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ABSTRACT 

We introduce an entity-centric search experience, called Active 

Objects, in which entity-bearing queries are paired with actions 

that can be performed on the entities. For example, given a query 

for a specific flashlight, we aim to present actions such as reading 

reviews, watching demo videos, and finding the best price online. 

In an annotation study conducted over a random sample of user 

query sessions, we found that a large proportion of queries in 

query logs involve actions on entities, calling for an automatic 

approach to identifying relevant actions for entity-bearing queries. 

In this paper, we pose the problem of finding actions that can be 

performed on entities as the problem of probabilistic inference in 

a graphical model that captures how an entity bearing query is 

generated. We design models of increasing complexity that 

capture latent factors such as entity type and intended actions that 

determine how a user writes a query in a search box, and the URL 

that they click on. Given a large collection of real-world queries 

and clicks from a commercial search engine, the models are 

learned efficiently through maximum likelihood estimation using 

an EM algorithm. Given a new query, probabilistic inference 

enables recommendation of a set of pertinent actions and hosts. 

We propose an evaluation methodology for measuring the 

relevance of our recommended actions, and show empirical 

evidence of the quality and the diversity of the discovered actions. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Retrieval models 

General Terms 

Algorithms, Measurement, Experimentation, Theory 

Keywords 

Actions, Active Objects, Entity-Centric Search, Query Log 

Mining, Web Search 

1. INTRODUCTION 
Entities are central to a large fraction of Web search queries. 

Whether users seek to find information about an entity or transact 

on the entity (e.g., “[buy] toy story 3”, “[watch or listen to] obama 

weekly address”), understanding the underlying query intent is 

key to providing a rich search experience. 

Web search today has already taken great strides away from 

simple query word matching. For example, popular entities in 

large query segments (e.g., local, entertainment, shopping) are 

routinely recognized in queries and rich direct displays are 

presented to users by filling editorially-defined templates with 

associated structured data. For example, a query for “lion king” on 

Bing yields such a direct display consisting of an image of the 

movie cover, showtimes at local theaters, the running time, genre, 

and ratings of the movie. However, since the focus is on the 

dominant actions, the search engine underserves, for instance, a 

Netflix user seeking other actions such as adding the movie to her 

streaming queue, or a child trying to find a toy figurine. In 

addition, a different movie such as Michael Moore’s most recent 

documentary would certainly have a different underlying intent 

distribution. Also, actions associated with queries for tail entities 

such as flashlights or small vineyards are completely ignored. 

Search as an action broker: A promising future search scenario 

involves modeling the user intents (or “verbs”) underlying the 

queries and brokering the webpages that accomplish the intended 

actions. In this vision, the broker is aware of all entities and 

actions of interest to its users, understands the intent of the user, 

ranks all providers of actions, and provides direct actionable 

results through APIs with the providers. For example, consider a 

user who queries for “jetbeam rrt-0”, a flashlight. The broker, 

which maintains a collection of all possible actions on flashlights 

and associated websites and applications that can accomplish 

those actions,  would recognize the particular entity mentioned in 

the query, and would return a personalized ranked list of actions 

to the user. Figure 1 provides a simplistic illustration of how this 

user experience could look on a search results page. With actions 

present, users could save clicks and save time, and sometimes 

even discover new actions to help them toward their goals. New 

revenue streams open up from paid action placement, lead 

generation, and on-site commercial transactions. 

This paper addresses several key questions that arise within this 

paradigm. Do Web queries tend to lend themselves to actions on 

entities? What does the space of actions look like? And most 

importantly, given a query with an entity (e.g., identified via a 

technique such as [18]), how can a search engine determine 

actions to recommend?  
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Figure 1. Search as an action broker. 
 



We begin with an annotation study conducted over query-click 

logs from Bing to determine what fraction of queries contain 

entities, and whether these queries tend to map to particular 

actions that can be performed on entities. 

The main problem that we address in this paper is how to 

automatically learn relevant actions for an entity-bearing query. 

An automated approach is necessary because there are too many 

possible distinct Web queries for editors to manually pair with 

actions. Also, manually preparing top actions for just entity types 

is insufficient for the following reasons. First, it would not 

account for context words in queries, e.g., the queries “Microsoft 

jobs” and “Microsoft software” should lead to different actions 

despite sharing the same entity (Microsoft). Second, entities of the 

same type can have different top actions, e.g., queries for a 2012 

Ferrari may historically lead to clicks on topcarwallpapers.com 

while queries for a 1995 Ford historically lead to clicks on a used 

car value site. Last, but not least, top actions for an entity may 

change over time. For example, a query for the next iPhone would 

have different desired actions a year before launch, a week before 

launch, at launch, and a month after launch. The use of automated 

methods enables frequent re-training through a more recent data 

set of query-click logs. We motivate and design generative 

models, the most complex of which accounts for queries, entities, 

actions, textual query contexts, entity types, and historical click 

data. 

We also explore a number of issues that need to be addressed in 

going from a theoretical generative model of actions to an actual 

end-to-end search engine component that is able to recommend 

appropriate actions when given a new query. We conclude with a 

user study evaluating the performance of our various models. 

The major contributions of our research are: 

 Conceptual: We introduce the active objects paradigm. 

We establish that there are specific Web actions for users 

to perform on named entities. We conduct an annotation 

study which empirically verifies that a large proportion of 

sampled query-click pairs reflect actions on entities. 

 Modeling: We propose probabilistic models to generate 

entity bearing queries from actions, incorporating 

information from entity types, query words around an 

entity, and clicked hosts.  

 Implementation: We train our models on three months of 

query data from a commercial search engine, and address 

the necessary end-to-end system issues for producing a 

system to recommend suitable actions for new queries. 

 Experimental: We conduct a user-study to evaluate our 

different models, showing which model components are 

most important for generating actions. 

2. RELATED WORK 
Related work that we build upon includes entity-centric search 

and intents. Work that we differentiate ourselves from includes 

previous work on actions and topic modeling using query logs. 

2.1 Entity-Centric Search 
As proposed in Dalvi et al. [8], Entity-Centric search focuses 

on creating a “semantically rich aggregate view of all the 

information available on the Web for each concept instance”. 

Researchers have typically focused on techniques for automatic 

generation of topic pages based on entities (e.g., [1] [20]), or on 

tailored information for particular entity classes (e.g., popular 

search engines displaying sports scores when given a sports team 

query). To the best of our knowledge we are the first to propose 

learning and presenting specific sets of actions for each entity. 

In recent years, many projects have aimed to enumerate named 

entities and their types. Some popular examples include 

Wikipedia (3.6M pages covering 800K categories), Freebase 

(20M topics covering 2K types), Facebook (85M+ fan pages 

covering 206 categories), Amazon.com (125M products covering 

30 departments), and Schema.org (approx. 400 types). The 

presence of these lists facilitates the identification of entities 

within text [6] and queries [18].  

2.2 Intents 
Queries can be associated with higher-level intents such as 

“planning a vacation” or “getting in shape” (see Figure 2). Broder 

[3] outlined three main intents: informational, navigational, and 

transactional. Rose and Levinson [19] further divided 

informational and navigational intents into subcategories resulting 

in 11 finer-grained intents. Yin and Shah [22] used search logs to 

organize taxonomies of intent phrases, and Jansen et al. [15] 

studied how to classify queries into intents. 

Our notion of actions is at an even finer level. Actions are very 

specific versions of intents that are performed on entities. Some 

actions overlap with finer-grained intents (e.g., “download”), but 

the majority of intents (e.g., “interact”) are not concrete enough to 

be suggested to users. While some queries map easily into both 

intents and actions (e.g, “sea world location” in Figure 2), there 

are also queries that have a clear intent but do not contain any 

entity and hence cannot be associated with an action (e.g., “how to 

lose weight”). Task intents consisting of multiple actions (e.g., 

“book trip”) are also out of scope. 

2.3 Actions 
Actions and action ontologies have been previously explored in 

robotics, intelligent agents, and philosophy (e.g., [16] [17]), but 

the primary focus in those areas was to develop a standardized set 

of actions (with pre-conditions and post-conditions) that could 

guide the planning processes of intelligent agents. In contrast, 

when we refer to an action for Web search, we refer to actions for 

human users to perform over the Web. Most of these actions (e.g., 

“read reviews” or “download”) have no important prerequisites, 

while for those that do (e.g., “add to Netflix queue” requires a 

Netflix account), we assume that the preconditions can be 

addressed based on information known about the users.  

2.4 Use of Probability Models  
There has been prior work in using probability models for 

modeling user queries.  For example, Carman et al. [5] extended 

Latent Dirichlet Allocation (LDA) [2] to rank documents by 

likelihood of the model given a particular query and user pair. 

Their model accounted for users, clicked documents, and query 

terms. Gao et al. [10] adapted statistical machine translation 

 

Figure 2. Actions differ from Intents: they must be performed 

on Entities, and are often more specific and grounded. 

 



techniques to learn how document titles are semantic translations 

of queries. Guo et al. [11] used probability models to identify 

named entities and entity classes from query logs. Our work 

differs in that the primary focus of our models is on learning 

actions, a variable which other studies have not modeled. 

3. ACTIONS ANNOTATION STUDY  
We begin with a manual study of entities and actions in Web 

searches. We collect a frequency-weighted query sample of 200 

query-click pairs. We examine each query to determine whether it 

contains an entity and whether we can infer an action that the user 

intends to accomplish given the query and the clicked host. 

Although one can only observe trends on such a small sample set, 

these results will serve as a guide for our automatic action 

induction models described in Section 4. 

Throughout this paper, we define an action as follows: 

Action: An empirically observable, direct manipulation or 

information request on an entity. 

We target actions that are useful in the context of Web search. 

For example, “interact” is too coarse and “drink” is not an action 

that can be accomplished on the Web. Examples of useful actions 

are: “buy”, “add to movie queue” and “read reviews”. 

3.1 Entities in Queries 
We divided queries into four groups with respect to the 

presence of an entity in the query: (i) contains an entity; (ii) 

contains an entity category (e.g., “car battery”); (iii) contains a 

website entity (URL or website name); and (iv) all other queries. 

Figure 3 summarizes the frequency of each group, further 

separating out whether a query contains refiner words (e.g., 

“download GoldenEye” with the refiner “download”) in addition 

to the entity or entity category. 

43% of the queries contain an entity (29% by itself, 14% with a 

refiner), 14% contain an entity category (4% by itself, 10% with a 

refiner), 28% contain a reference to a website, and 15% do not 

contain any entity. Website references often occur in navigational 

queries where the user intends to visit a particular site, which 

leaves 57% of queries (43% + 14%) that have entities or entity 

categories. None of our annotated queries contain multiple 

entities. Guo et al. [11] found that 71% of search queries 

contained named entities, although they neither specify whether 

they consider frequency of individual queries, nor how they 

classify entity categories and website entities. Summing our 

entity, entity + refiner, and website entity categories, we end up 

with a proportion of entities in queries matching their results. 

Next, we examined the types (or taxonomy categories) of the 

entities that we found. For entity types, we refer to the top level of 

the Schema.org entity taxonomy, which is a collection of schemas 

developed jointly by Bing, Google and Yahoo, designed explicitly 

with the intent of facilitating Web search over entities on the Web. 

Within our sample of entities, we found that the most popular 

Schema.org top-level category was CreativeWork at 40%. This is 

a fairly broad category that covers all books, movies, songs, 

software, etc. The category Organization covered 37% of our 

entity sample. The Organization type covers hotels, restaurants, 

government organizations, local businesses, etc. There was also 

Product at 9%, and Person type at 8%. Event type covered 3% 

and the last 3% fell into other various types.  

3.2 Actions in Queries 
Next, we examined how often the queries in our sample can be 

associated with specific actions on entities. We also verify 

whether the actions in Web search are enumerable. 

We manually inferred the actions that are associated with each 

sample query by examining the raw query strings (consisting of 

entities and possible refiner words), and the clicked URLs. In the 

majority of cases, this information clearly indicated a particular 

action (e.g., “yahoo messenger download” clearly indicates the 

action “download”). In the absence of refiners in the query, the 

clicked URL generally gives a good signal to identify the action. 

For example, a query for “Hobart corporation” with a click on 

“http://hobartcorp.com/Contact-Us/” indicates the intended action 

“get contact information”. 19 of the query/URL pairs in our 

sample were ambiguous with respect to the intended action, e.g. 

“GEICO insurance”-“www.geico.com”, where the specific 

intended action is not clear. In some of these cases we took 

interesting potential actions (e.g., “see menu” on a restaurant 

URL) and added them to our inventory of actions. 

From our 200 queries, we compiled a list of 47 actions. Some 

of the most popular actions included “login,” “play game,” “read 

news about”, and “shop for”. Less common but still interesting 

actions include “find recipe for”, “find lyrics”, and “get hours of”. 

Working through the 200 queries, our discovery rate of new 

actions dropped from over 20 distinct actions for the first 50 

labels to fewer than 5 new actions for the last 50 queries. This 

suggests that there is an enumerable primary set of actions that 

users perform in the context of Web search. 

4. AUTOMATIC ACTION INDUCTION 
We turn our attention now to the tasks of automatically learning 

the underlying actions intended in Web search as well as to 

recommending actions given new queries. Our approach is to 

probabilistically describe how actionable queries, i.e., queries 

containing an entity and underlying action intent, are generated by 

Web search users: Our models capture the latent actions and entity 

types that influence the terms in the user queries and the resultant 

clicks on hosts. Probabilistic inference in the corresponding 

learned models provide actions pertinent to the queries. The 

models are learned by maximizing the probability of observing a 

large collection of real-world queries and their clicked hosts. 

In this section we present two graphical models (summarized in 

Figure 4). To generate queries from actions, our Model 1 models 

query context and clicked URLs. Model 2 builds on Model 1 by 

also modeling entity types, and explicitly observing entities. Then, 

we propose an extension to each model that adds a switch variable 

to better handle queries with empty contexts. 

Each query q is represented by a triple {n1, e, n2}, where e 

represents the entity mentioned in the query, n1 and n2 are 

respectively the pre- and post-entity contexts (possibly empty), 

 

Figure 3. Left: Entity distribution at 200 labels. 43% of the 

queries contained entities, and 14% had entity categories. 

Right: Distribution of entities into Schema.org types. 

 



referred to as refiners. As a running example, we consider a user 

who is interested in reading a review about the movie “Inception”, 

and who issues the query “inception review” to a search engine. 

Here n1 = , e = “inception” and n2 = “review”. Details on how 

we obtain our corpus are presented in Section 5. 

4.1 Model 1 (context + click) 
The choice of refiner words in a query is clearly influenced by 

the intended action. For example, words such as “review”, 

“ebert”, and “opinion” are more likely to be used in a query if the 

intent is to read a review. Host clicks are also correlated with 

action intents. For example, clicks on “rottentomatoes.com”, 

“epinions.com” and “dpreview.com” are more likely if the user 

has the intent to read reviews, whereas clicks on “bestbuy.com” 

and “ebay.com” are more likely for a buying intent. Broder et al. 

[4] also found hosts associated with queries to be useful in 

classifying queries. 

Our first probabilistic graphical model, Model 1, leverages 

these signals. It generates actionable queries by first picking an 

action from a distribution over a set of latent actions, then 

choosing query context words n1 and n2, and then clicking on a 

host c. This model does not explicitly capture the entity in the 

query, and hence a query is represented by the pair {n1, n2}. The 

generative process below summarizes the model illustrated on the 

left in Figure 4: 

 

Model 1: Generative model of actionable queries. 

For each query q 

action a ~ Multinomial() 

l-context n1 ~ Multinomial(a) 

r-context n2 ~ Multinomial(a) 

click c ~ Multinomial(a) 

 

In our running example for the query “inception review”, our 

model first generates the action “read reviews”, then given this 

action chooses the refiner words  and “review” and then 

generates a click on a site such as “rottentomatoes.com”. 

The joint probability of the model is the product of the 

conditional distributions, as given by: 

 

Next, we define each of the terms in the joint distribution. Let K 

be the number of latent actions that govern our query log, where K 

is fixed in advance. Then, the probability of actions a is defined as 

a multinomial distribution with probability vector , such that the 

probability of a particular action is given by: 

   

where I is an indicator function set to 1 if its condition holds, and 

0 otherwise. 

Let V be the shared vocabulary size of all query refiner words 

n1 and n2. Given an action, a, the probability of generating a 

refiner n is given by a multinomial distribution with probability 

vector a such that = [1, …, K] represents parameters across 

actions: 

 

Finally, we assume there are H possible click values, 

corresponding to H Web hosts. A click on a host is determined by 

an action. Given an action a, we assume the probability of 

generating a click on host c is a multinomial with a probability 

vector a such that = [1, …, K] captures the matrix of 

parameters across all K actions. In particular: 

 

Inference: Given a query, we apply Bayes’ rule to find the 

posterior distribution over the actions. In particular, the posterior 

distribution, P(a|q,c), is directly proportional to the joint 

distribution. We can exactly compute this distribution by 

evaluating the joint for every value of a and the observed 

configuration of q and c. 

Learning: Given a query corpus Q consisting of N independently 

and identically distributed queries (each qj = {n1
j, n2

j}) and their 

corresponding clicked hosts, we estimate the parameters 

andthat maximize the (log) probability of observing Q. 

The log P(Q) can be written as: 

   

In the above equation, Pj(a|q,c) is the posterior distribution over 

actions for the jth query. We use the Expectation-Maximization 

(EM) algorithm to set the parameters. Starting with a random 

initialization of the parameters, EM iterates between the E-step in 

which Pj(a|q,c) is computed for each query (assuming parameters 

are fixed as computed in the previous M-step) and the M-step in 

which the parameters are updated by fixing Pj(a|q,c) to the values 

computed in the E-step. 

The parameter updates are obtained by computing the 

derivative of log P(Q) with respect to each parameter, and setting 

the resultant to 0. The update for  is given by the average of the 

posterior distributions over the actions: 

   

For a fixed a, the update for a is given by the weighted average 

of the context words, where the weights are the posterior 

distributions over the actions, for each query. In particular: 

   

Similarly, we can update , the parameters that govern the 

distribution over clicked hosts for each action. For a fixed a, it is 

updated by taking the weighted average of the clicked hosts, with 

weights provided by the posterior distribution over the actions: 

   



4.2 Model 2 (context + click + type + entity) 
 The semantic type of the entity mentioned in the query is often 

strongly correlated with the intended action. For example, if the 

queried entity is a movie, the user is likely to be looking to buy it, 

rent it, view local showtimes, or buy theater tickets. It is unlikely 

however that the user is interested in hacking it, getting its 

address, or connecting to it. Similarly, a “read biography” action 

is more likely for a person entity and a “view stock price” action 

is more likely for a corporation entity. By accounting for types, 

the model can avoid recommending incorrect typed actions, such 

as “view stock price” on a person entity. 

In addition, entities themselves are instances of very few types 

and hence we expect them to be helpful in disambiguating the 

types. Therefore, in this model, we explicitly model the entities 

and their types. The middle diagram of Figure 4 illustrates the 

graphical model. The generative process for Model 2 is as 

follows: 

 

Model 2: Generative model of actionable queries. 

For each query q 

type t ~ Multinomial() 

action a ~ Multinomial(t) 

entity e ~ Multinomial(t) 

l-context n1 ~ Multinomial(a) 

r-context n2 ~ Multinomial(a) 

click c ~ Multinomial(a) 

 

Note that in our generative model, we are assuming that the 

action is generated independently of the entity itself. However, the 

choice of the entity also influences the subset of actions that are 

possible for a particular choice of the type. The independence 

assumption between actions and entities is a matter of 

mathematical convenience. Otherwise, we require learning a 

parameter for each action-type-entity configuration, giving rise to 

a huge number of parameters. Instead, we choose to include these 

dependencies at the time of inference, as described later. 

For our running example, Model 2 first generates the type 

“film”, then given the type, it generates the entity “inception” and 

then generates the action “read reviews”. The action is used to 

generate the pre- and post- context words  and “review”, and 

then the click on a site such as “rottentomatoes.com”. 

The joint probability over the model variables is: 

 

Next, we describe each term in the joint probability. Let T be 

the number of entity types. The probability of generating a type t 

is governed by a multinomial with probability vector . In 

particular: 

   

Let E be the number of known entities. The probability of 

generating an entity e given type t is a multinomial with a 

probability vector t such that  = [1, …, T] captures the 

matrix of parameters across all T types. In particular: 

 

Since actions are now conditioned on types, for every value of 

type, it is a multinomial distribution with probability vector t 

such that  = [1, …, T] represents parameters across types: 

 

Prior distributions over the context words and clicked host 

remain unchanged as in Model 1. 

Inference: Given a query, and the learned model, we can apply 

Bayes’ rule to find the posterior distribution, P(a,t|q,c), over the 

actions, as it is proportional to P(a,t,q,c). We compute this 

quantity exactly by evaluating the joint for each combination of a 

and t, and the observed values of q and c. 

During inference, we also enforce that for an entity, there are 

only certain admissible types. As an example, if the entity is 

Inception, valid types include film and book. We set the posterior 

probability of invalid types (and hence the relevant type-action 

configurations) to zero. We obtain the set of admissible types for 

every entity using an external knowledge base. In this paper, we 

use Freebase (see Section 5.1). A desirable side effect of this 

strategy is that only valid ambiguities are captured in the posterior 

distribution. Thus the model can focus on capturing the actions for 

multiple of its valid possible senses (types). 

Learning: We omit the log probability of the query corpus for 

brevity. As in the previous model, we perform maximum 

likelihood estimation of the parameters using the EM algorithm. 

Below, in the interest of space, we only present M-step update 

equations for some of the parameters that are unique to this 

model. Other parameter updates are similar in spirit to Model 1. 

 

Figure 4. Generative models for actionable queries. Model 1 includes query context words (n) and host clicks (c), Model 2 adds the 

entity type (t) and the entity (e), and Model 2+ adds an empty context switch (s). Shaded circles are observed variables. 

 



   

   

4.3 Empty Contexts 
Generally in Web search, most query contexts are left empty. 

For example, users tend to query for “obama” far more frequently 

than by adding refiners such as “support obama” or “obama 

schedule”. In fact, upon inspection of the  table for Models 1-2, 

we noticed that over 90% of the probability mass is covered by 

the empty context. In order to spread that mass to useful context 

words, we explicitly represent the empty context using a switch 

variable that determines whether a context will be empty. The 

rightmost diagram in Figure 4 illustrates how we model the switch 

in Model 2, called Model 2+. The generative story for both Models 

1 and 2 can be augmented as follows: 

 

Model X + Switch: 

For each query q 



l-context n1 ~ Multinomial(a) 

r-context n2 ~ Multinomial(a) 

switch s1 ~ Multinomial(a) 

switch s2 ~ Multinomial(a) 

if (s1) l-context n1 ~ Multinomial(a) 

if (s2) r-context n2 ~ Multinomial(a) 

… 

 

Incorporating the switch into the joint probability of each 

model is straightforward. Below we show it for Model 2: 

 

The probability of generating an empty or non-empty context s 

given action a is given by a Bernoulli with parameter a: 

   

The M-step update function for the switch parameter  is: 

 

In the above models, we learned point estimates for the 

parameters (,that govern the variables of interest, 

including type, actions, context, entities and clicks. One can take a 

Bayesian approach and treat these parameters as variables (for 

instance, with Dirichlet and Beta prior distributions), and perform 

Bayesian inference. However, exact inference will become 

intractable and we would need to resort to methods such as 

variational inference or sampling. We found this extension 

unnecessary, as we had a sufficient amount of training data to 

estimate all the parameters well. In addition, our approach enabled 

us to learn (and perform inference in) the model with large 

amounts of data with reasonable computing time. 

4.4 Enforcing Action Diversity in Learning 
In training Model 2 using the EM algorithm, we found that the 

local optimal solutions often amounted to action clusters that were 

tied very strongly to specific types. For instance, the athlete entity 

type had a P(Action | Type) of 95% into an action cluster that 

focuses on sports statistics. While it is desirable that the model 

learns a good top-ranked action (e.g., “Retrieve Sports Statistics”), 

we also want to be able to recommend a full range of actions for 

queries (e.g., for the athlete type we would also want to see the 

next top actions, such as “Follow on Social Networks”, “Read 

Biography”, “View Pictures” and “Buy Tickets to see”). If one top 

action absorbs too much probability mass, we often observe 

empirically that the lower-ranked actions do not gain sufficient 

probability mass. This is clearly an artifact of the EM algorithm-

based learning paradigm. 

We resolve this through a two-step procedure for learning. In 

the first step, we run EM iterations to learn only the parameters 

that do not involve the entity type (i.e., by freezing the  

parameter). This allows Model 2 to learn action clusters tied more 

closely to query contexts and clicked hosts. In a second step, we 

continue learning with additional EM iterations, now also letting 

the algorithm learn the  parameter. We found that this strategy 

reduces the average amount of mass for the top-ranking action 

clusters, which in turn leads to probability mass being more 

evenly distributed across actions and ultimately to better ranking 

of the action clusters. In one experiment, we found that this two-

step learning reduced the average top P(Action | Type) value from 

48% to 28%, distributing the mass more evenly across other 

actions. 

4.5 Decoding 
Consider a runtime scenario where a new search query q = 

“new york city hotels” is received. Decoding is accomplished as 

follows. First, we run a named-entity recognizer (e.g., from [11] 

or [18]) to identify the entity e = “new york city”. This leaves the 

query contexts as n1 =  and n2 = “hotels” (and switch values s1 = 

true and s2 = false). We use historical search query data to 

identify a distribution P(c | q) over all hosts c  H that received a 

click for this query in the past. The recommendation score 

(probability) of an action a is then: 

 

The parameter  can be directly looked up to rank hosts given 

each action a. Note that if no click history is available, for 

instance if observing a query with a never before seen entity, the 

model can still recommend actions using its other parameters. 

Also, if the candidate types of an ambiguous entity are known, 

then we can return an action distribution given each type. If the 

types are unknown, then we can return an action distribution over 

each latent type. In both cases, we can marginalize the types to get 

an action distribution for the query. 

4.6 Cluster Labeling: Web Action Phrases 
The action clusters discovered by our models are clusters of 

words defined by the  parameter. We need to “translate” each 

action into action recommendation phrases that can be presented 

to the user (e.g., “read reviews” or “download”).  

We begin by examining the most probable context words for 

each action. The leftmost word cloud in Figure 5 illustrates this 



for one of our discovered actions. Clearly this is a cluster that 

relates to downloading free software.1 We then tease out the 

“actions” by obtaining a list of verbs/action words, and then 

intersecting this list against the context words in the clusters. 

Using a generic verb list is not ideal here because we are 

restricted to actions that users can perform on the Web, many 

verbs do not take people in the agent role (e.g., “merge”), and 

generic verb lists often do not contain words that can be used as 

Web-based actions such as “blog”, “podcast” or “torrent”. To 

obtain a list of appropriate actions, we defined a few key lexical 

patterns (similar to Hearst [13]) that generally contain action 

words, such as: 
 

“want to (x)”    “have to (x)”    “you can (x)”    “I can (x)” 
 

We then obtain the most frequent instances of (x) by applying 

these patterns against a large Web body-text trigram corpus. After 

filtering out adverbs (using 21 additional patterns, designed to 

catch adverbs in this corpus) and noise (the 25% of actions with 

the lowest frequency / unigram count, e.g., “a” and “boy”), this 

leaves us with a list of 13,417 action words. This list still contains 

a number of actions (e.g., “shock” or “kill”) that users cannot 

perform over the Web, so we filtered it down to the 1,279 Web 

actions that also occurred with the pattern “(x) at (y)” in our 

trigrams, where (y) takes the form of a website URL (e.g., 

“Amazon.com”). Examples of the most popular Web actions 

include: “buy”, “review”, “shop” and “unsubscribe”. 

The second word cloud in Figure 5 shows P(n | a) for those 

contexts n that passed our filter. The third word cloud shows the 

remaining words when Web action words are removed. The 

resulting three word cloud types, illustrated in Figure 5, are used 

as a tool for a human-annotation task to specify the appropriate 

action phrases for each cluster. From our automatically generated 

word clouds of action words, non-action words, and the popular 

hosts for each action cluster, we found it easy for annotators to 

specify these action phrases. In future work we will explore 

techniques for fully automating this process of learning action 

phrases from action words. 

5. EXPERIMENTAL RESULTS 

5.1 Data 
We collected several months of queries issued to Bing and 

filtered them to retain only those that contain a signal for learning 

actions, by (i) removing any query that did not lead to a click and 

(ii) removing any query that did not contain an entity. 

We cover a large number of oft-queried entities by focusing on 

the most important entity types discovered in our query analysis 

                                                                 

1 Note that ‘@’ is a wildcard for any digit. Thus “@.@” is a 

placeholder for software versions such as “3.1” or “2.0.” 

from Section 3 (see Figure 3). Note that Schema.org does not 

provide actual instances for their entity taxonomy, so we rely 

instead on Freebase for instances. We chose types from Freebase 

that correspond to the most often queried types in Schema.org 

such as films, business operations, product lines and people. Since 

Freebase is a fine-grained knowledge base, we also included 

subtypes such as athletes, actors and politicians, for a total of 21 

total types (Table 1). The resulting sets account for approximately 

3.4 million entity instances after de-duplication. 

Accurate entity recognition is a difficult problem and at model 

application time one needs high precision and high recall entity 

recognition and entity to type mappings (e.g., using methods such 

as described in [7] and [21]). For our model training, given the 

large amount of available queries, we require only high precision 

entity recognition, so we turn to the following simple but effective 

method. We start by matching our query log with all our Freebase 

entity instances. To avoid problems like a query for “nice pants” 

getting matched to the city “Nice” in France, we apply an 

ambiguity filter on the capitalization ratio of our instances and 

allow matches on only the entities that appear capitalized at least 

50% of the time in Wikipedia. To ensure that we do not match on 

substrings within entities (e.g., if “Harry Potter” is the correct 

entity but not in our database of entities, we do not want to match 

on “Harry” or “Potter” separately), we also apply a standalone 

score filter [14] at 0.9, which calculates how often a string occurs 

as an exact match in queries relative to how often it occurs as a 

partial match. 

Table 1: 21 Freebase types used in our experiments. 

website product line digital camera 

consumer product software film 

comp/video game person  athlete  

politician  actor  artist 

employer  business operation restaurant  

location  travel destination  tourist attraction 

sports facility  university  road  

For query contexts n1 and n2 defined in Section 4, although one 

could potentially use arbitrary n-gram context sizes, we keep only 

queries where the contexts are empty or consist of single words 

(accounting for a very large fraction of the queries). 

We define a navigational query as one where the user only 

wants to navigate to a specific site and is unlikely to be interested 

in any other action presented to her. We automatically eliminate 

such queries from the training set, where a query is considered 

navigational if in our logs it is associated with >1,000 clicks 

where >98% of clicks were to the same host (~2% of our data 

points). Finally, we eliminate entries with clicked hosts that have 

been clicked fewer than 100 times over our entire query log. 

After applying the filters described above, this yielded several 

million data points for training our models. Our data covers 235K 

 
 

Figure 5. To obtain Action Phrases we first identify top Web Action words from the action’s most likely context words. 

 



distinct Freebase entities, 129K distinct context words, and 58K 

distinct click hosts. We refer to the resulting queries as actionable 

queries and denote the resultant query set as Q according to 

Section 4. 

5.2 Model Settings 
We trained our models with 50 action clusters, set according to 

our earlier annotation study in Section 3.2, which found that this 

would give us good coverage over the main actions in Web 

search. Alternatively, the constraint could be alleviated by 

analyzing the semantic similarity between context words in the 

resulting clusters, or by using techniques similar to those for 

finding the optimal k in k-means [12], or by other methods such as 

those discussed by Blei et al. [2]. We conducted our two-step 

learning over 100 total EM iterations, running 2 folds per model.  

5.3 Experimental Configurations 
We used three test sets for our study: 

 HEAD: 100 queries from a frequency-weighted random 

query sample of Q. 

 TAIL: 100 queries from a uniform random sample of Q. 

 Type-Balanced: 16 queries obtained as follows: Sampling 

starts from a frequency-weighted sample of Q, but during 

sampling, we only admit new queries to the test set if they 

cover a type that has not been covered yet.  

The HEAD sample was used to test expected user impact in a 

Web search scenario whereas the TAIL sample tests how our 

method applies to rare entities. Whereas manually curated models 

could potentially address a large portion of head queries, only an 

automated method can model the tail. In our TAIL sample, we 

noticed that the entities were skewed towards the person type. We 

introduced the Type-Balanced set to test our model performance 

over a broad set of entity types, including less common types such 

as university and tourist attraction. 

Finally, we report our results against the following models: 

 Baseline: Simpler version of Model 1 that uses only query 

context words as observed variables, illustrated in Figure 6. 

 Models 1, 2: As described in Section 4. 

 Model 2+: Model 2 with the Empty Switch as described in 

Section 4.3 and illustrated on the right in Figure 4. 

There are 12 resulting experimental configurations. 

5.4 User Study 
We conducted a user study for each experimental configuration 

to determine relative effectiveness at discovering and suggesting 

actions. The goals of the study are to assess the following: 

 End-to-end application results: Given a new query, the 

model should be able to recommend actions that are of 

interest to users. 

 Diversity: The model should learn a comprehensive set 

of user intended actions, not just a few common actions. 

The latter goal is interesting because it deepens our 

understanding of the actions that Web search users most 

commonly perform, and a diverse set of actions internally could 

also be indicative of the ability to perform well on less common 

queries and on queries whose entities belong to less popular types.  

Annotation Guidelines: To measure whether the recommended 

actions are of interest to users, we adopt a PEGFB graded 

relevance scale similar to Web search [9]. In our case, we define 

the grades as:  

 Perfect action: Exactly the explicit intent of the user as 

stated in the query. (only used for queries with context) 

 Excellent action: The presumed likely intent of the user 

as stated in the query. 

 Good action: Likely to be interesting to the user, 

although not the stated intent. 

 Fair action: Possibly of interest to some users who issue 

the query. 

 Bad action: Unlikely to be of interest to any user who 

issues this query. 

We employed a total of seven paid independent annotators for 

grading the actions suggested in each configuration. For each 

action, two annotations were obtained. Inter-rater agreement using 

Fleiss’  was 0.28 (fair agreement) when the P, E, G relevance 

judgments were collapsed. Note that there is some amount of 

subjectivity in ratings, especially for queries with no context. For 

example, on a query for “Obama”, some annotators felt that the 

“Watch videos about” action is Good, while others felt it is Fair. 

When exact ratings differed, they still tended to be close in rank. 

Annotators were also allowed to specify and skip labeling any test 

query that was judged navigational or that contained entity 

recognition errors. This occurred in 16.5% of the test cases. 

For each query set, each model configuration was set to return 

up to seven actions to be judged according to our PEGFB scale. 

5.5 Experimental Results 
The results (using P=5, E=4, G=3, F=2, B=1) from our model 

configurations are summarized in Figure 7. The evaluation 

measure is Normalized Discounted Cumulative Gain (nDCG) on 

the top-7 suggested actions per model.  

 

Figure 6. Baseline Model. 
Figure 7. Normalized Discounted Cumulative Gain (nDCG) 

for each experimental configuration from Section 5.3, with 

95% confidence bounds. The addition of types and entities 

(Model 2) had the largest effect, followed by clicked hosts 

(Model 1) and then empty switch (Model 2+). 
 



For all query sets, addition of the click host (Model 1) improves 

over the baseline because it provides an additional useful signal 

for learning accurate clusters. Adding entity type and the entities 

(Model 2) proves to be the most important signal in terms of 

significant relevance improvement across evaluation sets. Adding 

the empty switch (Model 2+) does not significantly impact overall 

relevance, however in the Type-Balanced set we see a tendency 

for this model to perform better. In Section 5.5.2, we show that 

Model 2+ learns a more diverse set of clusters than other models. 

Figure 8 shows Mean Relevance as a function of the rank of an 

action for head queries. Somewhat surprisingly, the Baseline 

model and Model 1 show an increase in mean relevance as the 

rank increases (indicating a ranking deficiency), while the other 

models show a steady but slight decline. Upon inspection, we 

believe that since many queries do not contain surrounding 

context words, the Baseline model reverts to the prior that it 

learned over each action cluster (the  parameter) in those cases. 

This manifests itself as a static list of actions that is impervious to 

the entity being queried. Model 1 does have access to a click 

information parameter , but the prior on the first two actions in  

are too high to overcome. Support from multiple constraint 

sources is necessary to overcome the prior. 

5.5.1 Error Analysis 
Table 2 illustrates action recommendations from our models for 

the random query “Webster University”, which has empty 

contexts. The Baseline model (which only models action and 

context) has no information to use for recommending an action 

other than its action priors, and therefore recommends the most 

popular general actions it learned from its training set.2 These tend 

to fit the more common types, so baseline scores are lower on the 

type-balanced set, which contains fewer common types. Model 1 

                                                                 

2 For the query with context, “download Skype,” the baseline 

model is able to recommend actions “download” and “login to.” 

does a little better by incorporating prior click information, but 

still recommends actions that do not apply to the entity’s type 

(e.g., “read biography”) because the model does not account for 

type. Models 2 and 2+ recommend reasonable sets of actions. 

One source of error we noticed arose from how the 21 types 

that we used did not include the primary types of a number of the 

entities in the data. For example, for the query “Jefferson High 

School”, interesting actions would mostly be centered on a high 

school type. However, because high school is not among our 21 

modeled types, our models recognize “Jefferson High School” 

only as an employer and a location. As a result, the recommended 

actions are more general. It should be possible to alleviate this 

problem by expanding the number of modeled types. 

Note also that among the 21 Freebase entity types we use, some 

of the types have higher query log frequency than others. For 

example, the person type has many more entries in the data than 

the tourist destination type. This leads to our models learning 

action clusters optimized more toward the popular types than the 

sparser types. We did explore balancing the training data by only 

keeping elements of the people subtype (artist, politician, actor 

and athlete) with the types fairly equally represented, and found 

that this led to each of those types having more action diversity. 

This suggests that to address sparser types, we may want to 

discover actions based on type-balanced subsets of the data first, 

and then either use those actions to initialize clusters in the full 

training with those actions, or devise a hierarchical setup that 

incorporates type-subtype information. 

5.5.2 Action Cluster Quality 
In addition to the end-to-end application goal, it is also 

desirable for a model to learn a good, diverse set of actions. One 

Table 2. Actions recommended by the various models for the query “Webster University” 

Entity: “Webster University”     Context: (, )     Types: employer, university, and location 
 

Baseline (context) Model 1 (+click) Model 2 (+type, +entity) Model 2+ (+switch) 

1.Torrent 

2.Read biography 

3.Find adult pictures of 

4.Watch videos 

5.See picture of 

6.Get quotes from 

7.Apply for jobs at 

1.Torrent 

2.Read biography 

3.Read news about 

4.See pictures of 

5.Apply for jobs at 

6.Get quotes from 

7.See videos with 

1.Read reviews of 

2.See map of 

3.Follow sports teams of 

4.Get weather in 

5.Apply for jobs at 

6.Find address of 

7.See tuition of 

1.Find address 

2.See pictures of 

3.Find map of 

4.Read news about 

5.Apply for jobs at 

6.See cost of 

7.See ranking of 

 

Figure 8. Mean relevance at action rank for our models. 

 

 

Figure 9. Model 2+ distributes probability of action given type 

more evenly across actions than Model 2. 

 



metric for visualizing this is to graph “Total P(Action | Type)” as 

a function of “Cluster Rank,” as in Figure 9. This illustrates the 

distribution of probability mass across the cluster ranks. Here we 

only compare Models 2 and 2+, because Model 1 does not model 

entity type. Given that we used 21 total types, the maximum value 

would be 2100% (if all 21 types mapped 100% to one cluster). 

Model 2 appears to have six primary action clusters that receive 

the majority of the probability from types, while Model 2+ learns a 

much more diverse set of actions clusters, which we also observed 

by inspecting the word clouds in the  parameter. 

Note that only learning 6 primary action clusters does not mean 

that Model 2 can only recommend up to 6 distinct action phrases. 

First, the remaining clusters do have nonzero weight and can 

contribute action phrases. Second, individual action clusters may 

contain a mixture of action phrases. For example, one of the 

Model 2 clusters contains actions for “read biography”, “find 

lyrics” and “download file” all within the same cluster. This does 

not cause type mismatches at decoding time because action 

phrases are typed (e.g., “download file” will only be 

recommended when the entity is of a type it applies to, such as 

software type), but it does limit the ability of the models to 

discover and refine good action clusters specifically around the 

less common actions. The lower ranked clusters within Model 2+ 

do look very coherent around specific actions, for example, “read 

biography” is in a cluster only with related terms such as “facts”, 

“childhood” and “timeline” while “download” is in a cluster with 

related terms like “software”, “install” and “free”. 

6. CONCLUSIONS 
We proposed the notion of actions in Entity-Centric Search. 

We conducted an annotation study on query log data to gauge the 

prevalence of entities and associated actions in Web search. We 

developed generative models to learn latent actions from queries, 

and we implemented them over large real-world query logs. We 

experimentally showed that modeling click hosts and entity types, 

along with query context words, yields high relevance on the task 

of action recommendation, and that explicitly representing empty 

contexts greatly improves action diversity. Finally, we addressed 

various issues for developing an end-to-end system for actions, 

and we are now able to automatically recommend good sets of 

actions for users issuing new queries. 

Future research directions include expanding the number of 

entity types and modeling actions for “entity category” queries 

(e.g., “shoes”). Additionally, we believe that our current random 

initialization of action clusters can be improved upon by seeding 

the clusters with some prior knowledge. We are also considering 

adding a user model to our approach in order to better target user-

specific actions. For the “Webster University” query in Table 2, 

for example, actions such as “read reviews of” and “see rankings 

of” are more suited for prospective students, while “see map of” 

and “follow sports teams of” are a better fit for current students. 

This work takes first steps towards the larger vision of search as 

an action broker outlined in the introduction. We envision a world 

where publishers can tag (automatically or manually) their Web 

pages and native applications with the actions that they can 

accomplish; a world where users’ intended actions can be inferred 

and executed seamlessly via connections to these providers. Only 

then will entities become, truly, active objects. 
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