), we have that for anyb ≥ 1 the event

(|Z − E[Z]| ≥ b(
√

v log n+ log n)) ∧ (V ≤ v).

holds with probability at mostn−Ω(b). Finally, we take the Union Bound over (say) all integerv between
log n andn, noting thatV ≤M . This completes the proof of (18).

Finally, to prove the theorem take (18) withyt = Mt and note thatZt = Xt−Mt and soE[Zt] = 0.

Proof of (8) and (9) in Claim 4.2. Recall that for eacht, Xt is a 0-1 random variable with expectation
S(pt), wherept depends onX1, . . . ,Xt−1. Using Lemma 4.10 withαt ≡ 1 we obtain (8). Using
Lemma 4.10 withαt = pt we obtain (9).

5 The O(
√
k logn) regret bound (Theorem 1.3)

We show that the pricing strategy from Section 4 (with a different parameter) satisfies an improved regret
bound,O(

√
k log n), if the demand distribution is regular and moreover the ratio k

n is sufficiently small. The
regret bound depends on a distribution-specific constant.

Theorem 5.1. For any regular demand distributionF there exist positive constantssF and cF such that
CappedUCB with parameterδ = k−1/2 log(n) achieves regretO(cF

√
k log n) wheneverkn ≤ sF . For

monotone hazard rate distributions we can takesF = 1
4 .

Proof. Let g(s) , s S−1(s) be a function from[S(1), 1] to [0, 1] that maps a sales rate to the corresponding
revenue. Regularity impliesg′′(·) ≤ 0. Sinceg′(0) > 0, we can pick a constantsF > 0 such that
C , g′(sF ) > 0. For monotone hazard rate distributions we can takesF = 1

4 because for any maximizer
s of g(·) it holds thats ≥ 1

e (see Claim B.2). Now, for anykn ≤ sF we have thatg′( kn) ≥ C. We will
use this to obtain a lower bound on∆(p); any such lower bound is absent in the analysis in Section 4. This
improvement results in savings in (16), which in turn implies the claimed regret bound.

We will use the notation from Section 4.2, particularly the “badness”∆(p) and the setPǫ of arms of
badness≥ ǫ that have been selected at least once. Note that by regularity g′(s) ≥ C for anys ∈ (0, k

n). Let
p∗ = S−1( kn) andp ∈ Pǫ. By the third line in (13) it holds thatS(p) < k

n and thenp > p∗.

First, we claim thatS(p) < p∗

p
k
n . Indeed, this is becausep S(p) = g(S(p)) < g( kn ) = p∗ k

n .
Second, we bound∆(p) from below:

1
n ν∗act≥ (1− δ) ν∗

n ≥ (1− δ) g( kn )

∆(p) ≥ (1− δ) g( kn )− g(S(p))

≥ [g( kn )− g(S(p))] − δ g( kn )

≥ C( kn − S(p))− δ k
n p∗

≥ C k
n (1− p∗

p )− δ k
n p∗

≥ C k
n (1− p∗

p (1 +
δ
C )).

SinceP is given by (5), it holds thatPǫ ⊂ {p∗α (1 + δ)i : i ∈ N} for someα ≥ 1. Define

P ′ , {p ∈ Pǫ : p = p∗α (1 + δ)i with i ≥ 2
C }.
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Then for anyp ∈ P ′ it holds thatp/p∗ = α(1 + δ)i ≥ 1 + iδ and therefore

∆(p) ≥ C k
n (1− 1+δ/C

1+iδ ) ≥ C
2

k
n

iδ
1+iδ .

Therefore, noting that|P ′| ≤ |P| ≤ O(1δ log 1
δ ), we have

k
n

∑
p∈P ′

1
∆(p) ≤ 2

C

∑
p∈P ′ (1 + 1

iδ ) ≤ 2
C (|P ′|+ 1

δ log |P ′|) ≤ O( 1
C

1
δ log 1

δ )∑
p∈Pǫ\P ′

1
∆(p) ≤

1
ǫ |P \ P ′| ≤ 1

ǫ (
2
C + 1).

Plugging this into (16) withǫ = δ k
n , we obtain:

k
n

∑
p∈Pǫ

1
∆(p) ≤ O(1δ log 1

δ )(1 +
1
C )

Regret ≤ O(δk + 1
δ (1 +

1
C )(log n)

2 +
√
k log n) (19)

≤ O(cF
√
k log n), wherecF = 1 + 1/C.

The regret bound (19) improves over the corresponding bound(17) in Section 4. We obtain the final bound
by pluggingδ = k−1/2 log n.

It is desirable to achieve the bounds in Theorem 1.2 and Theorem 5.1 using the same pricing strategy.
Unfortunately, the choice of parameterδ in Theorem 5.1 results in a trivialO(k) regret guarantee for arbi-
trary demand distributions (as per Equation (17)). However, varying δ and using Equations (17) and (19)
we obtain a family of pricing strategies that improve over the bound in Theorem 1.2 for the “nice” setting in
Theorem 5.1, and moreover have non-trivial regret bounds for arbitrary demand distributions.

Theorem 5.2. For eachγ ∈ [13 ,
1
2 ], consider pricing strategyCappedUCB with parameterδ = Õ(k−γ). This

pricing strategy achieves regret̃O(k1−γ)(1+ 1/g′( kn)) if the demand distribution is regular andg′( kn) > 0,

and regretÕ(k2γ) for arbitrary demand distributions.

6 Lower Bounds

We prove two lower bounds on regret over all demand distributions which match the upper bounds in Theo-
rem 1.2 and Theorem 1.3, respectively. (Note that the latterupper bound is specific to regular distributions.)
Throughout this section,regret is with respect to the fixed-price benchmark.

Theorem 6.1. Consider the dynamic pricing problem with limited supply: with n agents andk ≤ n items.
(a) No detail-free pricing strategy can achieve regreto(k2/3) for arbitrarily large k, n.
(b) For anyγ < 1

2 , no detail-free pricing strategy can achieve regretO(cF kγ) for all demand distri-
butionsF and arbitrarily largek, n, where the constantcF can depend onF .

Our proof is a black-box reduction to the unlimited supply case (k = n). The unlimited supply case of
Theorem 6.1 is proved in [34] (see Footnote 7 on page 5).

Proof. Suppose that some pricing strategyA violates part (a). Then there is a sequence{ki, ni}i∈N, where
ki ≤ ni and{ki}i∈N is strictly increasing, such thatA achieves regreto(k2/3) for all problem instances with
ni agents andki items, for eachi ∈ N. To obtain a contradiction, let us useA to solve the unlimited supply
problem with regreto(n2/3). Specifically, we will solve problem instances withki/4 agents, for eachi.

Fix i ∈ N and letk = ki andn = ni. Consider a problem instanceI with unlimited supply andk/4
agents and sales rateS(·). Let I ′ be an artificial problem instance with unlimited supply andn agents, so
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that the firstk/4 agents inI ′ correspond toI. Form an artificial problem instanceJ with k items andn
agents as follows: in each round,A outputs a price, then with probabilityk/2n this price is offered to the
next agent inI ′, and with the remaining probability there is no interactionwith agents inI ′ and no sale.
Since the demand distribution forJ is a mixture of the “no sale” event which happens with probability
1− k

2n and the original demand distribution forI, the sales rate forJ is given bySJ (p) =
k
2nS(p).

RunningA on problem instanceJ induces a pricing strategyA′ on the original problem instanceI.11

In the rest of the proof we show thatA′ achieves regreto(k2/3) onI.
Let RevJ (A) and R̂evJ (A) be, respectively, the expected revenue and the realized revenue ofA on

problem instanceJ . Let r = argmaxp pS(p) be the Myerson reserve price, and letAr be the fixed-price
strategy with pricer. By our assumption, we have thatRevJ (A) ≥ RevJ (Ar) − o(k2/3). We need to
deduce thatRevI(A′) ≥ RevI(Ar)− o(k2/3).

Let N be the number of rounds inJ in whichA interacts with the agents inI ′. With high probability
k
4 < N < k. Let us condition onN and the eventEN , {k/4 < N < k}:

E[ R̂evJ (Ar) |N, EN ] = NrS(r)

E[ R̂evJ (A)− R̂evI(A′) |N, EN ] ≤ (N − k
4 ) rS(r).

SinceE[N ] = k
2 , it follows that

RevI(A′) ≥ RevJ (A)− k
4 rS(r)− o(1)

≥ RevJ (Ar)− k
4 rS(r)− o(k2/3)

= k
4 rS(r)− o(k2/3)

= RevI(Ar)− o(k2/3),

as required. The reduction for part (b) proceeds similarly.

7 Selling very few items: proof of Theorem 1.5

In this section we target a case when very few items are available for sale (roughly,k < O(log2 n)), so that
the bound in Theorem 1.1 becomes trivial. We provide a different pricing strategy whose regret does not
depend onn, under the mild assumption of monotone hazard rate.

We rely on the characterization in Claim 3.2: we look for the price p∗ = max(pr, S
−1( kn )), wherepr =

argmaxp p S(p) is the Myerson reserve price. The pricing strategy proceedsas follows (see Mechanism 2 on
page 17). It considers pricespℓ = (1− δ)ℓ, ℓ ∈ N sequentially in the descending order. For eachℓ, it offers
the pricepℓ to a fixed number of agents. The loop stops once the pricing strategy detects that, essentially,
the “best”pℓ has been reached: eitherS(pℓ) is close tok

n , or we are near a maximum ofp S(p). Parameters
are chosen so as to minimize regret.

Theorem 7.1. For some parametersǫ andδ, Mechanism 2 achieves regretO
(
k3/4 poly log(k)

)
with respect

to the offline benchmark, for any demand distribution that satisfies the monotone hazard rate condition.

The rest of this section is devoted to proving Theorem 7.1 forparametersǫ = k−1/4 andδ = ( 1k log k)1/4.
We will assume that the demand distribution is MHR, without further notice. We derive Theorem 7.1 from
the following multiplicative bound; it appears difficult toprove the additive version directly.

11If A stops before it iterates through all agents inI, the remaining agents inI are offered a price of∞.
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Mechanism 2 Descending prices
Parameter: Approximation parametersδ, ǫ ∈ [0, 1]

1: Letα =
(
k
n

)1−δ
, γ = min(α, 1/e).

2: ℓ← 0, ℓmax ← 0, Rmax ← 0.
3: repeat
4: ℓ← ℓ+ 1, pℓ ← (1 + δ)−ℓ

5: Offer pricepℓ tom = ⌈δ n
log1+δ(1/ǫ)

⌉ agents.

6: Let Sℓ be the fraction of them who accept.
7: LetRℓ = pℓSℓ be the average per agent revenue.
8: If Sℓ ≥ (1 + δ)−1γ andRℓ ≥ Rmax,
9: thenRmax ← Rℓ, ℓmax ← ℓ

10: until pℓ ≤ ǫ or Sℓ ≥ (1 + δ)α or Rℓ ≤ (1 + δ)−2Rmax

11: Offer pricep̃ = pℓ so long as unsold items remain.

Lemma 7.2. Assumep∗ ≥ ǫ. Setδ = 4

√
1
k log k log 1

ǫ log log
1
ǫ . Then the expected revenue of Mechanism 2

is at least1−O(δ) fraction of the offline benchmark.

Proof of Theorem 7.1.If p∗ ≤ ǫ then the expected loss in revenue is at mostǫk. Else by Lemma 7.2 the
expected loss in revenue is at mostO(δk), whereδ is from Lemma 7.2. In both cases the additive regret
compared to the offline benchmark is at mostmax(ǫk,O(kδ)). Finally, pickǫ = k−1/4.

7.1 Proof of Lemma 7.2

We use a multiplicative bound in which fixed-price strategies for limited supply are compared to those for
unlimited supply (which in turn can be compared to the offlinebenchmark using Claim A.2).

Lemma 7.3. Assume the demand distribution is regular. Letp′ ≤ p be two prices such thatp ≥ S−1(k/n).

Letn′ ≤ n. ThenRev(An′

k (p′)) ≥ n′

n
p′

p

(
1− 1√

2πk

)
Rev(An

n(p)).

The proof uses a technique from [44], see Appendix A. Also, wetake advantage of several properties of
MHR distributions, detailed in Appendix B.

We say the exploration phase isδ-approximateif

S(pℓ) ≥ γ ⇒ 1
1+δ ≤ Sℓ/S(pℓ) ≤ 1 + δ.

Claim 7.4. The exploration phase isδ-approximate with probability at least1− 2 (log1+δ
1
ǫ ) e

−δ2γm/4.

Proof. This follows directly by applying Chernoff bounds (both theupper and lower tail form) to the event
that someSℓ violates the condition, then applying the union bound over all choices ofℓ.

Claim 7.5. When the exploration phase isδ-approximate, we have(1− 7δ)S−1
(
k
n

)
≤ p̃ ≤ p∗.

Proof. It is easy to see that none of the stopping conditions of the exploration phase can be triggered until
the price goes belowp∗. Thereforẽp ≤ p∗. For the other inequality observe that, by Claim B.3 it holdsthat
S−1(α) ≥ (1− δ)S−1( kn). Therefore it suffices to show thatp̃ ≥ (1− 6δ)S−1(α).

Assume for a contradiction that the stopping conditions arenot triggered in some phaseℓ such that
pℓ+1 < (1 + δ)−6 S−1(α). Therefore, at roundℓ we have

pℓ = (1 + δ)pℓ+1 < (1 + δ)−5 S−1(α) (20)
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Examining the stopping conditions, and using our assumption above, we deduce that:

Sℓ < (1 + δ)α (21)

Rmax/Rℓ < (1 + δ)2, (22)

Combining (20) and (21), we get

Rℓ = pℓSℓ < (1 + δ)−4αS−1(α) (23)

Note that, since we chose roundℓ such thatpℓ ≪ S−1(α), the pricing strategy already encountered some
roundt < ℓ such thatpt is“close” toS−1(α) – in particular

(1 + δ)−1S−1(α) ≤ pt ≤ S−1(α) (24)

and therefore alsoS(pt) ≥ α. Since we assume the exploration phase isδ-approximate, the estimated sales
rate at roundt satisfiesSt ≥ (1 + δ)−1S(pt) ≥ (1 + δ)−1α. Combining this with (24), we get that the
estimated revenueRt at roundt satisfies

Rt = ptSt ≥ (1 + δ)−2αS−1(α) (25)

The value ofRmax in roundℓ is at leastRt. Combining (25) with (23), this shows that at roundℓ we
haveRmax

Rℓ
> (1 + δ)2, contradicting (22).

Claim 7.6. When the exploration phase isδ-approximate, we haveR(p̃) ≥ (1− 7δ)R(p∗).

Proof. By Claim 7.5, we are done whenp∗ = S−1
(
k
n

)
. Therefore, assumep∗ = pr, the Myerson reserve

price. It is easy to see thatR(pℓ+1) ≥ 1
1+δ R(pℓ) for eachℓ. Let t be the first integer such thatpt ≤ p∗ = pr.

Note that(1 + δ)−1p∗ ≤ pt ≤ p∗. Claim 7.5 says that̃p ≤ p∗ = pr, thereforeℓ̃ ≥ t and by Claim B.2
S(pt) ≥ S(pr) ≥ 1/e ≥ γ. It suffices to show that a stopping condition must be triggered beforeR(pℓ) gets
too small.

Assume for a contradiction that the stopping condition is not triggered by phaseℓ ≥ t, for someℓ
such thatR(pℓ+1) < (1 − 7δ)R(p∗). SinceR decreases slowly as described above, it follows thatt < ℓ.
Moreover, since we assumed the exploration phase isδ-approximate,St ≥ 1

1+δ S(pt) ≥ 1
1+δ γ. Therefore,

during phaseℓ we haveRmax ≥ Rt = Stpt ≥ ( 1
1+δ )

2 R(p∗). Since no stopping condition is triggered
for phaseℓ, it must be thatRℓ ≥ ( 1

1+δ )
2 Rmax ≥ ( 1

1+δ )
4 R(p∗). MoreoverR(pℓ+1) ≥ 1

1+δ R(pℓ) ≥
( 1
1+δ )

2 Rℓ ≥ ( 1
1+δ )

6R(p∗), a contradiction.

We can now complete the proof of Lemma 7.2.
We condition on the exploration phase beingδ-approximate. Letn′ andk′ be the number of players and

items left after the exploration phase, respectively. In the exploitation phase, we attain expected revenue
Rev(An′

k′ (p̃)). Moreover, in the exploration phase we attained revenue at least(k− k′)p̃, since we only used
prices greater than or equal tõp. Therefore, the total expected revenue of our pricing strategy is at least
Rev(An′

k′ (p̃)) + (k′ − k)p̃. It is easy to see that this is at leastRev(An′

k (p̃)).
It remains to bound the expected revenue ofAn′

k (p̃). Observe thatn
′

n ≥ 1 − δ. For brevity, denote
β , (1− 1√

2πk
).

There are two cases. In the first case,p∗ = S−1( kn). Lemma 7.3 and Claim 7.5 imply that

Rev(An′

k (p̃)) ≥ β
n′

n

p̃

p∗
Rev(An

n(p
∗)) ≥ β (1− 8δ) Rev(An

n(p
∗)).
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The second case isp∗ = pr. By Claim 7.6 and unimodality ofR, we have that

Rev(An
n(max(S−1( kn), p̃))) ≥ Rev(An

n(p̃)) ≥ (1− 7δ) Rev(An
n(p

∗)).

Moreover, using Lemma 7.3, Claim 7.5, and the equation abovewe show that

Rev(An′

k (p̃)) ≥ β (1− 8δ) Rev(An
n(max(S−1( kn), p̃))) ≥ β (1− 15δ) Rev(An

n(p
∗)).

By Lemma A.2, Mechanism 2 achieves, in expectation, at leastthe following fraction of the expected
revenue of the offline benchmark:

β (1−O(δ))
(
1− 2 log1+δ(

1
ǫ ) exp(−1

4 δ
2γm)

)
.

Now, plugδ into Lemma 7.2, andm as defined in the pricing strategy. Note thatm = Θ( δ2n
log 1/ǫ). We obtain

the final bound replacingγ by the lesser quantitykn , and using the fact thatlog1+δ(x) = Θ(1δ log x).

8 Conclusions and open questions

We consider dynamic pricing with limited supply and achievenear-optimal performance using an index-
based bandit-style algorithm. A key idea in designing this algorithm is that we define the index of an arm
(price) according to the estimated expectedtotal payoff from this arm given the known constraints.

While in this paper we apply the above key idea to a specific index-based algorithm (UCB1), it can be
seen as an (informal) general reduction for index-based algorithms for dynamic pricing, from unlimited
supply to limited supply. This reduction may help with more general dynamic pricing settings (more on that
below), and moreover it might be extended to other bandit-style settings where the “best arm” isnot an arm
with the best expected per-round payoff. In particular, [1]uses a version of this reduction in the context of
adaptive quality control in crowdsourcing.

It is an interesting open question whether a reduction such as above can be made more formal, and which
algorithms and which settings it can be applied to. An ambitions conjecture for our setting is that there is
a simple black-box reduction from unlimited supply to limited supply that applies to arbitrary “reasonable”
algorithms. In the full generality this conjecture appearsproblematic; in particular, some reasonable bandit
algorithms such asEXP3 are hard-coded to spend a prohibitively large amount of timeon exploration.

This paper gives rise to a number of more concrete open questions. The most immediate ones concern
extending our upper and lower bounds for, respectively, more general and more specific classes of demand
functions. First, it is desirable to extend Theorem 1.1 to possibly irregular distributions, i.e. obtain non-
trivial regret bounds with respect to the offline benchmark.Second, one wonders whether the optimal
O(cF

√
k) regret rate from Theorem 1.3 can be extended to all regular demand distributions. Third, it is

open whether our lower bounds can be strengthened to regulardemand distributions.
For arbitrary (possibly irregular) distributions, one canshow that, essentially, the appropriate benchmark

is amixtureof two fixed prices rather than one fixed price. In a recent follow-up work [11], the authors design
regret-minimizing algorithms that compete with this randomized benchmark. In fact, their results extend to
a much more general setting of explore-exploit problems with resource utilization constraints.

Further, it is desirable to extend dynamic pricing with limited supply beyond IID valuations. For ex-
ample, most results on secretary problems [8] hold under a weaker assumption: random permutation of
adversarially chosen values; however, our results do not immediately extend to this model. More generally,
one would like to handle adversarial valuations, or perhapsidentify assumptions which make the problem
tractable. One natural direction is to bound the number or frequency of changes. An initial result in this
direction [14] allows the demand distribution to change at most once, at some point in time that is unknown
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to the mechanism. Alternatively, one could bound the rate ofchange. A promising approach here is to apply
the reduction from this paper to index-based algorithms forthe corresponding bandit setting [42, 41].

On a final note, we observe that selling at a given price provides some information about the smaller
prices, whereas our algorithms do not directly use this information (and neither does the prior work [34, 13]).
Likewise, our algorithms do not update the estimates for a given price using the estimates for other prices
using the fact that the sales rateS(p) is non-increasing in the pricep. It is somewhat surprising that our
main algorithm achieves near-optimal regret without taking advantage of this additional information. While
such information might help in practice, the extent to whichit can possibly help is an open question.

Acknowledgements. We are grateful to Jason Hartline, Qiqi Yan and Assaf Zeevi for their comments.
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Appendix A: Benchmark comparison

We start with a self-contained proof of a slightly weaker version of Lemma 3.1 (which suffices for the
purposes of this paper).

Lemma A.1 (Yan [44]). For each regular demand distribution there exists a fixed-price strategy whose
expected revenue is at least the offline benchmark minusO(

√
k log k).

Recall thatAn
k(p) denotes the fixed-price strategy withk items,n agents, and fixed pricep. LetMn

k de-
note the optimal (expected revenue maximizing) offline auction withn-players andk-items. As in Claim 3.2,
let p∗ = max(pr, S

−1( kn )), wherepr = argmaxp p S(p) is the Myerson reserve price.

Claim A.2. If the demand distribution is regular thenRev(An
n(p

∗)) ≥ Rev(Mn
k ).

Proof of Claim A.2.Let qi be the probability thatMn
k sells to agenti. By symmetry,qi = qj for all playersi

andj, so we simply denote this probability byq. Let p = S−1(q) be the single price we would need to offer
a agent in order to sell to him with probabilityq. SinceR is a concave function of the selling probability,
Jensen’s inequality implies thatR(p) is an upper bound on the revenue collected by the Myerson auction
from a single agent. Equivalently:nR(p) ≥ Rev(Mn

k ).
Now, observe that the expected number of items sold byMn

k is nq. SinceMn
k never sells more thank

items, it must be thatq ≤ k
n . Therefore,p ≥ S−1( kn). By definition ofp∗, we deduce that there are two

cases: (1)p∗ = pr, or (2)pr ≤ p∗ = S−1( kn) ≤ p. In case (1) it is clear thatR(p∗) ≥ R(p). In case (2) we
get thatR(p∗) ≥ R(p) sinceR(x) is decreasing forx ≥ pr. Then

Rev(An
n(p

∗)) = nR(p∗) ≥ nR(p) ≥ Rev(Mn
k ).

Lemma A.1 follows from Claim A.2 and Claim 3.2 because forp = p∗ we haveS(p) ≤ k
n , and so

ν(p) = p min(k, n S(p)) = np∗ S(p∗) = Rev(An
n(p

∗)) ≥ Rev(Mn
k ).

Multiplicative bounds. Further, we derive a multiplicative bound in which fixed-price strategies for lim-
ited supply are compared to those for unlimited supply. We use this bound to prove Lemma 7.3.

Claim A.3. For any regular demand distribution and anyp ≥ S−1( kn) it holds that

Rev(An
k(p)) ≥

(
1− 1√

2πk

)
Rev(An

n(p)).

Proof. The proof uses a technique from [44]. As a thought experiment, consider an environment where agent
valuations arecorrelatedas follows: The joint distribution of agent valuations can be sampled by choosing a
setS′ of k players uniformly at random, then for each agent inS′ sampling from the conditional distribution
F (x)|x≥S−1(k/n), and for each agent not inS′ sampling from the conditional distributionF (x)|x<S−1(k/n).
Observe that each agent’s valuation is distributed according toF , yet at any point exactlyk players have
value exceedingS−1(k/n).

Let T ′ be the set of players in this correlated environment whose valuation exceedsp. The probability
of a particular agent being included inT ′ is S(p), andE[|T ′|] = nS(p). Sincep ≥ S−1(k/n), it is clear
thatT ′ ⊆ S′ and therefore0 ≤ |T ′| ≤ k.

Now consider our original environment where each agent’s valuation is drawn i.i.d fromF . Let T be
the set of players in this environment whose valuations exceedp. The probability of a agent being included
in T is S(p) – the same as the probability of being included inT ′. However, each agent is included inT
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independentlywith probabilityS(p). As a result, some of the players inT do not win an item – this happens
when|T | > k. We can write the revenue ofAn

k(p) in this i.i.d environment as follows.

Rev(An
k(p)) = pE[min(|T |, k) ] (26)

Now, observe thatr(Y ) = min(|Y |, k) is the rank function of thek-uniform matroid. Moreover, it was

shown in [44] that the correlation gap of this function isβ ,

(
1− 1√

2πk

)
. Therefore, since each agent is

included inT independently, we know by the definition of the correlation gap and the fact thatT andT ′

have the same marginals that

E[r(T )] ≥ β E[r(T ′)]. (27)

Recall thatT ′ is always bounded between0 andk, thereforer(T ′) = |T ′|. Combining (26) and (27), we get

Rev(An
k(p)) = p E[min(|T |, k) ] ≥ β pE[|T ′|] = β pnS(p)) = β Rev(An

n(p))).

Corollary (Lemma 7.3). Assume the demand distribution is regular. Letp ≤ p′ be two prices such that

p ≥ S−1(k/n). Letn′ ≤ n. ThenRev(An′

k (p′)) ≥ n′

n
p′

p

(
1− 1√

2πk

)
Rev(An

n(p)).

Proof. Observe thatAn
k(p

′) sells at least as many items asAn
k(p) for every realization of the bids, but at

pricep′ instead ofp. ThereforeRev(An
k(p

′)) ≥ p′

p Rev(A
n
k(p)). Combining with Claim A.3 we get that

Rev(An
k (p

′)) ≥ p′

p

(
1− 1√

2πk

)
Rev(An

n(p)).

Next, a simple (omitted) argument shows that the revenueRev(An
k(p)) of a fixed price auction exhibits

diminishing marginal returns in the numbern of players. Therefore,Rev(An′

k (p)) ≥ n′

n Rev(A
n
k(p)).

Let us note in passing that Claim A.3 and Claim 3.2 imply a stronger, multiplicative version of Lemma 3.1,
which is also immediate from [44].

Lemma A.4 (Yan [44]). Assume that the demand distribution is regular. Then there exists a fixed-price
strategy whose expected revenue approximates the offline benchmark up to a factor1− 1√

2πk
.

Appendix B: Monotone Hazard Rate distributions

Let us state and prove several properties of Monotone HazardRate (MHR) distributions which we use in
Section 5 and Section 7. Throughout, for a distributionF we useF (x) to denote the c.d.f,S(x) = 1−F (x)
to denote the sales rate, andf(x) to denote the p.d.f.

We begin with a simple known characterization of MHR distributions.

Fact B.1. A distribution is MHR if and only ifS(·) is log-concave (i.e.log S(x) is a concave function ofx).

Next, we bound the sales rate at the Myerson reserve price.

Claim B.2. Let F be an MHR distribution with support on[0,∞], and letS(x) = 1 − F (x). Let r ∈
argmaxR(·) whereR(x) = xS(x). ThenS(r) ≥ 1/e.

Proof. We haveR′(r) = S(r) + rS′(r) = 0. Moreover, by Fact B.1 we deduce that

log S(r)

r
≥ d

dx
log(S(x))|r =

S′(r)
S(r)

Combining with the previous equality, we have−1
r ≤

log(S(r))
r which is equivalent toS(r) ≥ 1

e .
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We now use log-concavity to bound the sensitivity of the inverse of the sales rate.

Claim B.3. LetF be an MHR distribution with support on[0,∞], and letα, β ∈ [0, 1] with β ≥ α. Then

S−1(β) ≥ log(β)

log(α)
S−1(α)

Proof. By Fact B.1,f(x) = log(S(x)) is a concave, decreasing function ofx such thatf(0) = 0 and
f(x)→ −∞ asx→∞. By Jensen’s inequality, for everya, b ∈ [0,∞] with b ≤ a we havef(b)/f(a) ≤ b

a .
Plugginga = S−1(α) andb = S−1(β) into this inequality completes the proof.
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