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Abstract—The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior

probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior,

reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative

deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a

reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution

not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly

from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study

supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.

Index Terms—Nonblind deconvolution, image prior, image deblurring, image denoising.

Ç

1 INTRODUCTION

IMAGES captured with today’s cameras typically contain
some degree of noise and blur. In low-light situations, blur

due to camera shake can ruin a photograph. If the exposure
time is reduced to remove blur due to motion in the scene or
camera shake, intensity and color noise may be increased
beyond acceptable levels. The act of restoring an image to
remove noise and blur is typically an underconstrained
problem. Information lost during a lossy observation
process needs to be restored with prior information about
natural images to achieve visual realism. Most Bayesian
image restoration algorithms reconstruct images by max-
imizing the posterior probability, abbreviated MAP. Recon-
structed images are called the MAP estimates.

One of the most popular image priors exploits the
heavy-tailed characteristics of the image’s gradient dis-
tribution [7], [21], which are often parameterized using a
mixture of Gaussians or a generalized Gaussian distribu-
tion. These priors favor sparse distributions of image
gradients. The MAP estimator balances the observation
likelihood with the gradient prior, reducing image decon-
volution artifacts such as ringing and noise. The primary
concern with this technique is not the prior itself, but the
use of the MAP estimate. Since the MAP estimate penalizes

nonzero gradients, the images often appear overly
smoothed with abrupt step edges, resulting in a cartoonish
appearance and a loss of mid-frequency textures, Fig. 1.

In this paper, we introduce an alternative image
restoration strategy that is capable of reconstructing
visually pleasing textures. The key idea is not to penalize
gradients based on a fixed gradient prior [7], [21], but to
match the reconstructed image’s gradient distribution to the
desired distribution [39]. That is, we attempt to find an
image that lies on the manifold of solutions with the desired
gradient distribution, which maximizes the observation
likelihood. We propose two approaches. The first penalizes
the gradients based on the KL divergence between the
empirical and desired distributions. Unfortunately, this
approach may not converge or may find solutions with
gradient distributions that vary significantly from the
desired distribution. Our second approach overcomes
limitations of the first approach by defining a cumulative
penalty function that gradually pushes the parameterized
empirical distribution toward the desired distribution. The
result is an image with a gradient distribution that closely
matches that of the desired distribution.

A critical problem in our approach is determining the
desired gradient distribution. To do this, we borrow a
heuristic from Cho et al. [4] that takes advantage of the fact
that many textures are scale invariant. A desired distribu-
tion is computed using a downsampled version of the
image over a set of segments. We demonstrate our results
on several image sets with both noise and blur. Since our
approach synthesizes textures or gradients to match the
desired distribution, the peak signal-to-noise ratio (PSNR)
and gray-scale SSIM [37] may be below other techniques.
However, the results are generally more visually pleasing.
We validate these claims using a user study comparing our
technique to those reconstructed using the MAP estimator.
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2 RELATED WORK

2.1 Image Denoising

Numerous approaches to image denoising have been
proposed in the literature. Early methods include decom-
posing the image into a set of wavelets. Low-amplitude
wavelet values are simply suppressed to remove noise in a
method call coring [30], [35]. Other techniques include
anisotropic diffusion [26] and bilateral filtering [36]. Both of
these techniques remove noise by only blurring neighboring
pixels with similar intensities, resulting in edges remaining
sharp. The FRAME model [41] showed Markov Random
Field image priors can be learned from image data to perform
image reconstruction. Recently, the Field of Experts approach
[31] proposed a technique to learn generic and expressive
image priors for traditional MRF techniques to boost the
performance of denoising and other reconstruction tasks.

The use of multiple images has also been proposed in the
literature to remove noise. Petschnigg et al. [27] and
Eisemann and Durand [6] proposed combining a flash
and nonflash image to produce reduced noise and naturally
colored images. Bennett and McMillan [1] use multiple
frames in a video to denoise, while Joshi and Cohen [14]
combined hundreds of still images to create a single sharp
and denoised image. In this paper, we only address the
tasks of denoising and deblurring from a single image.

2.2 Image Deblurring

Blind image deconvolution is the combination of two
problems: estimating the blur kernel or PSF and image
deconvolution. A survey of early work in these areas can be
found in Kundur and Hatzinakos [18]. Recently, several
works have used gradient priors to solve for the blur kernel
and to aid in deconvolution [7], [16], [21]. We discuss these in

more detail in Section 2.3. Joshi et al. [15] constrained the
computation of the blur kernel resulting from camera shake
using additional hardware. A coded aperture [21] or fluttered
shutter [29] may also be used to help in the estimation of the
blur kernel or in deconvolution. A pair of images with high
noise (fast exposure) and camera shake (long exposure) was
used by Yuan et al. [40] to aid in constraining deconvolution.
Approaches by Whyte et al. [38] and Gupta et al. [11] attempt
to perform blind image deconvolution with spatially variant
blur kernels, unlike most previous techniques that assume
spatially invariant kernels. In our work, we assume the blur
kernel, either spatially variant or invariant, is known or
computed using another method. We only address the
problem of image deconvolution.

2.3 Gradient Priors

The Wiener filter [10] is a popular image reconstruction
method with a closed form solution. The Wiener filter is a
MAP estimator with a Gaussian prior on image gradients,
which tends to blur edges and causes ringing around edges
because those image gradients are not consistent with a
Gaussian distribution.

Bouman and Sauer [2], Chan and Wong [3], and, more
recently, Fergus et al. [7] and Levin et al. [21] use a heavy-
tailed gradient prior such as a generalized Gaussian
distribution [2], [21], a total variation [3], or a mixture of
Gaussians [7]. MAP estimators using sparse gradient priors
preserve sharp edges while suppressing ringing and noise.
However, they also tend to remove mid-frequency textures,
which causes a mismatch between the reconstructed
image’s gradient distribution and that of the original image.

2.4 Matching Gradient Distributions

Matching gradient distributions has been addressed in the
texture synthesis literature. Heeger and Bergen [13]
synthesize textures by matching wavelet subband histo-
grams to those of the desired texture. Portilla and
Simoncelli [28] match joint statistics of wavelet coefficients
to synthesize homogeneous textures. Kopf et al. [17]
introduce a nonhomogeneous texture synthesis technique
by matching histograms of texels (or elements of textures).

Matching gradient distributions in image restoration is
not entirely new. Li and Adelson [22] introduce a two-step
image restoration algorithm that first reconstructs an image
using an exemplar-based technique similar to Freeman et al.
[9], and warps the reconstructed image’s gradient distribu-
tion to a reference gradient distribution using Heeger and
Bergen’s method [13].

A similarly motivated technique to ours is proposed by
Woodford et al. [39]. They use a MAP estimation frame-
work called a marginal probability field (MPF) that matches
a histogram of low-level features, such as gradients or
texels, for computer vision tasks, including denoising.
While both Woodford et al.’s and our techniques use a
global penalty term to fit the global distribution, MPF
requires that one bins features to form a discrete histogram.
This may lead to artifacts with small gradients. Our
distribution matching method bypasses this binning pro-
cess using parameterized continuous functions. Also,
Woodford et al. [39] use an image prior estimated from a
database of images and use the same global prior to

684 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 4, APRIL 2012

Fig. 1. The gradient distribution of images reconstructed using the MAP
estimator can be quite different from that of the original images. We
present a method that matches the reconstructed image’s gradient
distribution to that of the desired gradient distribution (in this case, that of
the original image) to hallucinate visually pleasing textures.



reconstruct images with different textures. In contrast,
we estimate the image prior directly from the degraded
image for each textured region. Schmidt et al. [34] match the
gradient distribution through sampling, which may be
computationally expensive in practice. As with Woodford
et al. [39], Schmidt et al. also use a single global prior to
reconstruct images with different textures, which causes
noisy renditions in smooth regions. HaCohen et al. [12]
explicitly integrate texture synthesis to image restoration,
specifically for an image up-sampling problem. To restore
textures, they segment a degraded image and replace each
texture segment with textures in a database of images.

3 CHARACTERISTICS OF MAP ESTIMATORS

In this section, we illustrate why MAP estimators with a
sparse prior recover unrealistic, piecewise smooth rendi-
tions as illustrated in Fig. 1. Let B be a degraded image, k be
a blur kernel, � be a convolution operator, and I be a latent
image. A MAP estimator corresponding to a linear image
observation model and a gradient image prior solves the
following regularized problem:

Î ¼ argmin
I

kB� k� Ik2

2�2
þ w

X
m

�ðrmIÞ
( )

; ð1Þ

where �2 is an observation noise variance, m indexes
gradient filters, and � is a robust function that favors sparse
gradients. We parameterize the gradient distribution using
a generalized Gaussian distribution. In this case, �ðrIÞ ¼
� lnðpðrI; �; �ÞÞ, where the prior pðrI; �; �Þ is given as
follows:

pðrI; �; �Þ ¼ ��ð
1
�Þ

2�ð1�Þ
expð��jrIj�Þ: ð2Þ

� is a Gamma function and shape parameters �; � determine

the shape of the distribution. In most MAP-based image

reconstruction algorithms, gradients are assumed to be

independent for computational efficiency: pðrI; �; �Þ ¼
1
Z

QN
i¼1 pðrIi; �; �Þ, where i is a pixel index, Z is a partition

function, and N is the total number of pixels in an image.
A MAP estimator balances two competing forces: The

reconstructed image Î should satisfy the observation model
while conforming to the image prior. Counterintuitively,
the image prior term, assuming independence among
gradients, always favors a flat image to any other image,
even a natural image. Therefore, the more the MAP
estimator relies on the image prior term, which is often
the case when the image degradation is severe, the more the
reconstructed image becomes piecewise smooth.

One way to explain this property is that the indepen-
dence among local gradients fails to capture the global
statistics of gradients for the whole image. The image prior
tells us that gradients in a natural image collectively exhibit a
sparse gradient profile, whereas the independence assump-
tion of gradients forces us to minimize each gradient
independently, always favoring a flat image. Nikolova [25]
provides a theoretic treatment of MAP estimators in general
to show its deficiency.

We could remove the independence assumption and
impose a joint prior on all gradients, but this approach is

computationally expensive. This paper introduces an
alternative method to impose a global constraint on
gradients—that a reconstructed image should have a
gradient distribution similar to a reference distribution.

4 IMAGE RECONSTRUCTION

In this section, we develop an image reconstruction
algorithm that minimizes the KL divergence between the
reconstructed image’s gradient distribution and its refer-
ence distribution. This distance penalty plays the role of a
global image prior that steers the solution away from
piecewise smooth images.

Let qEðrIÞ be an empirical gradient distribution of an
image I and qD be a reference or desired distribution. We
measure the distance between distributions qE and qD using
the Kullback-Leibler (KL) divergence:

KLðqEkqDÞ ¼
Z
x

qEðxÞ ln
qEðxÞ
qDðxÞ

� �
dx: ð3Þ

An empirical distribution qE is parameterized using a
generalized Gaussian distribution pðrI; �; �Þ (2). Given
gradient samples, rIi, where i indexes samples, we
estimate the shape parameters �E; �E of an empirical
gradient distribution qE by maximizing the log likelihood:

½�E; �E � ¼ argmin
�;�

�
XN
i¼1

1

N
ln pðrIi; �; �Þð Þ

( )
: ð4Þ

This is equivalent to minimizing the KL divergence
between gradient samples rI and a generalized Gaussian
distribution. We use the Nelder-Mead optimization method
[19] to solve (4).

4.1 Penalizing the KL Divergence Directly

To motivate our algorithm in Section 4.2, we first introduce
a method that penalizes the KL divergence between an
empirical gradient distribution qE and a reference distribu-
tion qD. We show that the performance of this algorithm is
sensitive to the parameter setting and that the algorithm
may not always converge. In Section 4.2, we extend this
algorithm to a more stable approach called iterative
distribution reweighting (IDR) for which the found empiri-
cal distribution is closer to qD.

We can penalize the KL divergence between qE and qD
by adding a term to the MAP estimator in (1):

Î ¼ argmin
I

kB� k� Ik2

2�2
þ w1�DjrIj�D þ w2KLðqEkqDÞ

( )
;

ð5Þ

where w2 determines how much to penalize the KL
divergence.1 It is hard to directly solve (5) because the KL
divergence is a nonlinear function of a latent image I.
Therefore, we solve (5) iteratively.

Using the set rI as a nonparametric approximation of qE
and (3), we estimate KLðqEkqDÞ using
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1. In (5), we have replaced the summation over multiple filters in (1), i.e.,P
m �mjrmIj�m , with a single derivative filter to reduce clutter, but the

derivation can easily be generalized to using multiple derivative filters. We
use four derivative filters in this work: x, y derivative filters and x-y, and
y-x diagonal derivative filters.



KLðqEkqDÞ �
XN
i

�GðrIiÞ ¼
XN
i

1

N
ln

qEðrIiÞ
qDðrIiÞ

� �� �
; ð6Þ

where �GðrIiÞ is the energy associated with a KL
divergence for each gradient sample rIi.

Algorithm 1, shown using pseudocode, iteratively
computes the values of �GðrIiÞ using the previous
iteration’s empirical distribution qE

ðl�1Þ, followed by solving
(5). The accuracy of our approximation of KLðqEkqDÞ is
dependent on two factors. The first is the number of
samples in rI. As we discuss later in Section 4.3, we may
assume a significant number of samples since the value of
(6) is computed over large segments in the image. Second,
the parameterization of qE is computed from the previous
iteration’s samples. As a result, the approximation becomes
more accurate as the approach converges.

Algorithm 1. MAP with KL penalty

% Initial image estimate to start iterative minimization

Î
0 ¼ argminI

(
kB� k� Ik2

2�2
þ w1�DjrIj�D

)

Update qE
0 using (4)

% Iterative minimization

for 1 ¼ 1 . . . 10 do

% KL distance penalty term update

�lGðrIÞ ¼
1

N
ln

 
qE
ðl�1ÞðrIÞ
qDðrIÞ

!

% Image reconstruction

Î
l ¼ argminI

(
kB� k� Ik2

2�2
þ w1�DjrIj�D þ w2�

l
GðrIÞ

)

Update qE
l using (4)

end for

Î ¼ Î10

Using �GðrIÞ, we can describe Algorithm 1 qualitatively
as follows: If qE has more gradients of a certain magnitude
than qD, �G penalizes those gradients more; if qE has fewer
gradients of a certain magnitude than qD, they receive less
penalty. Therefore, the approach favors distributions qE
close to qD. Fig. 2 illustrates the procedure. The full

derivation of the algorithm details is available in the
supplemental material, which is available at http://people.
csail.mit.edu/taegsang/Documents/PhDThesis_TaegSang
Cho.pdf.

4.1.1 Algorithm Analysis

To provide some intuition for the behavior of Algorithm 1,
consider the case when qE approaches qD. The cost
function �G will approach zero. The result is a loss of
influence for the cost related to the KL divergence, and qE
may not fully converge to qD. qE can be forced arbitrarily
close to qD by increasing the weight w2 and reducing the
influence of the other terms. Unfortunately, when w2 is
large, the algorithm oscillates around the desired solution
(Fig. 3). Even if under-relaxation techniques are used to
reduce oscillations, qE may be significantly different from
qD for reasonable values of w2. If w2 is too large, the
linearized system (available in the online supplemental
material, (11)) becomes indefinite, in which case the
minimum residual method [33] cannot be used to solve
the linearized system. To mitigate the reliability issue and to
damp possible oscillations around the desired solution, we
develop an iterative distribution reweighting algorithm.

4.2 The Iterative Distribution Reweighting

In this section, we propose a second approach, called
iterative distribution reweighting, that solves many of the
shortcomings of Algorithm 1. Previously, we minimized a
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Fig. 2. This figure illustrates Algorithm 1. Suppose we deconvolve a degraded image using a MAP estimator. (b) shows that the x-gradient
distribution of the MAP estimate in (a) does not match that of the original image. (c) Our algorithm adds the log ratio of qE and qD to the original
penalty (i.e., �DjrIj�D ) such that the weighted sum of the two penalty terms encourages a better distribution match in the following iteration. qD is set
to the ground truth distribution.

Fig. 3. We illustrate the operation of Algorithm 1 in terms of the �E; �E
progressions. Different colors correspond to different gradient filters.
Oftentimes, Algorithm 1 does not converge to a stable point, but
oscillates around the desired solution.



global energy function that only penalized empirical
distributions that diverged from qD. As discussed in
Section 4.1.1, this approach may not converge, or upon
convergence the found gradient distribution may vary
significantly from qD. Our second approach can be
interpreted as minimizing the data cost function from 1,
while actively pushing the parameterized empirical dis-
tribution qE toward our reference distribution qD:

Î ¼ argmin
I

kB� k� Ik2

2�2

( )
; ð7Þ

s:t: qE ¼ qD:

That is, our goal is to find a solution that lies on the
manifold of solutions defined by qE ¼ qD that minimizes (7).
In this paper, we do not claim to find the global minimum
along the manifold, but in practice we find our heuristic to
provide solutions that have a low energy with qE � qD.

While conceptually quite different from Algorithm 1, the
approaches are similar in implementation. As in the KL
divergence term of Algorithm 1, we add an additional cost
function to (7) using the ratio of the distributions qE and qD.
However, instead of penalizing the KL divergence between
qE and qD directly, we propose a new cumulative cost
function �̂G. During each iteration, we update �̂G to push qE
closer to qD by examining the parameterized empirical
distribution from the previous iteration. For instance, if the
empirical probability of a set of gradients is too high relative
to qD in the current iteration, their penalty is increased in
the next iteration. Our new cost function �̂lG is

�̂lGðrIÞ ¼ �̂
ðl�1Þ
G ðrIÞ þ w2

1

N
ln

qE
ðl�1ÞðrIÞ
qDðrIÞ

� �
; ð8Þ

where

�̂0
GðrIÞ ¼ w1�DjrIj�D : ð9Þ

The first term of (8) is the cost function from the previous
iteration. The second term updates the cost function using the
ratio between qD and the parameterized gradient distribution
resulting from the use of �̂

ðl�1Þ
G . We initialize �̂0

G using
the gradient prior from (1) to bias at the outset results with
sparse gradients. In practice, �D and �D may be set using the
parameters of the reference distribution, or simply set to
some default values. As discussed in Section 4.3, we kept
them fixed to default values for use in estimating qD.
Combining (7) with our new cost function �̂G, our new
approach iteratively solves

Î ¼ argmin
I

kB� k� Ik2

2�2
þ �̂GðrIÞ

( )
; ð10Þ

as shown in pseudocode by Algorithm 2. IDR iteratively
adjusts the penalty function �̂G by the ratio of distribu-
tions qE and qD using a formulation similar to the previous
approach using KL divergence (6); thus the name iterative
distribution reweighting. The detailed derivations available in
the online supplemental material, which is available at
http://people. csail.mit.edu/taegsang/Documents/
PhDThesis_TaegSang Cho.pdf, Section 3, can be easily
modified for use with Algorithm 2.

Algorithm 2. The iterative distribution reweighting (IDR)
% Initial image estimate to start iterative minimization

Î
0 ¼ argminI

(
kB� k� Ik2

2�2
þ w1�DjrIj�D

)

Update qE
0 using (4)

% Iterative minimization

for l ¼ 1 . . . 10 do

% Accumulating the KL divergence

�̂lGðrIÞ ¼ �̂
ðl�1Þ
G ðrIÞ þ w2

1

N
ln

 
qE
ðl�1ÞðrIÞ
qDðrIÞ

!

% Image reconstruction

Î
l ¼ argminI

(
kB� k� Ik2

2�2
þ �lGðrIÞ

)

Update qE
l using (4)

end for

Î ¼ Î10

Examining (8), if the parameterized empirical distribu-

tion qE is equal to qD, �̂lG is equal to the cost function from

the previous iteration, �̂l�1
G . As a result, the desired solution

qE ¼ qD is a stable point for IDR.2 It is worth noting that

when qE ¼ qD, �̂G will not be equal to the sparse gradient

prior, as occurs for the gradient priors in Algorithm 1 since

�G ¼ 0. Consequently, Algorithm 2 can converge to solu-

tions with qE arbitrarily close to qD for various values of w2.

The value of w2 may also be interpreted differently for both

algorithms. In Algorithm 1, w2 controls the strength of the

bias of qE toward qD, where w2 controls the rate qE
converges to qD in Algorithm 2. That is, even for small

values of w2, Algorithm 2 typically converges to qE � qD.
We illustrate the operation of IDR in Fig. 4, and show

how �E; �E changes from one iteration to the next in Fig. 5.
Observe that �E; �E no longer oscillates as in Fig. 3. In Fig. 4,
we show the original penalty function and its value after
convergence. Note it is not equal to the sparse gradient
prior and significantly different from the penalty function
found by Algorithm 1, Fig. 2.

In Fig. 6, we test IDR for deblurring a single texture,
assuming that the reference distribution qD is known a priori.
We synthetically blur the texture using the blur kernel shown
in Fig. 8 and add 5 percent Gaussian noise to the blurred
image. We deblur the image using a MAP estimator and using
IDR, and compare the reconstructions. For all examples in
this paper, we use w1 ¼ 0:025; w2 ¼ 0:0025. We observe that
the gradient distribution of the IDR estimate matches the
reference distribution better than that of the MAP estimate,
and visually, the texture of the IDR estimate better matches
the original image’s texture. Although visually superior, the
peak signal-to-noise ratio and gray-scale SSIM [37] of the IDR
estimate are lower than those of the MAP estimate. This
occurs because IDR may not place the gradients at exactly the
right position. Degraded images do not strongly constrain the
position of gradients, in which case our algorithm disperses
gradients to match the gradient distribution, resulting in
lower PSNR and SSIM measures.
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2. This statement does not mean that the algorithm will converge only if
qE ¼ qD; the algorithm can converge to a local minimum.



4.2.1 Algorithm Analysis

IDR matches a parameterized gradient distribution qE , and,

therefore, the algorithm is inherently limited by the

accuracy of the fit. The behavior of IDR is relatively

insensitive to the weighting term w2 since w2 no longer

controls how close qE is to qD, but the rate at which qE
approaches qD. Similarly to Algorithm 1, a large w2 can

destabilize the minimum residual algorithm [33] that solves

the linearized system available in the online Supplemental

material, (11).
In most cases, IDR reliably reconstructs images with the

reference gradient distribution. However, there are cases in

which the algorithm settles at a local minimum that does

not correspond to the desired texture. This usually occurs

when the support of the derivative filters is large and when

we use many derivative filters to regularize the image. For

instance, suppose we want to match the gradient histogram

of a 3� 3 filter. The algorithm needs to update 9 pixels to

change the filter response at the center pixel, but updating

9 pixels also affects filter the responses of 8 neighboring

pixels. Having to match multiple gradient distributions at

the same time increases the complexity and reduces

the likelihood of convergence. To control the complexity,

we match four two-tap derivative filters. Adapting deriva-

tive filters to local image structures using steerable filters

[4], [8], [32] may further improve the rendition of oriented

textures, but it is not considered in this work.

4.3 Reference Distribution qD Estimation

We parameterize a reference distribution qD using a
generalized Gaussian distribution. Unfortunately, one often
does not know a priori what qD should be. Previous work
estimates qD from a database of natural images [7], [39] or
hand-picks qD through trial and error [21]. We adopt the
image prior estimation technique introduced in Cho et al.
[4] to estimate qD directly from a degraded image, as we
will now describe.

It is known that many textures are scale invariant due to
the fractal properties of textures and piecewise smooth
properties of surfaces [20], [24]. That is, the gradient profiles
are roughly equal across scales, whereas the affect of
deconvolution noise tends to be scale variant. Cho et al. [4]
propose deconvolving an image, followed by downsampling.
The downsampled image is then used to estimate the gradient
distribution. The result is the scale invariant gradient
distribution is maintained, while the noise introduced
by deconvolution is reduced during downsampling. This
approach will result in incorrect distributions for textures that
are not scale invariant, such as brick textures, but produces
reasonable results for many real-world textures.

When deconvolving the degraded image B, we use a
MAP estimator (1) with a hand-picked image prior, tuned
to restore different textures reasonably well at the expense
of a slightly noisy image reconstruction (i.e., a relatively
small gradient penalty). In this paper, we set the parameters
of the image prior as ½� ¼ 0:8; � ¼ 4; w1 ¼ 0:01� for all
images. We fit gradients from the downsampled image to
a generalized Gaussian distribution, as in (4), to estimate the
reference distribution qD. While fine details can be lost
through downsampling, empirically the estimated reference
distribution qD is accurate enough for our purpose.

Our image reconstruction algorithm assumes that the
texture is homogeneous (i.e., a single qD). In the presence of
multiple textures within an image, we segment the image and
estimate separate reference distributions qD for each segment:
We use the EDISON segmentation algorithm [5] to segment
an image into about 20 regions. Fig. 7 illustrates the image
deconvolution process for spatially varying textures. Unlike
Cho et al. [4], we cannot use a per-pixel gradient prior since
we need a large area of support to compute a parameterized
empirical distribution qE in (8). However, Cho et al. [4] use the
standard MAP estimate, which typically does not result in
images that contain the desired distribution.
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Fig. 5. This figure shows how the �E; �E progress from one iteration to
the next. Different colors correspond to different gradient filters. We
observe that the algorithm converges to a stable point in about eight
iterations.

Fig. 4. The IDR deconvolution result. (a) shows the deconvolved image using IDR and (b) compares the gradient distribution of images reconstructed
using the MAP estimator and IDR. (c) The effective penalty after convergence (i.e., w1�DjrIj�D þ w2

P10
l¼1

1
N lnðqE

lðrIÞ
qDðrIÞÞ) penalizes gradients with small

and large magnitude more than gradients with moderate magnitude. qD is set to the ground truth distribution.



5 EXPERIMENTS

5.1 Deconvolution Experiments

We synthetically blur sharp images with the blur kernel

shown in Fig. 8, add 2 percent noise, and deconvolve them

using competing methods. We compare the performance of

IDR against four other competing methods.

1. A MAP estimator with a sparse gradient prior [21].
2. A MAP estimator with a sparse prior adapted to

each segment.
3. A MAP estimator with a two-color prior [16].
4. A MAP estimator with a content-aware image

prior [4].

We blur a sharp image using the kernel shown on the right,
add 2 percent noise to it, and restore images using the
competing methods. Fig. 8 shows experimental results. As
mentioned in Section 4.2, IDR does not perform the best in
terms of PSNR/SSIM. Nevertheless, IDR reconstructs mid-
frequency textures better, for instance, fur details. Another
interesting observation is that the content-aware image
prior performs better, in terms of PSNR/SSIM, than simply
adjusting the image prior to each segment’s texture. By
using the segment-adjusted image prior, we observe
segmentation boundaries that are visually disturbing.
Another set of comparisons is shown in Fig. 9.

In Fig. 10, we compare the denoising performance of IDR
to that of a marginal probability field by Woodford et al.

[39] at two noise levels (their implementation only handles
grayscale, square images). Using MPF for denoising has two
drawbacks. First, MPF quantizes intensity levels and
gradient magnitudes to reduce computation. MPF quan-
tizes 256 (8-bit) intensity levels to 64 intensity levels (6-bit),
and it bins 256 (8-bit) gradient magnitudes to 11 slots. These
quantizations can accentuate spotty noise in reconstructed
images. IDR adopts a continuous optimization scheme that
does not require any histogram binning or intensity
quantization; therefore it does not suffer from quantization
noise. Second, Woodford et al. [39] estimate the reference
gradient distribution from a database of images and use
the same prior to denoise different images. This can be
problematic because different images have different refer-
ence distributions qD, but MPF would enforce the same
gradient profile on them. Also, MPF does not adapt the
image prior to the underlying texture, treating different
textures the same way. Therefore, MPF distributes gradi-
ents uniformly across the image, even in smooth regions,
which can be visually disturbing. IDR addresses these
issues by estimating a reference distribution qD from an
input image and by adapting qD to spatially varying texture.

At a high-degradation level, such as a noise level of
31.4 percent, our reference distribution estimation algorithm
can be unstable. In Fig. 10a, our qD estimation algorithm
returns a distribution that has more “large” derivatives and
fewer “small” derivatives (dotted line in Fig. 10), which
manifests itself as a noisy IDR reconstruction. In contrast,
MPF restores a plausible image, but this is somewhat
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Fig. 6. We compare the deblurring performance of a MAP estimator and IDR. IDR reconstructs visually more pleasing mid-frequency textures
compared to a MAP estimator.

Fig. 7. For an image with spatially varying texture, our algorithm segments the image into regions of homogeneous texture and matches the gradient
distribution in each segment independently. Compared to MAP estimators, our algorithm reconstructs visually more pleasing textures.



coincidental in that the reference distribution that MPF
imposes is quite similar to that of the original image.

At a more reasonable degradation level (15 percent noise),
shown in Fig. 10b, our algorithm estimates a reference
distribution that is very similar to that of the original image.
Given a more accurate reference distribution, IDR restores
a visually pleasing image. On the other hand, MPF restores a
noisy rendition because the reference distribution is quite
different from that of the original image. Also note that the
gradient distribution of the restored image in Fig. 10b is very
similar to that of the restored image in Fig. 10a, which
illustrates our concern that using a single image prior for
different images would degrade the image quality.

In this work, we estimate the reference distribution qD
assuming that the underlying texture is scale invariant.
Although this assumption holds for fractal textures, it does
not strictly hold for other types of textures with a
characteristic scale, such as fabric clothes, ceramics, or

construction materials. The IDR algorithm is decoupled
from the reference distribution estimation algorithm. There-
fore, if an improved reference distribution estimation
algorithm is available, the improved algorithm can be used
in place of the current distribution algorithm without
impacting the IDR algorithm itself.

Segmenting images to regions and deconvolving each
region separately may generate artificial texture bound-
aries, as in Fig. 11. While this rarely occurs, we could
mitigate these artifacts using a texture-based segmentation
algorithm rather than EDISON [5], which is a color-based
segmentation algorithm.

5.2 User Study

IDR generates images with rich texture, but with lower
PSNR/SSIM than MAP estimates. To test our impression that
images reconstructed by IDR are more visually pleasing, we
performed a user study on Amazon Mechanical Turk.
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Fig. 8. We compare the performance of IDR against four other competing methods. 1) A MAP estimator with a sparse gradient prior [21]. 2) A MAP
estimator with a sparse prior adapted to each segment. 3) A MAP estimator with a two-color prior [16]. 4) A MAP estimator with a content-aware
image prior. The red boxes indicate the cropped regions. Although the PSNR and the SSIM of our results are often lower than those using MAP
estimators, IDR restores more visually pleasing textures (see bear furs).
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Fig. 10. Comparing the denoising performance of IDR to the marginal probability field [39]. IDR generates a better rendition of the spatially variant
texture.

Fig. 9. We compare the performance of IDR against four other competing methods. As in Fig. 8, IDR’s PSNR/SSIM are lower than those of MAP
estimators, but IDR restores visually more pleasing textures.



We considered seven image degradation scenarios: noisy
observations with 5, 10, and 15 percent noise, blurry
observations with a small blur and 2, 5, and 7 percent
noise, and a blurry observation with a moderate-size blur
and 2 percent noise. For each degradation scenario, we
randomly selected four images from a subset of the Berkeley
Segmentation data set [23] (roughly 700� 500 pixels), and
reconstructed images using a MAP estimator with a fixed
sparse prior (i.e., the same sparse prior across the whole
image), an adjusted sparse prior, and IDR.

We showed users two images side by side, one
reconstructed using our algorithm and another recon-
structed using one of the two MAP estimators (i.e., fixed
or adjusted). We asked users to select an image that is more
visually pleasing and give reasons for their choice. Users
were also given a “No difference” option. We randomized the
order in which we place images side by side.

We collected more than 25 user inputs for each
comparison, and averaged user responses for each degra-
dation scenario (Fig. 12). When the degradation level is low
(5 percent noise or a small blur with 2 percent noise), users
did not prefer a particular algorithm. In such cases, the
observation term is strong enough to reconstruct visually
pleasing images regardless of the prior and/or the
reconstruction algorithm. When the degradation level is
high, however, many users clearly favored our results. User
comments pointed out that realistic textures in trees, grass,
and even in seemingly flat regions, such as gravel paths, are
important for visual realism. Users who favored MAP
estimates preferred clean renditions of flat regions and were
not disturbed by piecewise smooth textures (some even
found it artistic). Individual users consistently favored
either our result or MAP estimates, suggesting that image
evaluation is subjective in nature.

6 CONCLUSION

We have developed an iterative deconvolution algorithm
that matches the gradient distribution. Our algorithm bridges
the energy minimization methods for deconvolution and
texture synthesis. We show through a user study that

matching derivative distribution improves the perceived
quality of reconstructed images. The fact that a perceptually
better image receives lower PSNR/SSIM suggests that there
is a room for improvement in image quality assessment.
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