
Active Objects: Actions for Entity-Centric Search

Thomas Lin

*

Computer Science & Engineering
University of Washington

Seattle, WA, USA

tlin@cs.washington.edu

Patrick Pantel, Michael Gamon
Microsoft Research
One Microsoft Way

Redmond, WA, USA

{ppantel,mgamon}@microsoft.com

Anitha Kannan, Ariel Fuxman
Search Labs

Microsoft Research
Mountain View, CA, USA

{ankannan,arielf}@microsoft.com

ABSTRACT

We introduce an entity-centric search experience, called Active

Objects, in which entity-bearing queries are paired with actions

that can be performed on the entities. For example, given a query

for a specific flashlight, we aim to present actions such as reading

reviews, watching demo videos, and finding the best price online.

In an annotation study conducted over a random sample of user

query sessions, we found that a large proportion of queries in

query logs involve actions on entities, calling for an automatic

approach to identifying relevant actions for entity-bearing queries.

In this paper, we pose the problem of finding actions that can be

performed on entities as the problem of probabilistic inference in

a graphical model that captures how an entity bearing query is

generated. We design models of increasing complexity that

capture latent factors such as entity type and intended actions that

determine how a user writes a query in a search box, and the URL

that they click on. Given a large collection of real-world queries

and clicks from a commercial search engine, the models are

learned efficiently through maximum likelihood estimation using

an EM algorithm. Given a new query, probabilistic inference

enables recommendation of a set of pertinent actions and hosts.

We propose an evaluation methodology for measuring the

relevance of our recommended actions, and show empirical

evidence of the quality and the diversity of the discovered actions.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms

Algorithms, Measurement, Experimentation, Theory

Keywords

Actions, Active Objects, Entity-Centric Search, Query Log

Mining, Web Search

1. INTRODUCTION
Entities are central to a large fraction of Web search queries.

Whether users seek to find information about an entity or transact

on the entity (e.g., “[buy] toy story 3”, “[watch or listen to] obama

weekly address”), understanding the underlying query intent is

key to providing a rich search experience.

Web search today has already taken great strides away from

simple query word matching. For example, popular entities in

large query segments (e.g., local, entertainment, shopping) are

routinely recognized in queries and rich direct displays are

presented to users by filling editorially-defined templates with

associated structured data. For example, a query for “lion king” on

Bing yields such a direct display consisting of an image of the

movie cover, showtimes at local theaters, the running time, genre,

and ratings of the movie. However, since the focus is on the

dominant actions, the search engine underserves, for instance, a

Netflix user seeking other actions such as adding the movie to her

streaming queue, or a child trying to find a toy figurine. In

addition, a different movie such as Michael Moore’s most recent

documentary would certainly have a different underlying intent

distribution. Also, actions associated with queries for tail entities

such as flashlights or small vineyards are completely ignored.

Search as an action broker: A promising future search scenario

involves modeling the user intents (or “verbs”) underlying the

queries and brokering the webpages that accomplish the intended

actions. In this vision, the broker is aware of all entities and

actions of interest to its users, understands the intent of the user,

ranks all providers of actions, and provides direct actionable

results through APIs with the providers. For example, consider a

user who queries for “jetbeam rrt-0”, a flashlight. The broker,

which maintains a collection of all possible actions on flashlights

and associated websites and applications that can accomplish

those actions, would recognize the particular entity mentioned in

the query, and would return a personalized ranked list of actions

to the user. Figure 1 provides a simplistic illustration of how this

user experience could look on a search results page. With actions

present, users could save clicks and save time, and sometimes

even discover new actions to help them toward their goals. New

revenue streams open up from paid action placement, lead

generation, and on-site commercial transactions.

This paper addresses several key questions that arise within this

paradigm. Do Web queries tend to lend themselves to actions on

entities? What does the space of actions look like? And most

importantly, given a query with an entity (e.g., identified via a

technique such as [18]), how can a search engine determine

actions to recommend?

*This work was conducted at Microsoft Research.

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.
WWW’12, April 16–20, 2012, Lyon, France.

ACM 978-1-4503-1229-5/11/04.

Figure 1. Search as an action broker.

We begin with an annotation study conducted over query-click

logs from Bing to determine what fraction of queries contain

entities, and whether these queries tend to map to particular

actions that can be performed on entities.

The main problem that we address in this paper is how to

automatically learn relevant actions for an entity-bearing query.

An automated approach is necessary because there are too many

possible distinct Web queries for editors to manually pair with

actions. Also, manually preparing top actions for just entity types

is insufficient for the following reasons. First, it would not

account for context words in queries, e.g., the queries “Microsoft

jobs” and “Microsoft software” should lead to different actions

despite sharing the same entity (Microsoft). Second, entities of the

same type can have different top actions, e.g., queries for a 2012

Ferrari may historically lead to clicks on topcarwallpapers.com

while queries for a 1995 Ford historically lead to clicks on a used

car value site. Last, but not least, top actions for an entity may

change over time. For example, a query for the next iPhone would

have different desired actions a year before launch, a week before

launch, at launch, and a month after launch. The use of automated

methods enables frequent re-training through a more recent data

set of query-click logs. We motivate and design generative

models, the most complex of which accounts for queries, entities,

actions, textual query contexts, entity types, and historical click

data.

We also explore a number of issues that need to be addressed in

going from a theoretical generative model of actions to an actual

end-to-end search engine component that is able to recommend

appropriate actions when given a new query. We conclude with a

user study evaluating the performance of our various models.

The major contributions of our research are:

 Conceptual: We introduce the active objects paradigm.

We establish that there are specific Web actions for users

to perform on named entities. We conduct an annotation

study which empirically verifies that a large proportion of

sampled query-click pairs reflect actions on entities.

 Modeling: We propose probabilistic models to generate

entity bearing queries from actions, incorporating

information from entity types, query words around an

entity, and clicked hosts.

 Implementation: We train our models on three months of

query data from a commercial search engine, and address

the necessary end-to-end system issues for producing a

system to recommend suitable actions for new queries.

 Experimental: We conduct a user-study to evaluate our

different models, showing which model components are

most important for generating actions.

2. RELATED WORK
Related work that we build upon includes entity-centric search

and intents. Work that we differentiate ourselves from includes

previous work on actions and topic modeling using query logs.

2.1 Entity-Centric Search
As proposed in Dalvi et al. [8], Entity-Centric search focuses

on creating a “semantically rich aggregate view of all the

information available on the Web for each concept instance”.

Researchers have typically focused on techniques for automatic

generation of topic pages based on entities (e.g., [1] [20]), or on

tailored information for particular entity classes (e.g., popular

search engines displaying sports scores when given a sports team

query). To the best of our knowledge we are the first to propose

learning and presenting specific sets of actions for each entity.

In recent years, many projects have aimed to enumerate named

entities and their types. Some popular examples include

Wikipedia (3.6M pages covering 800K categories), Freebase

(20M topics covering 2K types), Facebook (85M+ fan pages

covering 206 categories), Amazon.com (125M products covering

30 departments), and Schema.org (approx. 400 types). The

presence of these lists facilitates the identification of entities

within text [6] and queries [18].

2.2 Intents
Queries can be associated with higher-level intents such as

“planning a vacation” or “getting in shape” (see Figure 2). Broder

[3] outlined three main intents: informational, navigational, and

transactional. Rose and Levinson [19] further divided

informational and navigational intents into subcategories resulting

in 11 finer-grained intents. Yin and Shah [22] used search logs to

organize taxonomies of intent phrases, and Jansen et al. [15]

studied how to classify queries into intents.

Our notion of actions is at an even finer level. Actions are very

specific versions of intents that are performed on entities. Some

actions overlap with finer-grained intents (e.g., “download”), but

the majority of intents (e.g., “interact”) are not concrete enough to

be suggested to users. While some queries map easily into both

intents and actions (e.g, “sea world location” in Figure 2), there

are also queries that have a clear intent but do not contain any

entity and hence cannot be associated with an action (e.g., “how to

lose weight”). Task intents consisting of multiple actions (e.g.,

“book trip”) are also out of scope.

2.3 Actions
Actions and action ontologies have been previously explored in

robotics, intelligent agents, and philosophy (e.g., [16] [17]), but

the primary focus in those areas was to develop a standardized set

of actions (with pre-conditions and post-conditions) that could

guide the planning processes of intelligent agents. In contrast,

when we refer to an action for Web search, we refer to actions for

human users to perform over the Web. Most of these actions (e.g.,

“read reviews” or “download”) have no important prerequisites,

while for those that do (e.g., “add to Netflix queue” requires a

Netflix account), we assume that the preconditions can be

addressed based on information known about the users.

2.4 Use of Probability Models
There has been prior work in using probability models for

modeling user queries. For example, Carman et al. [5] extended

Latent Dirichlet Allocation (LDA) [2] to rank documents by

likelihood of the model given a particular query and user pair.

Their model accounted for users, clicked documents, and query

terms. Gao et al. [10] adapted statistical machine translation

Figure 2. Actions differ from Intents: they must be performed

on Entities, and are often more specific and grounded.

techniques to learn how document titles are semantic translations

of queries. Guo et al. [11] used probability models to identify

named entities and entity classes from query logs. Our work

differs in that the primary focus of our models is on learning

actions, a variable which other studies have not modeled.

3. ACTIONS ANNOTATION STUDY
We begin with a manual study of entities and actions in Web

searches. We collect a frequency-weighted query sample of 200

query-click pairs. We examine each query to determine whether it

contains an entity and whether we can infer an action that the user

intends to accomplish given the query and the clicked host.

Although one can only observe trends on such a small sample set,

these results will serve as a guide for our automatic action

induction models described in Section 4.

Throughout this paper, we define an action as follows:

Action: An empirically observable, direct manipulation or

information request on an entity.

We target actions that are useful in the context of Web search.

For example, “interact” is too coarse and “drink” is not an action

that can be accomplished on the Web. Examples of useful actions

are: “buy”, “add to movie queue” and “read reviews”.

3.1 Entities in Queries
We divided queries into four groups with respect to the

presence of an entity in the query: (i) contains an entity; (ii)

contains an entity category (e.g., “car battery”); (iii) contains a

website entity (URL or website name); and (iv) all other queries.

Figure 3 summarizes the frequency of each group, further

separating out whether a query contains refiner words (e.g.,

“download GoldenEye” with the refiner “download”) in addition

to the entity or entity category.

43% of the queries contain an entity (29% by itself, 14% with a

refiner), 14% contain an entity category (4% by itself, 10% with a

refiner), 28% contain a reference to a website, and 15% do not

contain any entity. Website references often occur in navigational

queries where the user intends to visit a particular site, which

leaves 57% of queries (43% + 14%) that have entities or entity

categories. None of our annotated queries contain multiple

entities. Guo et al. [11] found that 71% of search queries

contained named entities, although they neither specify whether

they consider frequency of individual queries, nor how they

classify entity categories and website entities. Summing our

entity, entity + refiner, and website entity categories, we end up

with a proportion of entities in queries matching their results.

Next, we examined the types (or taxonomy categories) of the

entities that we found. For entity types, we refer to the top level of

the Schema.org entity taxonomy, which is a collection of schemas

developed jointly by Bing, Google and Yahoo, designed explicitly

with the intent of facilitating Web search over entities on the Web.

Within our sample of entities, we found that the most popular

Schema.org top-level category was CreativeWork at 40%. This is

a fairly broad category that covers all books, movies, songs,

software, etc. The category Organization covered 37% of our

entity sample. The Organization type covers hotels, restaurants,

government organizations, local businesses, etc. There was also

Product at 9%, and Person type at 8%. Event type covered 3%

and the last 3% fell into other various types.

3.2 Actions in Queries
Next, we examined how often the queries in our sample can be

associated with specific actions on entities. We also verify

whether the actions in Web search are enumerable.

We manually inferred the actions that are associated with each

sample query by examining the raw query strings (consisting of

entities and possible refiner words), and the clicked URLs. In the

majority of cases, this information clearly indicated a particular

action (e.g., “yahoo messenger download” clearly indicates the

action “download”). In the absence of refiners in the query, the

clicked URL generally gives a good signal to identify the action.

For example, a query for “Hobart corporation” with a click on

“http://hobartcorp.com/Contact-Us/” indicates the intended action

“get contact information”. 19 of the query/URL pairs in our

sample were ambiguous with respect to the intended action, e.g.

“GEICO insurance”-“www.geico.com”, where the specific

intended action is not clear. In some of these cases we took

interesting potential actions (e.g., “see menu” on a restaurant

URL) and added them to our inventory of actions.

From our 200 queries, we compiled a list of 47 actions. Some

of the most popular actions included “login,” “play game,” “read

news about”, and “shop for”. Less common but still interesting

actions include “find recipe for”, “find lyrics”, and “get hours of”.

Working through the 200 queries, our discovery rate of new

actions dropped from over 20 distinct actions for the first 50

labels to fewer than 5 new actions for the last 50 queries. This

suggests that there is an enumerable primary set of actions that

users perform in the context of Web search.

4. AUTOMATIC ACTION INDUCTION
We turn our attention now to the tasks of automatically learning

the underlying actions intended in Web search as well as to

recommending actions given new queries. Our approach is to

probabilistically describe how actionable queries, i.e., queries

containing an entity and underlying action intent, are generated by

Web search users: Our models capture the latent actions and entity

types that influence the terms in the user queries and the resultant

clicks on hosts. Probabilistic inference in the corresponding

learned models provide actions pertinent to the queries. The

models are learned by maximizing the probability of observing a

large collection of real-world queries and their clicked hosts.

In this section we present two graphical models (summarized in

Figure 4). To generate queries from actions, our Model 1 models

query context and clicked URLs. Model 2 builds on Model 1 by

also modeling entity types, and explicitly observing entities. Then,

we propose an extension to each model that adds a switch variable

to better handle queries with empty contexts.

Each query q is represented by a triple {n1, e, n2}, where e

represents the entity mentioned in the query, n1 and n2 are

respectively the pre- and post-entity contexts (possibly empty),

Figure 3. Left: Entity distribution at 200 labels. 43% of the

queries contained entities, and 14% had entity categories.

Right: Distribution of entities into Schema.org types.

referred to as refiners. As a running example, we consider a user

who is interested in reading a review about the movie “Inception”,

and who issues the query “inception review” to a search engine.

Here n1 = , e = “inception” and n2 = “review”. Details on how

we obtain our corpus are presented in Section 5.

4.1 Model 1 (context + click)
The choice of refiner words in a query is clearly influenced by

the intended action. For example, words such as “review”,

“ebert”, and “opinion” are more likely to be used in a query if the

intent is to read a review. Host clicks are also correlated with

action intents. For example, clicks on “rottentomatoes.com”,

“epinions.com” and “dpreview.com” are more likely if the user

has the intent to read reviews, whereas clicks on “bestbuy.com”

and “ebay.com” are more likely for a buying intent. Broder et al.

[4] also found hosts associated with queries to be useful in

classifying queries.

Our first probabilistic graphical model, Model 1, leverages

these signals. It generates actionable queries by first picking an

action from a distribution over a set of latent actions, then

choosing query context words n1 and n2, and then clicking on a

host c. This model does not explicitly capture the entity in the

query, and hence a query is represented by the pair {n1, n2}. The

generative process below summarizes the model illustrated on the

left in Figure 4:

Model 1: Generative model of actionable queries.

For each query q

action a ~ Multinomial()

l-context n1 ~ Multinomial(a)

r-context n2 ~ Multinomial(a)

click c ~ Multinomial(a)

In our running example for the query “inception review”, our

model first generates the action “read reviews”, then given this

action chooses the refiner words  and “review” and then

generates a click on a site such as “rottentomatoes.com”.

The joint probability of the model is the product of the

conditional distributions, as given by:

Next, we define each of the terms in the joint distribution. Let K

be the number of latent actions that govern our query log, where K

is fixed in advance. Then, the probability of actions a is defined as

a multinomial distribution with probability vector , such that the

probability of a particular action is given by:

where I is an indicator function set to 1 if its condition holds, and

0 otherwise.

Let V be the shared vocabulary size of all query refiner words

n1 and n2. Given an action, a, the probability of generating a

refiner n is given by a multinomial distribution with probability

vector a such that = [1, …, K] represents parameters across

actions:

Finally, we assume there are H possible click values,

corresponding to H Web hosts. A click on a host is determined by

an action. Given an action a, we assume the probability of

generating a click on host c is a multinomial with a probability

vector a such that = [1, …, K] captures the matrix of

parameters across all K actions. In particular:

Inference: Given a query, we apply Bayes’ rule to find the

posterior distribution over the actions. In particular, the posterior

distribution, P(a|q,c), is directly proportional to the joint

distribution. We can exactly compute this distribution by

evaluating the joint for every value of a and the observed

configuration of q and c.

Learning: Given a query corpus Q consisting of N independently

and identically distributed queries (each qj = {n1
j, n2

j}) and their

corresponding clicked hosts, we estimate the parameters

andthat maximize the (log) probability of observing Q.

The log P(Q) can be written as:

In the above equation, Pj(a|q,c) is the posterior distribution over

actions for the jth query. We use the Expectation-Maximization

(EM) algorithm to set the parameters. Starting with a random

initialization of the parameters, EM iterates between the E-step in

which Pj(a|q,c) is computed for each query (assuming parameters

are fixed as computed in the previous M-step) and the M-step in

which the parameters are updated by fixing Pj(a|q,c) to the values

computed in the E-step.

The parameter updates are obtained by computing the

derivative of log P(Q) with respect to each parameter, and setting

the resultant to 0. The update for  is given by the average of the

posterior distributions over the actions:

For a fixed a, the update for a is given by the weighted average

of the context words, where the weights are the posterior

distributions over the actions, for each query. In particular:

Similarly, we can update , the parameters that govern the

distribution over clicked hosts for each action. For a fixed a, it is

updated by taking the weighted average of the clicked hosts, with

weights provided by the posterior distribution over the actions:

4.2 Model 2 (context + click + type + entity)
 The semantic type of the entity mentioned in the query is often

strongly correlated with the intended action. For example, if the

queried entity is a movie, the user is likely to be looking to buy it,

rent it, view local showtimes, or buy theater tickets. It is unlikely

however that the user is interested in hacking it, getting its

address, or connecting to it. Similarly, a “read biography” action

is more likely for a person entity and a “view stock price” action

is more likely for a corporation entity. By accounting for types,

the model can avoid recommending incorrect typed actions, such

as “view stock price” on a person entity.

In addition, entities themselves are instances of very few types

and hence we expect them to be helpful in disambiguating the

types. Therefore, in this model, we explicitly model the entities

and their types. The middle diagram of Figure 4 illustrates the

graphical model. The generative process for Model 2 is as

follows:

Model 2: Generative model of actionable queries.

For each query q

type t ~ Multinomial()

action a ~ Multinomial(t)

entity e ~ Multinomial(t)

l-context n1 ~ Multinomial(a)

r-context n2 ~ Multinomial(a)

click c ~ Multinomial(a)

Note that in our generative model, we are assuming that the

action is generated independently of the entity itself. However, the

choice of the entity also influences the subset of actions that are

possible for a particular choice of the type. The independence

assumption between actions and entities is a matter of

mathematical convenience. Otherwise, we require learning a

parameter for each action-type-entity configuration, giving rise to

a huge number of parameters. Instead, we choose to include these

dependencies at the time of inference, as described later.

For our running example, Model 2 first generates the type

“film”, then given the type, it generates the entity “inception” and

then generates the action “read reviews”. The action is used to

generate the pre- and post- context words  and “review”, and

then the click on a site such as “rottentomatoes.com”.

The joint probability over the model variables is:

Next, we describe each term in the joint probability. Let T be

the number of entity types. The probability of generating a type t

is governed by a multinomial with probability vector . In

particular:

Let E be the number of known entities. The probability of

generating an entity e given type t is a multinomial with a

probability vector t such that  = [1, …, T] captures the

matrix of parameters across all T types. In particular:

Since actions are now conditioned on types, for every value of

type, it is a multinomial distribution with probability vector t

such that  = [1, …, T] represents parameters across types:

Prior distributions over the context words and clicked host

remain unchanged as in Model 1.

Inference: Given a query, and the learned model, we can apply

Bayes’ rule to find the posterior distribution, P(a,t|q,c), over the

actions, as it is proportional to P(a,t,q,c). We compute this

quantity exactly by evaluating the joint for each combination of a

and t, and the observed values of q and c.

During inference, we also enforce that for an entity, there are

only certain admissible types. As an example, if the entity is

Inception, valid types include film and book. We set the posterior

probability of invalid types (and hence the relevant type-action

configurations) to zero. We obtain the set of admissible types for

every entity using an external knowledge base. In this paper, we

use Freebase (see Section 5.1). A desirable side effect of this

strategy is that only valid ambiguities are captured in the posterior

distribution. Thus the model can focus on capturing the actions for

multiple of its valid possible senses (types).

Learning: We omit the log probability of the query corpus for

brevity. As in the previous model, we perform maximum

likelihood estimation of the parameters using the EM algorithm.

Below, in the interest of space, we only present M-step update

equations for some of the parameters that are unique to this

model. Other parameter updates are similar in spirit to Model 1.

Figure 4. Generative models for actionable queries. Model 1 includes query context words (n) and host clicks (c), Model 2 adds the

entity type (t) and the entity (e), and Model 2+ adds an empty context switch (s). Shaded circles are observed variables.

4.3 Empty Contexts
Generally in Web search, most query contexts are left empty.

For example, users tend to query for “obama” far more frequently

than by adding refiners such as “support obama” or “obama

schedule”. In fact, upon inspection of the  table for Models 1-2,

we noticed that over 90% of the probability mass is covered by

the empty context. In order to spread that mass to useful context

words, we explicitly represent the empty context using a switch

variable that determines whether a context will be empty. The

rightmost diagram in Figure 4 illustrates how we model the switch

in Model 2, called Model 2+. The generative story for both Models

1 and 2 can be augmented as follows:

Model X + Switch:

For each query q



l-context n1 ~ Multinomial(a)

r-context n2 ~ Multinomial(a)

switch s1 ~ Multinomial(a)

switch s2 ~ Multinomial(a)

if (s1) l-context n1 ~ Multinomial(a)

if (s2) r-context n2 ~ Multinomial(a)

…

Incorporating the switch into the joint probability of each

model is straightforward. Below we show it for Model 2:

The probability of generating an empty or non-empty context s

given action a is given by a Bernoulli with parameter a:

The M-step update function for the switch parameter  is:

In the above models, we learned point estimates for the

parameters (,that govern the variables of interest,

including type, actions, context, entities and clicks. One can take a

Bayesian approach and treat these parameters as variables (for

instance, with Dirichlet and Beta prior distributions), and perform

Bayesian inference. However, exact inference will become

intractable and we would need to resort to methods such as

variational inference or sampling. We found this extension

unnecessary, as we had a sufficient amount of training data to

estimate all the parameters well. In addition, our approach enabled

us to learn (and perform inference in) the model with large

amounts of data with reasonable computing time.

4.4 Enforcing Action Diversity in Learning
In training Model 2 using the EM algorithm, we found that the

local optimal solutions often amounted to action clusters that were

tied very strongly to specific types. For instance, the athlete entity

type had a P(Action | Type) of 95% into an action cluster that

focuses on sports statistics. While it is desirable that the model

learns a good top-ranked action (e.g., “Retrieve Sports Statistics”),

we also want to be able to recommend a full range of actions for

queries (e.g., for the athlete type we would also want to see the

next top actions, such as “Follow on Social Networks”, “Read

Biography”, “View Pictures” and “Buy Tickets to see”). If one top

action absorbs too much probability mass, we often observe

empirically that the lower-ranked actions do not gain sufficient

probability mass. This is clearly an artifact of the EM algorithm-

based learning paradigm.

We resolve this through a two-step procedure for learning. In

the first step, we run EM iterations to learn only the parameters

that do not involve the entity type (i.e., by freezing the 

parameter). This allows Model 2 to learn action clusters tied more

closely to query contexts and clicked hosts. In a second step, we

continue learning with additional EM iterations, now also letting

the algorithm learn the  parameter. We found that this strategy

reduces the average amount of mass for the top-ranking action

clusters, which in turn leads to probability mass being more

evenly distributed across actions and ultimately to better ranking

of the action clusters. In one experiment, we found that this two-

step learning reduced the average top P(Action | Type) value from

48% to 28%, distributing the mass more evenly across other

actions.

4.5 Decoding
Consider a runtime scenario where a new search query q =

“new york city hotels” is received. Decoding is accomplished as

follows. First, we run a named-entity recognizer (e.g., from [11]

or [18]) to identify the entity e = “new york city”. This leaves the

query contexts as n1 =  and n2 = “hotels” (and switch values s1 =

true and s2 = false). We use historical search query data to

identify a distribution P(c | q) over all hosts c  H that received a

click for this query in the past. The recommendation score

(probability) of an action a is then:

The parameter  can be directly looked up to rank hosts given

each action a. Note that if no click history is available, for

instance if observing a query with a never before seen entity, the

model can still recommend actions using its other parameters.

Also, if the candidate types of an ambiguous entity are known,

then we can return an action distribution given each type. If the

types are unknown, then we can return an action distribution over

each latent type. In both cases, we can marginalize the types to get

an action distribution for the query.

4.6 Cluster Labeling: Web Action Phrases
The action clusters discovered by our models are clusters of

words defined by the  parameter. We need to “translate” each

action into action recommendation phrases that can be presented

to the user (e.g., “read reviews” or “download”).

We begin by examining the most probable context words for

each action. The leftmost word cloud in Figure 5 illustrates this

for one of our discovered actions. Clearly this is a cluster that

relates to downloading free software.1 We then tease out the

“actions” by obtaining a list of verbs/action words, and then

intersecting this list against the context words in the clusters.

Using a generic verb list is not ideal here because we are

restricted to actions that users can perform on the Web, many

verbs do not take people in the agent role (e.g., “merge”), and

generic verb lists often do not contain words that can be used as

Web-based actions such as “blog”, “podcast” or “torrent”. To

obtain a list of appropriate actions, we defined a few key lexical

patterns (similar to Hearst [13]) that generally contain action

words, such as:

“want to (x)” “have to (x)” “you can (x)” “I can (x)”

We then obtain the most frequent instances of (x) by applying

these patterns against a large Web body-text trigram corpus. After

filtering out adverbs (using 21 additional patterns, designed to

catch adverbs in this corpus) and noise (the 25% of actions with

the lowest frequency / unigram count, e.g., “a” and “boy”), this

leaves us with a list of 13,417 action words. This list still contains

a number of actions (e.g., “shock” or “kill”) that users cannot

perform over the Web, so we filtered it down to the 1,279 Web

actions that also occurred with the pattern “(x) at (y)” in our

trigrams, where (y) takes the form of a website URL (e.g.,

“Amazon.com”). Examples of the most popular Web actions

include: “buy”, “review”, “shop” and “unsubscribe”.

The second word cloud in Figure 5 shows P(n | a) for those

contexts n that passed our filter. The third word cloud shows the

remaining words when Web action words are removed. The

resulting three word cloud types, illustrated in Figure 5, are used

as a tool for a human-annotation task to specify the appropriate

action phrases for each cluster. From our automatically generated

word clouds of action words, non-action words, and the popular

hosts for each action cluster, we found it easy for annotators to

specify these action phrases. In future work we will explore

techniques for fully automating this process of learning action

phrases from action words.

5. EXPERIMENTAL RESULTS

5.1 Data
We collected several months of queries issued to Bing and

filtered them to retain only those that contain a signal for learning

actions, by (i) removing any query that did not lead to a click and

(ii) removing any query that did not contain an entity.

We cover a large number of oft-queried entities by focusing on

the most important entity types discovered in our query analysis

1 Note that ‘@’ is a wildcard for any digit. Thus “@.@” is a

placeholder for software versions such as “3.1” or “2.0.”

from Section 3 (see Figure 3). Note that Schema.org does not

provide actual instances for their entity taxonomy, so we rely

instead on Freebase for instances. We chose types from Freebase

that correspond to the most often queried types in Schema.org

such as films, business operations, product lines and people. Since

Freebase is a fine-grained knowledge base, we also included

subtypes such as athletes, actors and politicians, for a total of 21

total types (Table 1). The resulting sets account for approximately

3.4 million entity instances after de-duplication.

Accurate entity recognition is a difficult problem and at model

application time one needs high precision and high recall entity

recognition and entity to type mappings (e.g., using methods such

as described in [7] and [21]). For our model training, given the

large amount of available queries, we require only high precision

entity recognition, so we turn to the following simple but effective

method. We start by matching our query log with all our Freebase

entity instances. To avoid problems like a query for “nice pants”

getting matched to the city “Nice” in France, we apply an

ambiguity filter on the capitalization ratio of our instances and

allow matches on only the entities that appear capitalized at least

50% of the time in Wikipedia. To ensure that we do not match on

substrings within entities (e.g., if “Harry Potter” is the correct

entity but not in our database of entities, we do not want to match

on “Harry” or “Potter” separately), we also apply a standalone

score filter [14] at 0.9, which calculates how often a string occurs

as an exact match in queries relative to how often it occurs as a

partial match.

Table 1: 21 Freebase types used in our experiments.

website product line digital camera

consumer product software film

comp/video game person athlete

politician actor artist

employer business operation restaurant

location travel destination tourist attraction

sports facility university road

For query contexts n1 and n2 defined in Section 4, although one

could potentially use arbitrary n-gram context sizes, we keep only

queries where the contexts are empty or consist of single words

(accounting for a very large fraction of the queries).

We define a navigational query as one where the user only

wants to navigate to a specific site and is unlikely to be interested

in any other action presented to her. We automatically eliminate

such queries from the training set, where a query is considered

navigational if in our logs it is associated with >1,000 clicks

where >98% of clicks were to the same host (~2% of our data

points). Finally, we eliminate entries with clicked hosts that have

been clicked fewer than 100 times over our entire query log.

After applying the filters described above, this yielded several

million data points for training our models. Our data covers 235K

Figure 5. To obtain Action Phrases we first identify top Web Action words from the action’s most likely context words.

distinct Freebase entities, 129K distinct context words, and 58K

distinct click hosts. We refer to the resulting queries as actionable

queries and denote the resultant query set as Q according to

Section 4.

5.2 Model Settings
We trained our models with 50 action clusters, set according to

our earlier annotation study in Section 3.2, which found that this

would give us good coverage over the main actions in Web

search. Alternatively, the constraint could be alleviated by

analyzing the semantic similarity between context words in the

resulting clusters, or by using techniques similar to those for

finding the optimal k in k-means [12], or by other methods such as

those discussed by Blei et al. [2]. We conducted our two-step

learning over 100 total EM iterations, running 2 folds per model.

5.3 Experimental Configurations
We used three test sets for our study:

 HEAD: 100 queries from a frequency-weighted random

query sample of Q.

 TAIL: 100 queries from a uniform random sample of Q.

 Type-Balanced: 16 queries obtained as follows: Sampling

starts from a frequency-weighted sample of Q, but during

sampling, we only admit new queries to the test set if they

cover a type that has not been covered yet.

The HEAD sample was used to test expected user impact in a

Web search scenario whereas the TAIL sample tests how our

method applies to rare entities. Whereas manually curated models

could potentially address a large portion of head queries, only an

automated method can model the tail. In our TAIL sample, we

noticed that the entities were skewed towards the person type. We

introduced the Type-Balanced set to test our model performance

over a broad set of entity types, including less common types such

as university and tourist attraction.

Finally, we report our results against the following models:

 Baseline: Simpler version of Model 1 that uses only query

context words as observed variables, illustrated in Figure 6.

 Models 1, 2: As described in Section 4.

 Model 2+: Model 2 with the Empty Switch as described in

Section 4.3 and illustrated on the right in Figure 4.

There are 12 resulting experimental configurations.

5.4 User Study
We conducted a user study for each experimental configuration

to determine relative effectiveness at discovering and suggesting

actions. The goals of the study are to assess the following:

 End-to-end application results: Given a new query, the

model should be able to recommend actions that are of

interest to users.

 Diversity: The model should learn a comprehensive set

of user intended actions, not just a few common actions.

The latter goal is interesting because it deepens our

understanding of the actions that Web search users most

commonly perform, and a diverse set of actions internally could

also be indicative of the ability to perform well on less common

queries and on queries whose entities belong to less popular types.

Annotation Guidelines: To measure whether the recommended

actions are of interest to users, we adopt a PEGFB graded

relevance scale similar to Web search [9]. In our case, we define

the grades as:

 Perfect action: Exactly the explicit intent of the user as

stated in the query. (only used for queries with context)

 Excellent action: The presumed likely intent of the user

as stated in the query.

 Good action: Likely to be interesting to the user,

although not the stated intent.

 Fair action: Possibly of interest to some users who issue

the query.

 Bad action: Unlikely to be of interest to any user who

issues this query.

We employed a total of seven paid independent annotators for

grading the actions suggested in each configuration. For each

action, two annotations were obtained. Inter-rater agreement using

Fleiss’  was 0.28 (fair agreement) when the P, E, G relevance

judgments were collapsed. Note that there is some amount of

subjectivity in ratings, especially for queries with no context. For

example, on a query for “Obama”, some annotators felt that the

“Watch videos about” action is Good, while others felt it is Fair.

When exact ratings differed, they still tended to be close in rank.

Annotators were also allowed to specify and skip labeling any test

query that was judged navigational or that contained entity

recognition errors. This occurred in 16.5% of the test cases.

For each query set, each model configuration was set to return

up to seven actions to be judged according to our PEGFB scale.

5.5 Experimental Results
The results (using P=5, E=4, G=3, F=2, B=1) from our model

configurations are summarized in Figure 7. The evaluation

measure is Normalized Discounted Cumulative Gain (nDCG) on

the top-7 suggested actions per model.

Figure 6. Baseline Model.
Figure 7. Normalized Discounted Cumulative Gain (nDCG)

for each experimental configuration from Section 5.3, with

95% confidence bounds. The addition of types and entities

(Model 2) had the largest effect, followed by clicked hosts

(Model 1) and then empty switch (Model 2+).

For all query sets, addition of the click host (Model 1) improves

over the baseline because it provides an additional useful signal

for learning accurate clusters. Adding entity type and the entities

(Model 2) proves to be the most important signal in terms of

significant relevance improvement across evaluation sets. Adding

the empty switch (Model 2+) does not significantly impact overall

relevance, however in the Type-Balanced set we see a tendency

for this model to perform better. In Section 5.5.2, we show that

Model 2+ learns a more diverse set of clusters than other models.

Figure 8 shows Mean Relevance as a function of the rank of an

action for head queries. Somewhat surprisingly, the Baseline

model and Model 1 show an increase in mean relevance as the

rank increases (indicating a ranking deficiency), while the other

models show a steady but slight decline. Upon inspection, we

believe that since many queries do not contain surrounding

context words, the Baseline model reverts to the prior that it

learned over each action cluster (the  parameter) in those cases.

This manifests itself as a static list of actions that is impervious to

the entity being queried. Model 1 does have access to a click

information parameter , but the prior on the first two actions in 

are too high to overcome. Support from multiple constraint

sources is necessary to overcome the prior.

5.5.1 Error Analysis
Table 2 illustrates action recommendations from our models for

the random query “Webster University”, which has empty

contexts. The Baseline model (which only models action and

context) has no information to use for recommending an action

other than its action priors, and therefore recommends the most

popular general actions it learned from its training set.2 These tend

to fit the more common types, so baseline scores are lower on the

type-balanced set, which contains fewer common types. Model 1

2 For the query with context, “download Skype,” the baseline

model is able to recommend actions “download” and “login to.”

does a little better by incorporating prior click information, but

still recommends actions that do not apply to the entity’s type

(e.g., “read biography”) because the model does not account for

type. Models 2 and 2+ recommend reasonable sets of actions.

One source of error we noticed arose from how the 21 types

that we used did not include the primary types of a number of the

entities in the data. For example, for the query “Jefferson High

School”, interesting actions would mostly be centered on a high

school type. However, because high school is not among our 21

modeled types, our models recognize “Jefferson High School”

only as an employer and a location. As a result, the recommended

actions are more general. It should be possible to alleviate this

problem by expanding the number of modeled types.

Note also that among the 21 Freebase entity types we use, some

of the types have higher query log frequency than others. For

example, the person type has many more entries in the data than

the tourist destination type. This leads to our models learning

action clusters optimized more toward the popular types than the

sparser types. We did explore balancing the training data by only

keeping elements of the people subtype (artist, politician, actor

and athlete) with the types fairly equally represented, and found

that this led to each of those types having more action diversity.

This suggests that to address sparser types, we may want to

discover actions based on type-balanced subsets of the data first,

and then either use those actions to initialize clusters in the full

training with those actions, or devise a hierarchical setup that

incorporates type-subtype information.

5.5.2 Action Cluster Quality
In addition to the end-to-end application goal, it is also

desirable for a model to learn a good, diverse set of actions. One

Table 2. Actions recommended by the various models for the query “Webster University”

Entity: “Webster University” Context: (, ) Types: employer, university, and location

Baseline (context) Model 1 (+click) Model 2 (+type, +entity) Model 2+ (+switch)

1.Torrent

2.Read biography

3.Find adult pictures of

4.Watch videos

5.See picture of

6.Get quotes from

7.Apply for jobs at

1.Torrent

2.Read biography

3.Read news about

4.See pictures of

5.Apply for jobs at

6.Get quotes from

7.See videos with

1.Read reviews of

2.See map of

3.Follow sports teams of

4.Get weather in

5.Apply for jobs at

6.Find address of

7.See tuition of

1.Find address

2.See pictures of

3.Find map of

4.Read news about

5.Apply for jobs at

6.See cost of

7.See ranking of

Figure 8. Mean relevance at action rank for our models.

Figure 9. Model 2+ distributes probability of action given type

more evenly across actions than Model 2.

metric for visualizing this is to graph “Total P(Action | Type)” as

a function of “Cluster Rank,” as in Figure 9. This illustrates the

distribution of probability mass across the cluster ranks. Here we

only compare Models 2 and 2+, because Model 1 does not model

entity type. Given that we used 21 total types, the maximum value

would be 2100% (if all 21 types mapped 100% to one cluster).

Model 2 appears to have six primary action clusters that receive

the majority of the probability from types, while Model 2+ learns a

much more diverse set of actions clusters, which we also observed

by inspecting the word clouds in the  parameter.

Note that only learning 6 primary action clusters does not mean

that Model 2 can only recommend up to 6 distinct action phrases.

First, the remaining clusters do have nonzero weight and can

contribute action phrases. Second, individual action clusters may

contain a mixture of action phrases. For example, one of the

Model 2 clusters contains actions for “read biography”, “find

lyrics” and “download file” all within the same cluster. This does

not cause type mismatches at decoding time because action

phrases are typed (e.g., “download file” will only be

recommended when the entity is of a type it applies to, such as

software type), but it does limit the ability of the models to

discover and refine good action clusters specifically around the

less common actions. The lower ranked clusters within Model 2+

do look very coherent around specific actions, for example, “read

biography” is in a cluster only with related terms such as “facts”,

“childhood” and “timeline” while “download” is in a cluster with

related terms like “software”, “install” and “free”.

6. CONCLUSIONS
We proposed the notion of actions in Entity-Centric Search.

We conducted an annotation study on query log data to gauge the

prevalence of entities and associated actions in Web search. We

developed generative models to learn latent actions from queries,

and we implemented them over large real-world query logs. We

experimentally showed that modeling click hosts and entity types,

along with query context words, yields high relevance on the task

of action recommendation, and that explicitly representing empty

contexts greatly improves action diversity. Finally, we addressed

various issues for developing an end-to-end system for actions,

and we are now able to automatically recommend good sets of

actions for users issuing new queries.

Future research directions include expanding the number of

entity types and modeling actions for “entity category” queries

(e.g., “shoes”). Additionally, we believe that our current random

initialization of action clusters can be improved upon by seeding

the clusters with some prior knowledge. We are also considering

adding a user model to our approach in order to better target user-

specific actions. For the “Webster University” query in Table 2,

for example, actions such as “read reviews of” and “see rankings

of” are more suited for prospective students, while “see map of”

and “follow sports teams of” are a better fit for current students.

This work takes first steps towards the larger vision of search as

an action broker outlined in the introduction. We envision a world

where publishers can tag (automatically or manually) their Web

pages and native applications with the actions that they can

accomplish; a world where users’ intended actions can be inferred

and executed seamlessly via connections to these providers. Only

then will entities become, truly, active objects.

7. ACKNOWLEDGMENTS
The authors thank Omar Alonso for implementing the user

study for our evaluation as well as Oren Etzioni, Larry Heck, Rico

Malvar, and Jan Pedersen for valuable discussions.

8. REFERENCES
[1] Balasubramanian, N. and Cucerzan, S. Topic Pages: An

Alternative to the Ten Blue Links. In IEEE-ICSC (2010).

[2] Blei, D.M., Ng, A. and Jordan, M. Latent Dirichlet

Allocation. In Journal of Machine Learning Research,

3:993-1022, (2003).

[3] Broder, A. A Taxonomy of Web Search. SIGIR Forum,

volume 36 number 2 pages 3-10 (2002).

[4] Broder, A., Fontoura, M., Gabrilovich, E., Joshi, A.,

Josifovski, V., Zhang, T. Robust Classification of Rare

Queries Using Web Knowledge. In SIGIR (2007).

[5] Carman, M.J., Crestani, F., Harvey, M., and Baillie, M.

Towards Query Log Based Personalization using Topic

Models. In Proceedings of CIKM (2010).

[6] Cucerzan, S. Large-Scale Named Entity Disambiguation

Based on Wikipedia Data. In Proceedings of EMNLP (2007).

[7] Curran, J. R. and Clark, S. Language independent NER using

a maximum entropy tagger. In CoNLL, pp. 164-167 (2003).

[8] Dalvi, N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins,

A., Bohannon, P., Keerthi, S., Merugu, S., A Web of

Concepts. In Proceedings of PODS (2009).

[9] Dupret, G. and Piwowarski, B. A User Behavior Model for

Average Precision and its Generalization to Graded

Judgments. In Proceedings of SIGIR, pages 531-538 (2010).

[10] Gao, J., Toutanova, K. and Yih, W. Clickthrough-Based

Latent Semantic Models for Web Search. In Proceedings of

SIGIR (2011).

[11] Guo, J., Xu, G., Cheng, X. and Li, H. Named Entity

Recognition in Query. In Proceedings of SIGIR, pages 267-

274 (2009).

[12] Hamerly, G. and Elkan, C. Learning the K in K-Means. In

Proceedings of the 7th Annual Conference on Neural

Information Processing Systems (NIPS) (2003).

[13] Hearst, M. Automatic Acquisition of Hyponyms from Large

Text Corpora. In COLING, Nantes, France, (1992).

[14] Jain, A. and Pennacchiotti, M. Domain-Independent Entity

Extraction from Web Search Query Logs. In WWW (2011).

[15] Jansen, B.J., Booth, D. and Spink, A. Determining the User

Intent of Web Search Engine Queries. In WWW (2007).

[16] Kemke, C. and Walker, E. Planning with Action Abstraction

and Plan Decomposition Hierarchies. In IAT (2006).

[17] Metzinger, T. and Gallese, V. The Emergence of a Shared

Action Ontology: Building Blocks for a Theory. In

Consciousness and Cognition, 12, 549-571 (2003).

[18] Pantel, P. and Fuxman, A. Jigs and Lures: Associating Web

Queries with Structured Entities. In ACL (2011).

[19] Rose, D. E. and Levinson, D. Understanding User Goals in

Web Search. In Proceedings of WWW (2004).

[20] Sauper, C. and Barzilay, R. Automatically Generating

Wikipedia Articles: A Structure-Aware Approach. In

Proceedings of ACL (2009).

[21] Sekine, S. and Suzuki, H. Acquiring Ontological Knowledge

from Query Logs. In Proceedings of WWW (2007).

[22] Yin, X. and Shah, S. Building Taxonomy of Web Search

Intents for Name Entity Queries. In WWW (2010).

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Entity-Centric Search
	2.2 Intents
	2.3 Actions
	2.4 Use of Probability Models

	3. ACTIONS ANNOTATION STUDY
	3.1 Entities in Queries
	3.2 Actions in Queries

	4. Automatic Action Induction
	4.1 Model 1 (context + click)
	4.2 Model 2 (context + click + type + entity)
	4.3 Empty Contexts
	4.4 Enforcing Action Diversity in Learning
	4.5 Decoding
	4.6 Cluster Labeling: Web Action Phrases

	5. EXPERIMENTAL RESULTS
	5.1 Data
	5.2 Model Settings
	5.3 Experimental Configurations
	5.4 User Study
	5.5 Experimental Results
	5.5.1 Error Analysis
	5.5.2 Action Cluster Quality

	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

