
Congestion Lower Bounds for Secure In-network
Aggregation

Raghav Bhaskar
Microsoft Research India

Bangalore, India
rbhaskar@microsoft.com

Ragesh Jaiswal
Indian Institute of Technology

New Delhi, India
rjaiswal@cse.iitd.ac.in

Sidharth Telang
Cornell University

Ithaca, USA
sidtelang@cs.cornell.edu

ABSTRACT
In-network aggregation is a technique employed in Wireless
Sensor Networks (WSNs) to aggregate information flowing
from the sensor nodes towards the base station. It helps in
reducing the communication overhead on the nodes in the
network and thereby increasing the longevity of the network.
We study the problem of maintaing integrity of the aggre-
gate value, when the aggregate function is SUM, in the pres-
ence of compromised sensor nodes. We focus on one-round,
end-to end, secure aggregation protocols and give a strong,
formal security defintion. We show that a worst-case lower
bound of Ω(n) applies on the congestion (maximum size of
message between any two nodes) in such protocols, where
n is the number of nodes in the network. This is the first
such result showing that the most basic protocols are the
best one-round in-network aggregation protocols with re-
spect to congestion. We also show that against a weaker ad-
versary (which does not compromise nodes), we can achieve
secure in-network aggregation protocols with a congestion
of O(log2 n).

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Security

Keywords
in-network aggregation, security, wireless security

1. INTRODUCTION
In-network aggregation refers to on the fly computations

performed on data by the nodes in a network as the data is
being sent towards a fixed node called the base station. It is
a popular technique, often employed in wireless sensor net-
works (WSNs), to prolong the longevity of the network. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’12, April 16–18, 2012, Tucson, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1265-3/12/04 ...$10.00.

No aggregation With aggregation
No. of messages O(n log2 n) n

Congestion O(n log2 R) O(log2 nR)

Table 1: Communication with and without aggre-
gation for a SUM query in a balanced binary tree
topology.n denotes the number of nodes in the net-
work, [0, R− 1] - message range

example, consider a sensor network where sensors sense the
temperature at their location and send it towards the base
station. The base station is often interested in knowing the
average of the observed readings rather than the individual
readings. Thus, while these readings are being transmitted
towards the base station, sensor nodes add their reading to
the received sum of the readings before forwarding it. Thus,
in a single sweep of the network, the base station gets the
sum of all the readings and can calculate the average from it.
Some of the common aggregate functions are sum, average,
histogram, max and min. Not only is the total number of
messages that need to be sent are reduced using in-network
aggregation, but also the the maximum number of bits com-
municated over any link (congestion) are reduced. To get
an idea of the communication saving made by employing in-
network aggregation, consider a network of n nodes in a bal-
anced binary tree topology with the base station at the root
and sensors occupying the other nodes. Also, assume the ag-
gregation function is SUM and that each node contributes
an integer reading between 0 and (R − 1). Then, Table 1
shows the communication costs in the case of no aggrega-
tion (when all the messages are sent) and in-network aggre-
gation (when the messages are summed up before sending).
Thus, in-network aggregation can reduce both the number
of messages sent and congestion significantly for a binary
tree topology.

As WSNs are deployed in hostile environments, they are
prone to attacks. Attacks can be both from external sources
(like other wireless devices, jamming stations) or sensor nodes
themselves (which have been compromised by an adversary).
While standard cryptographic authentication primitives (like
Message Authentication Codes and Digital Signatures [11])
can be used to prevent several kinds of attacks from external
sources on the in-network aggregation protocol, more inno-
vative techniques are required to counter attacks from com-
promised nodes. A compromised node (using its knowledge
of keying material of the aggregation protocol) can launch
various kinds of attacks without getting detected. For in-

stance, it could drop some received readings, add a huge
reading in the current aggregate, not relay any aggregate at
all, thereby resulting in incorrect aggregate results. While
denial of service attacks (dropping messages etc.) launched
by the compromised nodes are beyond the scope of this pa-
per, we define a strong security notion for the SUM aggre-
gate function in the setting where each reading comes from
a fixed range [0, R − 1]. Informally, our security defintion
ensures that a compromised node cannot influence the ag-
gregate value by more than (R− 1). This insures that even
if some nodes report a reading much smaller than (R − 1),
the compromised node cannot inflate the reading of these
nodes to (R− 1). Though, a compromised node can always
report its reading as (R − 1) (or 0), but that is not con-
sidered as an attack in our security defintion. Ideally, one
would like secure in-network aggregation protocols that im-
pose minimum overhead on existing aggregation protocols.
For instance, secure aggregation protocols which continue to
work in a single round and do not require the sensor nodes
to do much more computation than simply aggregating mes-
sages are highly desirable (verification only happens at the
end). In this work, we focus on single round, end-to-
end secure in-network aggregation protocols which meet
our strict security definition.
Related Works: A number of prior works have ad-

dressed the problem of authentication of aggregate value in
sensor networks. Data aggregation in the presence of com-
promised nodes was first studied by [8]. Hu et al. [8] use
delayed aggregation to propose protocols which are secure
when at most one node is compromised. [3, 6, 9] consider a
single aggregator model in which all nodes report to a sin-
gle party called the aggregator which aggregates the value
and forwards it to the base station. [6] works in this model
using ‘witness’ nodes which serve as additional aggregators.
[9] uses threshold signatures and provides security guaran-
tees when a upper bounded fraction of the nodes are com-
promised. [12] works in a similar setting by dividing the
aggregation tree into subtrees each of which aggregate mes-
sages and commit to them. Suspect aggregates are later
attested using these commitments. Both [4] and [7] achieve
strong security against compromised nodes and have a con-
gestion of O(log n) and O(log2 n) respectively, but they re-
quire multiple rounds of commmunication. All of the above
protocols involve more than one round of interaction and are
basically ‘commit and re-check’ schemes. In this work, we
focus on single round in-network aggregation protocols. [2]
talk abouts the impossibility of achieving a straightforward
extension of the security goals for Message Authentication
Codes to an aggregation setting with compromised nodes.
It proposes a weaker notion of security in which nodes that
are compromised do not contribute to the aggregate. In our
model, each sensor node is both an aggregator and a con-
tributor. [10] proposes a much weaker security notion in
which the attacker can inflate the readings of other nodes to
the maximum value without violating their security notion.
Also, many other works explore the problem of maintaing
secrecy of the aggregated value. In this work, we are not
worried about the secrecy of the aggregate, in fact, the ag-
gregate could be sent out in the clear in the network and
observable by even a passive adversary. Our goal is to au-
thenticate the aggregate value, that is, to make sure that
illegitimate modifications are not made to the aggregate be-
fore it reaches the base station.

Our main result is that any single round, end-to-end se-
cure in-network aggregation protocol (in the sense of our def-
inition) must have a worst-case congestion of Ω(n), thereby
defeating the purpose of aggregation. Note our lower bound
is independent of the topology of the network. We then
show that for a weaker adversary that does not compromise
any sensor node, we can achieve our security definition with
a congestion of O(log2 n), which is the optimal for a tree
topology. The paper is organized as follows: in Section 2
we formally define in-network aggregation. In Section 3, we
provide a security definition via a security game to study
the security of aggregation protocols against compromised
nodes as well as any external adversary. We, then, present
two protocols secure against compromised nodes with O(n)
congestion. We follow this with a proof which shows Ω(n)
as a congestion lower bound for any protocol secure against
compromised nodes. This is a first formal proof to show
that strict security definitions may not be achievable with
less than Ω(n) congestion in the internal adversary case.
Finally, we propose a protocol secure against an external
adversary with a congestion of O(log2 n).

2. PROBLEM DEFINITION
We will now introduce our notation and then define an

in-network aggregation protocol formally. The security pa-
rameter is denoted by k and n denotes the number of nodes
in the network. We will assume that n is ploynomial in the
security parameter, i.e. n = poly(k). Let S1, ..., Sn denote
the sensor nodes and let V denote the verifier. We assume
that each node Si shares a secret key Ki with the verifier
V 1. The aggregation protocol may be run several times,
and each run is referred to as a session and identified by an
unique session identifier sid (this may be just the number of
the aggregation session). We assume that the start of a new
session along with its sid is known to all the sensor nodes.
We do not consider that as part of the in-network aggre-
gation protocol. We now define an in-network aggregation
protocol for the SUM aggregation function.

2.1 In-network Aggregation
An in-network aggregation protocol consists of the follow-

ing four functions. All the functions defined below can be
computed in time polynomial in the security parameter k
and take the session identifier sid inherently as input.

• Setup(1k, Ki): This function is executed by the sen-
sor nodes at the beginning of each aggregation session.
For node Si, the input to the function is the security
parameter, the global secret key Ki, and the session
identifier sid. The output of the function for node Si

is the secret key ki for the session. We call this the
session key of the node Si.

• GenerateTag(mi, ki): This algorithm is run by each
node Si to generate an authentication tag for its con-
tributed message mi. The input to this function is the
message mi and the session key ki and the output is a
tag σi that belongs to some tag space T .

• AggregateTag(σ1, σ2): This algorithm is run by in-
ternal nodes to aggregate authentication tags that it

1In the public key setting, the key Ki could be derived using
a Diffie-Hellman Key exchange protocol between the verifier
and the node.

receives from the other sensor nodes. The input to the
function are two authentication tags, say σ1 ∈ T and
σ2 ∈ T and the output of the function is the aggregate
tag σ1⊕σ2 obtained by applying some combination op-
eration ⊕. Moreover, (T ,⊕) forms an abelian group
such that finding the inverse in the group is computa-
tionally efficient.

Node Si uses this function in the following manner:
Once it receives messages and tags from all incoming
nodes, it aggregates all these tags along with its own
tag and sends the aggregate tag (and sum of all the
corresponding messages) along its outgoing edge.

• Verify(M , Σ): This algorithm is run by the verifier V
at the end of each aggregation session. The input to
this function is the aggregate messageM and an aggre-
gate tag Σ. The output of the function is 1 denoting
successful authentication and 0 denoting failure.

Given the above functions, the protocol description is very
simple. At the beginning of each aggregation session (de-
noted by session identifier sid), each node executes the Setup
to obtain the secret key of the session. The verifier also runs
the setup to compute the session keys of all the nodes. Now
in a given session, suppose node Si receives message/tag
pairs from nodes Sj , Sk, and Sl and is supposed to send
message/tag to node Sp. Suppose Si intends to contribute
mi and it receives the following message tag pairs (mj , σj),
(mk, σk), and (ml, σl). The node Si does the following: It
first uses the function GenerateTag to generate the tag σi

corresponding to its message mi. Then it aggregates the
tags using the AggregateTag function and send the pair (mi

+ mj + mk + ml, σi ⊕ σj ⊕ σk ⊕ σl) to the node Sp. Fi-
nally the verifier on receiving the pair (M,Σ) executes the
Verify function and outputs 1 or 0. In the next subsection,
we discuss the security definitions for an in-network aggre-
gation protocol.

3. SECURITY DEFINTIONS
We study the security of an in-network aggregation proto-

col in two different scenarios. In the first scenario, we con-
sider a strong adversary who can not only read and modify
messages exchanged between any two nodes in the network,
it can also compromise any subset of the sensor nodes or
in other words can get access to any of the secret keys of a
subset of the nodes. In the second scenario, we consider a
weaker adversary who cannot compromise any sensor node.
We call the first class of adversary an insider adversary and
the second one an outsider adversary2. The message space
M of messages mi is assumed to be [0, R− 1] for some inte-
ger R (again polynomial in the security parameter) and we
assume that all the n node participate in the protocol.
For completeness, we provide below the standard defini-

tion of a pseudorandom family of functions, which we use
later.

Definition 1. A family of functions H = {Hk}k∈K where
Hk : Zp → Zp is a pseudorandom family of functions if for

2For the sake of simplicity, we do not model concurrent ex-
ecutions of the in-network aggregation protocol, in the fol-
lowing security definitions. Against an adversary, which can
choose to attack a session after observing many other ses-
sions, our lower bound will continue to hold.

every probabilistic polynomial time algorithm A, Advprf
H (A)

is negligible in the security parameter, where Advprf
H (A) is

defined as

|Pr[k ← K : AHk = 1]− Pr[RF ← F : ARF = 1]|

where F is the set of all functions f : Zp → Zp

3.1 Security against insider adversaries
Here the adversary gets complete control over a subset of

sensor nodes. Since it is not possible for the verifier to distin-
guish between a compromised node and a non-compromised
one, a compromised node may add as large a value that
a node is allowed to add. What the verifier can ensure is
that a compromised node should not be able to do much
more than that. That is, it should not be able to change
(increase or decrease) the readings of the non-compromised
nodes without being detected by the verifier. This motivates
the following security game.

Game Ginsider
A

procedure Initialize
Let S = {S1, ..., Sn}
U ← {}; Mh ← 0
Run Setup to fix the session keys k1, ..., kn

procedure RevealKeys(U)
U ← U
return all the session keys of nodes in the subset U .

procedure RevealTags((m1, Si1), ..., (mk, Sik))
Generate and return tags σ1, ..., σk for messages

m1, ...,mk corresponding to nodes Si1 , ..., Sik .
Mh ←

∑

j,Sij
∈S\U mj

procedure Finalize(M,∆)
If (U = S) then return 0
If (Verify(M,∆) = 1) and

((M −Mh > |U | · (R− 1)) or (M < Mh))
then return 1 else return 0

With respect to the above game, we define the advantage
of an adversary in breaking a protocol P in the following
manner:

Advinsider
P (A) = Pr[Ginsider

P ⇒ 1]

In simpler words, an adversary is allowed to obtain the
secret keys of a subset U of nodes of its choice. The nodes
for which the adversary does not have the secret key are
called the honest nodes. It may obtain one correctly gener-
ated tag for any message of its choice corresponding to the
honest nodes. Finally it attacks with a message, tag pair
(M , Σ) and it is said to succeed if Verify succeeds for this
pair and the message is larger than the sum of messages
queried in the RevealTags queries for the honest nodes
(Mh) by an additive factor of (R − 1) times the number of
dishonest nodes or less than it. This captures the case we
talked about earlier where we said the the adversary cannot
be stopped from tampering the reading of the compromised
node but it should not be able to tamper readings of the
non-compromised nodes.

Definition 2 (Insider security). We say a protocol
P is insider secure if for every probabilistic polynomial time
adversary A, Advinsider

P (A) is negligible in the security pa-
rameter k.

Now we will first see two protocol constructions that are
insider secure but both have linear congestion. Finally, we
will argue why any protocol that is insider secure cannot
have less than linear amount of congestion.

3.1.1 Aggregate messages, do not aggregate tags
Here we argue that the protocol defined below is insider

secure. In order to define the protocol, we just need to define
the four functions of Section 2.1. Here is the description of
the protocol. We call this protocol P1:

• LetMAC1 : K1×S → K2 andMAC2 : K2 × [0,. . . ,R−
1] → U be two message authentication code (MAC)
algorithms.

• Setup: The node Si (and the verifier) applies MAC1

at Ki and sid to compute the session key ki.

• GenerateTag: The node Si uses the message authenti-
cation code MAC2 to generate the tag

σi = (0, ...,MAC2(ki,mi)
︸ ︷︷ ︸

ith term

, 0, ..., 0).

The tag space is T = (U ∪ {0})× ...× (U ∪ {0}) where
U denotes the range of MAC2.

• AggregateTag: Here we define the combination oper-
ator ⊕ that operates on elements of T . Given σ1 =
(t1, ..., tn) and σ2 = (t′1, ..., t

′
n), then σ = (t′′1 , ..., t

′′
n) =

σ1 ⊕ σ2 is defined as follows: for all i,

t′′i =

{

ti + t′i if either ti = 0 or t′i = 0;

0 otherwise.

One can easily verify that (⊕, T) is a group and finding
inverse of any element is simple.

• Verify: Given an input (M,∆), where ∆ = (t1, ..., tn)
the verifier does the following: for each i it checks if
there exists a message mi ∈ {0, ..., R − 1} such that
MAC(ki,mi) = ti. If such messages m1, ...,mn exist
and

∑

i mi = M then it outputs 1 else it outputs 0. It
also returns 0 if any of ti is 0.

Security.
The security of the above aggregate protocol hinges on the

security of the underlying MAC scheme. Given an adversary
A with non negligible advantage in Ginsider

P , we can constuct
an adversary B that can forge the underlying MAC scheme.
The following lemma formalizes this.

Theorem 3. Let A be an adversary attacking the authen-
ticated aggregation protocol P1 defined above and having a
running time of t. Then there is an adversary B that at-
tacks the message authentication code MAC2 such that:

Advuf−cma
MAC2

(B) ≥ (1/n) ·Advinsider
P1

(A)

Furthermore, B makes at most 1 mac generation query and
1 verification query and has a running time of O(t+ n ·R).
3

Proof. We construct the adversaryB that attacksMAC2

using the adversary A that attacks the aggregation protocol
P1. Here is the description of this adversary.

Algorithm B
1. H ← [n]
2. Pick session keys k1, ..., kn randomly from the keyspace.
3. Run A
4. When A asks for session keys for indices in

the set U :
5. return keys ki1 , ..., ki|U|

to A

6. Let H = [n]\U .
7. When A asks to reveal tags, i.e., it sends a

query (m1, Si1), ..., (mk, Sik):
8. Pick an index j randomly from the set H.
9. For each ir, if ir 6= j, then

return tag MAC2(kir ,Mr) for message mr.
else
make a call to the MAC2 generation oracle
for B and use the response of the oracle as
a tag for message mr.

10. Suppose A halts and returns (M, (t1, ..., tn)):
11. For all i 6= j, find the message m′

i ∈ [0, R− 1]
such that MAC2(ki,m

′
i) = ti.

12. If the above messgages are found:
B sends ((M −

∑

i 6=j m
′
i), tj) to the

verification oracle.
else B sends (⊥,⊥) to the verification oracle.

The analysis of the adversary B that attacks MAC2 is sim-
ple. B executes A. We will assume that A queries tags of
chosen messages for all the nodes. We can do this since if
there is an adversary that makes tag queries for only a sub-
set of nodes, then there is another adversary with higher
chance of success that makes tag queries for all nodes. Con-
sider a run of the game GP1

with adversary A in which A
wins. Let the set of honest nodes be H and A’s final out-
put be (M, (t1, . . . , tn)). Since Verify(M, (t1, . . . , tn)) = 1,
there exist (m′

1, . . . ,m
′
n) such that

∑n
i=1

m′
i = M and for

each i, m′
i ∈ {0, . . . , R − 1} and ti = MAC2(ki,m

′
i). Let

M ′
h =

∑

i∈H m′
i. Since M ′

h 6= Mh, there exists p ∈ H such
that mp 6= m′

p where mp is the message in the tag query for
the node p. Conditioned on the success of A’s attack, we
note that B’s attack succeeds if the randomly chosen index
j in line (8) is equal to p. The probability that this occurs is
at least (1/n). This gives the statement of the theorem.

3.1.2 Aggregate (XOR) tags, do not aggregate mes-
sages

Here we give another protocol that is insider secure but the
congestion is linear in the number of nodes in the network.
It differs from our protocol in the previous section in that
here the length of the aggregate tag is small, whereas the
messages are sent without aggregation. Again, we define the
the four functions of Section 2.1. Let us call this protocol
P2.

3The security definitions for message authentication codes
above is standard. The reader is requested to refer to notes
by Mihir Bellare and Philip Rogaway [1] for this.

• LetMAC1 : K1×S → K2 andH : K2×[0, . . . , R− 1]→
{0, 1}m be two message authentication code (MAC) al-
gorithms.

• Setup: The node Si (and the verifier) applies MAC1

at Ki and sid to compute the session key ki.

• GenerateTag: The node Si uses the message authenti-
cation code H to generate the tag σi = Hki

(mi). The
tag space is T = {0, 1}m.

• AggregateTag: Here we define the combination oper-
ator ⊕ that operates on elements of T . Given σ1 ∈
{0, 1}m and σ2 ∈ {0, 1}

m, then σ = σ1 ⊕ σ2 is just the
bitwise XOR of σ1 and σ2.

One can easily verify that (⊕, T) is a group and finding
inverse of any element is simple.

• Verify: The verifier receives the pair (M,∆), where M
in this case is a tuple of messages M = (m1, ...,mn)
and ∆ ∈ {0, 1}m. The Verify function is defined in the
following manner: Check if Hki

(mi)⊕ ...⊕Hkn(mn) =
∆ and ∀i, 0 ≤ mi ≤ R − 1. If both conditions are
satisfied, then output 1 else output 0.

Security.
As with the protocol discussed earlier, the security of

this protocol hinges on the security of the underlying MAC
scheme. Given an adversary A with non negligible advan-
tage in Ginsider

P2
, we can constuct an adversary B that can

forge the underlying MAC scheme, H. The following lemma
formalizes this.

Theorem 4. Let A be an adversary attacking the authen-
ticated aggregation protocol P2 defined above and having a
running time of t. Then there is an adversary B that at-
tacks the message authentication code H such that:

Advuf−cma
H (B) ≥ (1/n) ·Advinsider

P2
(A)

Furthermore, B makes at most 1 mac generation query and
1 verification query and has a running time of O(n+ t).

Proof. As for protocol P1, we will construct an adver-
sary B that attacks the underlying MAC, H using an adver-
sary A that attacks the protocol P2. The description of this
adversary is very similar to the adversary in the previous
subsection.

Algorithm B
1. H ← [n]
2. Pick session keys k1, ..., kn randomly from the keyspace.
3. Run A
4. When A asks for session keys for indices in

the set U :
5. return keys ki1 , ..., ki|U|

to A

6. Let H = [n]\U .
7. When A asks to reveal tags, i.e., it sends a

query (m1, Si1), ..., (mk, Sik):
8. Pick an index j randomly from the set H.
9. For each ir, if ir 6= j, then

return tag Hkir
(mr) for message mr.

else
make a call to the MAC generation oracle
for B and use the response of the oracle as
a tag for message mr.

10. Suppose A halts and returns ((m′
1, ...,m

′
n),∆):

11. Compute T = ⊕i 6=jHki
(m′

i)⊕∆
12. B sends (m′

j , T) to the verification oracle.

B executes A. We will assume that A queries tags of chosen
messages for all the nodes. We can do this since if there
is an adversary that makes tag queries for only a subset of
nodes, then there is another adversary with higher chance
of success that makes tag queries for all nodes. Consider a
run of the game Ginsider

P2
with adversary A in which A wins.

Let the set of honest nodes be H and A’s final output be
((m1, . . . ,mn),∆). Since Verify((m1, . . . ,mn),∆) = 1, for
each i, mi ∈ {0, . . . , R − 1}. Let M ′

h =
∑

i∈H mi. We have
that

∑n
i=1

mi −Mh is either < 0 or > (n − |H|) · (R − 1).
This implies M ′

h 6= Mh. Hence there exists p ∈ H such that
mp 6= m′

p where mp is the message used in the tag query for
node p. Conditioned on the success of A’s attack, we note
that B’s attack succeeds if the randomly chosen index j in
line (8) is equal to p. The probability that this occurs is at
least (1/n). This gives the statement of the theorem.

3.2 Congestion lower bound for insider secure
protocols

In the previous subsections, we talked about two protocols
that are insider secure but there is linear amount of conges-
tion. Here we show that any protocol that is insider secure
will necessarily have Ω(n) congestion.

We will show that if the congestion is less than (n/2) ·
logR, then there is an adversary that succeeds in attacking
the protocol in the sense of Definition 1. The main idea is the
following: The verifier receives the aggregate message and
an aggregate tag. If the total size of the information that it
receives is less than (n/2) · logR, then by simple pigeonhole
principle, this means that there are lots of pairs of mes-
sage tuples m̄ = (m1, ...,mn) and m̄′ = (m′

1, ...,m
′
n)

4 such
that the aggregate tag for both these message tuples are the
same and the message aggregates for these tuples are also the
same. Consider any such pair of tuples. Since the message
aggregates are the same, there exists an index j ∈ [n] such
that mj > m′

j . Now, just by knowing the secret key of the

jth node and tags of messages m1, ...,mj−1,mj+1, ...,mn, an
adversary would be able to compute the aggregate tag for
the message tuple (m′

1, ...,m
′
j−1, R − 1,m′

j+1, ...,m
′
n) with-

out even knowing m′
1, ...,m

′
j−1,m

′
j+1, ...,m

′
n (by doing some

4mi and m′
i denotes the message of the ith node

simple group operations). Note that the aggregate of this
message tuple is just the ((aggregate of m̄) - m′

j + (R− 1)).
This is appropriately large for the attack to work. So, an ad-
versary just guesses the index j, m̄, and m′

j and mounts an
attack. What remains to show is that the probability that
this succeeds, is large. This is precisely what we discuss in
the remaining section.

Theorem 5. Consider any in-network aggregation proto-
col P . If P is insider secure, then the worst-case congestion
of this protocol is Ω(n).

Proof. For the sake of contradiction, assume that the
worst case congestion is at most (n

2
·logR). LetH : K×M→

T be the function that maps the key and message space to
the tag space (as specified by the GenerateTag algorithm of
P) and ⊕ be the aggregation function for tags as specified in
AggregateTag. For a fixed value of the session keys (k1, ..., kn),
consider the mapping f of message tuples to valid (M,∆)
pairs. By valid, it is meant that

f(m1, ...,mn) =

(
∑

i

mi,⊕iHki
(mi)

)

Now since maximum number of bits that the verifier re-
ceives is (n/2) logR, the maximum number of distinct (M,∆)

pairs is Rn/2. Let f−1(pair) denote the set of message tu-
ples that map to pair. Let B be the set of bad tuples in
the sense that for any tuple m̄ ∈ B, |f−1(f(m̄))| = 1. Note

that |B| ≤ Rn/2. For a randomly chosen message tuple, the

probability that it belongs to B is ≤ R−n/2.
Now conditioned on a message tuple (m1, ...,mn) not be-

longing to B (this happens with probability at least

(1 − R−n/2)), we know that there is another message tuple
(m′

1, ..,m
′
n) such that:

(i)
∑

i mi =
∑

i m
′
i

(ii) ⊕iHki
(mi) = ⊕iHki

(m′
i)

Now because of the first property above we know that
there is an index j such that m′

j < mj . We also know that

⊕i 6=jHki
(m′

i)⊕Hkj
(m′

j) = ⊕iHki
(mi)

=⇒ ⊕i 6=jHki
(m′

i) = ⊕iHki
(mi)⊕Hkj

(m′
j)

−1

=⇒ ⊕i 6=jHki
(m′

i)⊕Hkj
(R− 1) =

⊕iHki
(mi)⊕Hkj

(m′
j)

−1 ⊕Hkj
(R− 1) (1)

Now given this, we construct the following adversary that
attempts to win the game Ginsider

P :

Adversary A
1. Pick j randomly from the set {1, ..., n}.

2. Pick two distinct messages l1 and l2 randomly
from {0, ..., (R− 1)}. Let l1 < l2.

3. Pick n− 1 messages m1, ...,mn−1 randomly
from the set {0, ..., (R− 1)}.

4. Query the procedure RevealKeys with the
set {Sj} and get back the session key
kj for Sj .

5. Query the procedure RevealTags with input
((m1, S1), ..., (mj−1, Sj−1),
(mj , Sj+1), ..., (mn−1, Sn))
to obtain tags ti for every i 6= j and compute
the aggregate tag T = Hkj

(l2)⊕ (⊕i 6=jti).

6. Compute T ′ = Hkj
(l1)

−1 ⊕ T ⊕Hkj
(R− 1).

7. Output ((
∑n−1

i=1
mi + l2 − l1 +R− 1), T ′) as

an attack for the protocol P

Next, we show that the advantage of the above adversary
over the protocol is large.

Lemma 6. The following is true for the above adversary
A:

Advinsider
P (A) ≥

1

n ·R
·
(

1−R−n/2
)

≥
1

poly(k)
.

Proof. Let ᾱ = (α1, ..., αn) be a randomly chosen mes-
sage tuple and let Mᾱ =

∑

i αi and ∆ᾱ = ⊕iHki
(αi). Now

if the description size of (Mᾱ,∆ᾱ) is at most (n
2
·logR), then

we know that with probability at least (1−R−n/2) there is
another tuple of messages (β1, ..., βn) such that for at least
one j ∈ [n], βj < αj . Furthermore,

∑

i βi =
∑

i αi and
⊕iHki

(αi) = ⊕iHki
(βi).

Conditioned on the existence of this tuple, in the case of
our adversary, (m1, ...,mj−1, l2,mj , ...,mn−1) may be inter-
preted as (α1, ..., αn) above, and l1 may be interpreted as βj .
Since j and l1 are chosen randomly, we get that the proba-
bility that A gets them correct is at least 1

n·R
. Conditioned

on this event happening, we have that the verifier accepts
on the input (M,∆), where

M =

(
n−1∑

i=1

mi + l2 − l1 +R− 1

)

, and

∆ = ⊕i 6=jHki
(mi)⊕Hkj

(l2)⊕Hkj
(l1)

−1 ⊕Hkj
(R− 1).

This is due to equation (1) and that there is only one com-
promised node and we have

M =

n−1∑

i=1

mi + l2 − l1 +R− 1 >

n−1∑

i=1

mi + 1 · (R− 1).

So, we get that A succeeds with probability at least

(1−R−n/2) ·
1

n ·R
≥

1

poly(k)
.

This completes the proof of Theorem 5.

3.3 Security against outsider adversary
The outsider case is similar to the insider case except that

here the adversary cannot get access to the session keys of
any of the sensor nodes. In terms of the security game,
here the adversary does not have access to the RevealKeys
method and U = {}. For completeness we give the security
game for the outsider case.

Game Goutsider
P

procedure Initialize
1. Let S = {S1, ..., Sn}
2. Mh ← 0
3. Run Setup to fix the session keys k1, ..., kn

procedure RevealTags((m1, Si1), ..., (mk, Sik))
1. Generate and return tags σ1, ..., σk for messages

m1, ...,mk corresponding to nodes Si1 , ..., Sik .
2. Mh ←

∑

j,Sij
∈S mj

procedure Finalize(M,∆)
1. If (Verify(M,∆) = 1) and ((M > Mh) or

(M < Mh)) then return true else return false.

3.3.1 An aggregation protocol secure against outsiders
We will now describe an aggregate protocol which is se-

cure against outsider adversaries. The intuition behind the
protocol is as follows: Each node shares one long-term key
(ki) with the verifier. The verifier also shares one common
key s with all the nodes. A session key is derived from s and
the session identifier sid and is the same for all the sensor
nodes. The session key is used to aggregate the messages of
each node. The protocol is formally defined below. We will
call this protocol P3.

• Let p be a large prime, H : K1 × S → Zp be a family
of pseudorandom functions, and I : K2 × Zp → Zp

be another such family. Here K1 is the keyspace of
H and K2 is the keyspace of I. We will assume that
the verifier shares the pair of keys (ki, s) with node Si.

Here ki
$
← K1 and s

$
← K2.

• Setup: Each node and the verifier generates common
session key ksid by applying the function I on the com-
mon shared key s and the session identifier sid (which
in this case may be thought of as the aggregation round
number). So, ksid ← Is(sid).

• GenerateTag: The ith node generates the following tag
for its messgae mi: σi ← mi · ksid +Hki

(ksid).

• AggregateTag: The ith node just takes the sum of the
all the tags its receives and its own tag.

• Verify: The verifier in this case receives an aggregate
message M and an aggregate tag ∆. It checks if

∆ = M · ksid +
∑

i

Hki
(ksid).

If this check succeeds, it accepts else it rejects.

Security.
For showing that the above protocol is secure from out-

side adversaries, we will show that an attack on the protocol
leads to an attack on the underlying pseudorandom func-
tions. So, as long as we use secure psudorandom functions
in our protocol, it will be secure.

For the sake of contradiction, we will start with an adver-
sary that attacks our protocol, i.e,

Advoutsider
P3

(A) ≥ 1/poly(k).

We will assume that the adversary makes RevealTags
queries for all nodes. This is because if there is an adver-
sary that makes tag queries for only a subset of nodes, then
there is another adversary with higher chance of success that
makes tag queries for all nodes. The next lemma shows that
if any such adversaries exist then there will be an adversary
that can compute the value of the session key ksid.

Lemma 7. Let A be an adversary for protocol P3. There
is an adversary A′ such that A′ determines the challenge ses-
sion key ksid = Is(sid) with probability at least Advoutsider

P3
(A).

Proof. Let (M,∆) be the forgery by A. Let mi be the
message sent to the ith node in the RevealTags query and
let yi be the response (this is the tag for mi). Given that A
succeeds, we have

M 6= Σn
i=1mi.

Thus ksid can be determined as follows:

∆− Σn
i=1yi

M − Σn
i=1mi

=
ksid · (M −

∑n
i=1

mi)

M −
∑n

i=1
mi

= ksid

We will use the following security amplification result from
Dodis et. al. [5]. The result says that parallel repetition of
pseudorandom functions leads to a stronger psedorandom
function.

Theorem 8 (Theorem 7, [5]). If H : K1 × Zp → Zp

is a secure pseudorandom family of functions then so is Hn :
Kn

1 × Zp → Z
n
p where

Hn((k1, k2...kn), x) = Hk1
(x)|Hk2

(x)|...|Hkn(x).
5

We use the above result to show that if there is an ad-
versary that attacks P3, then we can construct an adversary
that attacks Hn (in the PRF sense). The next theorem
formalizes this.

Theorem 9. Let A be an adversary attacking the authen-
ticated aggregation protocol P3 and having a running time of
t. Then there is an adversary B that attacks the pseudoran-
dom function Hn such that:

Advprf
Hn (B) ≥ Advoutsider

P3
(A)− 1/|K1|.

Furthermore, B makes only one query and has a running
time of O(t).

Proof. We use A to construct an adversary B that dis-
tinguishes Hn from a random function f mapping Z to Z

n
p .

We will need the following simple lemma with respect to
random functions.

5here | denotes concatenation.

Lemma 10. Let f : Zp → Z
n be a random function. Con-

sider a variant of game G′
P3

in which instead of returning
tags σi = mi · ksid + Hki

(ksid) in the RevealTags query,
the following tags are returned: σi = mi · ksid + f(ksid)[i].
The probability that A succeeds in computing ksid in such a
game ≤ 1/|K1|.

Proof. This will be an information theoretic argument.
For any fixed value of m1, ...,mn, and σ1, ..., σn, the distri-
bution

(σ1 −m1 ·K)|...|(σn −mn ·K)

for randomly chosen K ∈ K1 is a uniform distribution over
Z
n
p . This means that for any key K ∈ K1, it is as likely

to be the challenge session key ksid as any other key. This
means that the probability that A can guess the value of the
session key is at most 1/|K1|.

We now give the construction of the adversary B that
attacks Hn in the PRF sense.

Algorithm Bg

1. ksid ← Is(sid)
2. Run A
3. When A asks to reveal tags, i.e., it sends a

query (m1, S1), ..., (mn, Sn):
4. B makes a query to its function oracle g and

gets back (y1, ..., yn)← g(ksid)
5. Tags (σ1, ..., σn), where σi = mi · ksid + yi

are returned to A
6. Suppose A halts and returns the key K
7. If (K = ksid) then B outputs 1 else B outputs 0.

The analysis of B is simple. When g = f (i.e., random
function), then from Lemma 10 we know that

Pr[Bf = 1] ≤ 1/|K1| (2)

Furthermore, we know that

Pr[BHn

= 1] = Advoutsider
P3

(A) (3)

Finally, combining equations (2) and (3), we get the fol-
lowing:

AdvPRF
Hn (B) = |Pr[BHn

= 1]−Pr[Bf = 1]|

⇒ AdvPRF
Hn (B) ≥ Advoutsider

P3
(A)− 1/|K1|.

This concludes the proof of Theorem 9.

4. CONCLUSION
We presented a lower bound of Ω(n) on congestion in

a one-round end-to-end secure in-network aggregation pro-
tocol. To prove the lower bound, we formally define an
in-network aggregation protocol and a strong security no-
tion to study the security of the protocol against compro-
mised nodes. Our security notion prevents any compromised
node from modifying the contributed readings of the honest
nodes. We show that for such a strict security notion, we
cannot do better in terms of congestion than a trivial pro-
tocol which doesn’t do any aggregation. The same security
notion, though, can be met against a weaker adversary (an
adversary that does not compromise nodes) with a better
congestion.

In summary, our results can be used to argue that as far
as single-round, end-to-end secure in-network aggregation is
concerned, the most simple protocols (with linear conges-
tion) are the only solutions. For lower congestion, we have
to construct protocols that run in multiple rounds or are not
end-to-end.

5. REFERENCES
[1] Mihir Bellare and Philip Rogaway, Introduction to

modern cryptography, http://cseweb.ucsd.edu/ mi-
hir/cse207/classnotes.html/.

[2] A.C.-F. Chan and C. Castelluccia, On the
(im)possibility of aggregate message authentication
codes, Information Theory, 2008. ISIT 2008. IEEE
International Symposium on, july 2008, pp. 235 –239.

[3] Haowen Chan, Adrian Perrig, Bartosz Przydatek, and
Dawn Song, Sia: Secure information aggregation in
sensor networks, J. Comput. Secur. 15 (2007), 69–102.

[4] Haowen Chan, Adrian Perrig, and Dawn Song, Secure
hierarchical in-network aggregation in sensor
networks, Proceedings of the 13th ACM conference on
Computer and communications security (New York,
NY, USA), CCS ’06, ACM, 2006, pp. 278–287.

[5] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal,
and Valentine Kabanets, Security amplification for
interactive cryptographic primitives, Lecture Notes in
Computer Science, vol. 5444, pp. 128–145, Springer
Berlin / Heidelberg, 2009.

[6] W. Du, J. Deng, Y.S. Han, and P.K. Varshney, A
witness-based approach for data fusion assurance in
wireless sensor networks, Global Telecommunications
Conference, 2003. GLOBECOM ’03. IEEE, vol. 3,
2003, pp. 1435 – 1439 vol.3.

[7] Keith B. Frikken and Joseph A. Dougherty, IV, An
efficient integrity-preserving scheme for hierarchical
sensor aggregation, Proceedings of the first ACM
conference on Wireless network security (New York,
NY, USA), WiSec ’08, ACM, 2008, pp. 68–76.

[8] Lingxuan Hu and David Evans, Secure aggregation for
wireless networks, In Workshop on Security and
Assurance in Ad hoc Networks, IEEE Computer
Society, 2003, p. 384.

[9] A. Mahimkar and T.S. Rappaport, Securedav: a
secure data aggregation and verification protocol for
sensor networks, Global Telecommunications
Conference, 2004. GLOBECOM ’04. IEEE, vol. 4,
2004, pp. 2175 – 2179 Vol.4.

[10] Mark Manulis and Jörg Schwenk, Security model and
framework for information aggregation in sensor
networks, ACM Trans. Sen. Netw. 5 (2009),
13:1–13:28.

[11] Alfred J. Menezes, Paul C. Van Oorschot, Scott A.
Vanstone, and R. L. Rivest, Handbook of applied
cryptography, 1997.

[12] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong
Cao, Sdap: a secure hop-by-hop data aggregation
protocol for sensor networks, Proceedings of the 7th
ACM international symposium on Mobile ad hoc
networking and computing (New York, NY, USA),
MobiHoc ’06, ACM, 2006, pp. 356–367.

