
Towards Self-Optimizing Collaborative Systems
Sasa Junuzovic

Microsoft Research

One Microsoft Way, Redmond, WA 98052

sasa.junuzovic@microsoft.com

Prasun Dewan

University of North Carolina at Chapel Hill

UNC, Chapel Hill, NC 27599

dewan@cs.unc.edu

ABSTRACT
Two important performance metrics in collaborative

systems are local and remote response times. Previous

analytical and simulation work has shown that these

response times depend on three important factors:

processing architecture, communication architecture, and

scheduling of tasks dictated by these two architectures. We

show that it is possible to create a system that improves

response times by dynamically adjusting these three system

parameters in response to changes to collaboration

parameters such as new users joining and network delays

changing. We present practical approaches for collecting

collaboration parameters, computing multicast overlays,

applying analytical models of previous work, preserving

coupling semantics during optimizations, and keeping

overheads low. Simulations and experiments show that the

system improves performance in practical scenarios.

Author Keywords
Performance; response times; optimization; processing

architecture; communication architecture; scheduling.

ACM Classification Keywords
C.2.4 [Computer-Communication Networks]: Distributed

Systems – Distributed Applications, Client/Server; C.4

[Performance of Systems] Performance Attributes.

General Terms
Performance; Experimentation.

INTRODUCTION
As the landscape of available collaborative applications

expands, it is critical for an application to differentiate itself

from the rest of the field in a useful fashion. An important

differentiation factor for these systems is performance. If an

application does not respond to user actions in a timely

fashion or quickly notify users of actions of others, users

may get frustrated and switch to a different application.

In general, in computer science, the performance of a

system is a function of available resources. If resources are

abundant, then the system always performs well. On the

other hand, if resources are insufficient, then the system

never performs well. These two boundary cases bracket the

case in which resources are sufficient but scarce, called the

window of opportunity [9]. In the window of opportunity, a

system can have good performance, but new algorithms and

implementations may be necessary to achieve it.

In this paper we focus on the window of opportunity for

improving the performance of collaborative systems. We

present a new collaborative framework that can take

advantage of this opportunity and meet performance criteria

better than existing systems without requiring hardware,

network, or user-interface changes. Several performance

metrics have been identified, such as local [14] and remote

[4] response time, throughput [5], bandwidth [7], jitter [6],

task completion time [2], and frame rate [16]. While all of

them are important, our focus is on response times.

Previous work has shown that response times depend on

three important factors: processing architecture,

communication architecture, and scheduling of tasks

dictated by these two architectures [2,3,10,11]. This work

has developed theoretical analytical models and used

simulations to validate these models. In this paper, we

present a system that keeps track of all three of these factors

and dynamically adjusts them to improve response times.

A flavor of the kind of improvements the system can

provide is shown in Figure 1. It shows the response times

from an actual collaborative session and that they are better

with than without the system. In fact, the performance with

the system eventually approaches the x-axis, which is the

theoretical best performance where response times are zero.

More importantly, these improvements are noticeable to

users. Human-perception studies by Youmans [17] and Jay

Figure 1. Response times during an actual collaboration

session with and without the self-optimizing system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1421

et al. [8] have shown that people can notice changes of

50ms in local and remote response times, respectively. As

the response times in Figure 1 show, the system improves

the response by as much as 300ms, which is noticeable.

The rest of this paper is organized as follows. First, we

discuss background work that motivated the development

of our system. We then present an issue based discussion of

the implementation of the system. Following this, we

present simulations and experiments that evaluate the

benefits of the system in practical collaboration scenarios.

Then, we discuss practical applications and broader impacts

of the system. We end with conclusions and future work.

BACKGROUND WORK
Three important response time factors identified so far are

processing architecture, communication architecture, and

scheduling of tasks dictated by these two architectures.

Processing Architecture
Two main architectures have been used in the construction

of collaborative systems [3]: centralized (client-server)

replicated (peer-to-peer). In both cases, it is assumed that

the shared application is logically divided into separate

user-interface and processing components. The user-

interface component transforms user input into input

commands and sends these commands to the program

component. Conversely, it processes output commands that

it receives from the program component and transforms the

result into updates to the display. The program component

processes user input by converting input commands to

output commands. The user-interface component is

replicated on each user’s computer and allows a user to

manipulate application state not shared with the other users.

The program component is logically shared by all users and

may be physically centralized or replicated, depending on

the processing architecture. Each user interface is mapped

to exactly one program component.

In the centralized (client-server) architecture, all of the

user-interface components are mapped to a single program

component running on one of the user’s computers. The

computer running the program component is called the

master and all of the other computers are called slaves. In

the replicated (peer-to-peer) architecture, each user-

interface component is mapped to the program component

running on the local computer. Whenever a master receives

a command from the local user, it sends the command to all

of the other computers, thereby ensuring the program

components on different masters are kept in sync.

The traditional rule of thumb has been that the replicated

architecture provides the best response times. While there

are scenarios in which this rule is accurate, Chung [2] was

the first to show, both analytically and experimentally, that

(a) low network latency actually favors a centralized

architecture and (b) asymmetric processing powers actually

favor a centralized architecture.

Communication Architecture
Regardless of whether a centralized or the replicated

architecture is used, master computers transmit commands

to all other computers. If commands are large or the number

of users is high, then transmission costs can be high.

An important question when transmission costs are high is

whether a master computer uses unicast or multicast to

communicate with other computers. Junuzovic and Dewan

[10] studied the use of multicast in realistic collaboration

scenarios. They found that while multicast usually improves

response times, it can harm them in some cases.

Scheduling Policy
Both the processing and the communication architecture

mandate specific tasks that the users’ devices must perform.

The processing architecture determines which computers

process input commands in addition to processing outputs,

while the communication architecture dictates the

destinations to which a computer transmits commands.

The order in which a computer carries out the processing

and transmission tasks impacts response times. Four single-

core policies for scheduling these tasks have been identified

by Junuzovic and Dewan [11]. Three of these are

straightforward: (a) process-first, which completes the

processing task before starting the transmission task, (b)

transmit-first, which does the reverse, and (c) concurrent,

which creates a separate thread for each of these tasks and

schedules these threads in a round-robin fashion. The

fourth, called lazy, gives precedence to the processing task,

but delays its execution and allows the transmission task to

run during this delay if the resulting increase in local

response times is not noticeable. As a result, a part of the

transmission task can run earlier, thereby noticeably

improving remote response times of some users.

On multi-core devices, intuitively the best response times

will be obtained by executing the transmission and

processing tasks in parallel on as many cores as possible.

However, Junuzovic and Dewan [11] argue against this

intuition. Specifically, they state that neither task should be

scheduled on more than one core. Their reason for

scheduling the processing task on one core is because in

general the processing task is an application defined black

box that cannot be parallelized by general frameworks. The

reason for doing so with the transmission task is two-fold.

First, using multiple cores for the transmission task makes it

difficult to predict response times because the operating

system can schedule the parallel send calls in an arbitrary

order. Second, since the CPU is much faster than the

network card, a single core saturates the network card. Thus

there are no performance gains to using multiple cores to

perform the transmission task.

They simulated performance with these policies in realistic

scenarios. On single-core devices, they found that the (a)

the lazy policy dominates the process-first policy and (b)

none of the lazy, transmit-first, and process-first policies

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1422

dominate each other. On multi-core devices, they found that

(a) the parallel policy dominates all single-core policies and

(b) using one core to perform both tasks can give

performance that is equivalent to that of the parallel policy.

Summary
In summary, previous work has studied the impact of

processing architecture, multicast, and scheduling policy on

response times. Prior work shows that the combination of

these three factors that provides the best response times

depends on collaboration conditions. As these conditions

can differ within and across collaborative sessions, it would

be useful to develop a system that automatically optimizes

the factors. In this paper, we present the first such system.

SYSTEM
In this first cut at the design and evaluation of a system that

improves performance by automatically maintaining the

processing architecture, communication architecture, and

scheduling policy, we focused on three driving problems: a

distributed PowerPoint presentation; a collaborative

Checkers computer game; and instant messaging. They are

important examples of real collaborative scenarios.

Distributed presentations are becoming common, instant

messaging is pervasive, and collaborative games, such as

checkers, chess, and online poker, are extremely popular. In

fact, by itself, distributed presentations are an important

scenario as an entire industry has been created around them.

The self-optimizing framework both shares applications and

improves their performance. These two responsibilities are

carried out by the sharing and optimization sub-systems.

Sharing Sub-System
The sharing sub-system is a reimplementation of Chung’s

approach [2]. In Chung’s work, a part of the system, which

we refer to as the client component, is logically situated

between the user-interface and program components on

each computer. The application is not aware of the system

component: to the user interface, it appears to be the

program component, and to the program component, it

appears to be the user interface. The client components

communicate directly with each other. They can be setup to

enforce replicated or centralized architectures. In our

system, we modified these components to also support

multicast. We also modified them to support scheduling

policy enforcement. When they intercept a command, they

create separate threads for processing and transmitting the

command. By controlling when and on what core these

threads execute, they can enforce any scheduling policy.

Optimization Sub-System
While modifying the sharing aspects of Chung’s system is a

contribution, our main contribution is the optimization sub-

system and the implementation issues it raises.

Driving Optimization Decisions

The main question with any optimization system is how it

derives optimization decisions. In our case, the question

translates to how it predicts the combination of response

time parameters that give the best response times.

One approach is to use learned rules of thumb. Wolfe et al.

[16] developed a system called Fiia that uses rules of thumb

along with developer hints to automatically centralize or

replicate parts of the application at runtime in order to

improve response times and frame rates. As mentioned

earlier, however, an issue with using rules of thumb is that

they do not always accurately predict performance. For

instance, Chung showed that there exist collaboration

conditions that favor a centralized architecture for good

response times, which contrasts the rule of thumb that the

replicated architecture provides the best response times.

An alternative approach that always accurately predicts

performance is to use an analytical model. Ideally, an

analytical model should predict the impact on performance

of processing architecture, communication architecture, and

scheduling policy since these have been shown to be

response time factors. It should also support an arbitrary

number of users and take advantage of the latest hardware

and software trends such as multi-core CPUs and non-

blocking communication. The only model of which we are

aware that satisfies all of these requirements was presented

by Junuzovic and Dewan [11], which predicts response

times in centralized and replicated architectures with an

arbitrary number of users. It supports think times, multicast,

multi-core processors, and non-blocking communication.

An analytical model usually has a set of assumptions that

define the scenarios in which the model applies. Junuzovic

and Dewan [11] make only one assumption: an application

implements only mandatory coupling functionality and no

optional functionality, such as awareness and concurrency

control. This assumption is satisfied by the applications that

we target, namely, PowerPoint, Checkers, and IM. In

general, however, applications implement optional

functionality. We will return to the issue of optimizing

these applications in more detail in the discussion section.

To apply the Junuzovic and Dewan [11] model, one must

first collect values for all of its parameters. Moreover, while

the model predicts performance with multicast, it does not

actually build a multicast overlay. Therefore, one must also

compute a multicast overlay before invoking the model.

Collecting Values of Collaboration Parameters

The parameters include for each computer the processing

and transmission times of input and output commands, the

think times, and network latencies to all other computers.

While most of these parameters are self-explanatory, the

transmission times warrant a second look. The transmission

of a command is done in two steps: first, the CPU queues

the command for transmission by the network card, and

then the network card transmits the command. Thus, the

time required for both steps needs to be collected.

Parameter values are measured by a client component of the

optimization sub-system running on each computer. These

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1423

components record the processing and transmission times

of each command, as well as its think time if the local user

entered it. They also measure network latencies to other

computers, as well as, report the performance data.

Once parameters are collected during a session, it pays to

save them as this can reduce the time the system takes to

perform the first optimization in future sessions. For

instance, processing and transmission costs measured for a

computer in one session can be used as cost estimates for

that computer in future sessions. Further reuse is possible

by grouping and saving these costs based on processor type.

Think times can also be reused by grouping them on a user

or application basis. With the reuse of values of these

parameters, the system can perform an optimization in a

future session as soon as it collects network latencies. Such

reuse is also useful when latecomers arrive. Specifically, if

costs have been gathered for the latecomer’s computer type,

then the system can optimize response times as soon as it

receives latencies among the latecomer and other users.

Computing Multicast Overlays

The idea of multicast requires the construction, for each

source of messages, a multicast overlay that defines the

paths a message takes to reach its destinations. We make

two assumptions regarding multicast. First, because IP-

multicast is not widely deployed, we assume an application-

layer multicast in which end-hosts form the overlay.

Second, as in peer-to-peer file sharing systems, we assume

that only the users’ computers can be used in the overlay. In

this first-cut at a self-optimization system that uses

multicast, we did not want to develop a new multicast

scheme. Instead, we chose an existing application-layer

scheme: the HMDM algorithm presented by Brosh and

Shavitt [1]. It is the only algorithm of which we are aware

that accounts for application-layer transmission costs.

Applying a multicast algorithm requires the collection of its

parameters. The HMDM scheme parameters include

network latencies and transmission costs. Since these

parameters are also collected for the analytical model, no

additional data needs to be collected by our system in order

to build a multicast tree using the HMDM scheme.

An important issue is how many multicast trees are

computed. One option is to compute a multicast tree rooted

at every user, but HMDM’s
runtime makes this approach impractical in large scenarios.

A more practical alternative is to compute a single multicast

tree that is shared by all users. An issue with this option is

that a command from any user but the one who is at the root

of the tree must first reach the tree, which increases the

response times. Our system can be configured to create an

arbitrary number of trees. The default is one.

Applying the Analytical Model

Once a multicast overlay is created, the system can use the

analytical model to predict performance. Unfortunately, it

may not be able to predict performance for all combinations

of response time factors using only the reported values. The

reason is that some parameter values may be missing

because not all computers report values of all parameters at

all times. For example, in a centralized architecture, a slave

does not report input processing costs, so the collected

values are not sufficient for predicting the performance of

an architecture in which the slave is a master.

When parameter values are missing, it is possible to

estimate them using the values of other parameters. One

approach is to assume that the input and output processing

cost ratio is the same for all computers. Since there is

always a master computer, the ratio can be computed.

Consider the missing input processing cost of a slave. A

master’s processing cost ratio and the slave’s output

processing cost can be used to estimate the missing value.

Other parameters can be estimated similarly.

Estimated parameter values may not reflect the actual

parameter values, however, so they may result in

optimizations that degrade performance. Such degradations

are temporary. As the optimization system gathers data, it

will eventually discard estimated values. In addition, by

reusing computer costs across sessions, eventually, it will

know most if not all parameter values at session start time.

While the analytical model is able to predict performance

for different configurations of a system, it does not predict

which configuration gives the best performance. The

simplest approach for picking a configuration is to pick the

one with the best average response times. However, this

approach does not account for the fact that response times

are inherently partially ordered and external criteria must be

used to create a total order. In general, infinitely many

external criteria exist and their application depends on the

response time requirements. To satisfy the requirements, we

rely on the notion of a response time function introduced by

Junuzovic and Dewan [11], which is an expression of the

requirements. Their function distinguishes between primary

and secondary users and between local and remote response

times. It accepts response times of configurations, a list of

inputting users, and identities of all users as parameters and

returns a ranking of configurations from best to worst.

Preserving Coupling Semantics During Optimizations

Once the system begins to perform an optimization, it is

important to ensure that the switch is performed atomically

from the perspective of commands already in the system or

those entered during the change. Otherwise, a command

may not reach all of its intended destinations or it may

reach a destination multiple times. For example, during

processing architecture change, a computer that changed

from a master to slave may receive an input command,

which would be inconsistent with the notion of replicated

and centralized architectures. Also, during a communication

architecture change, a command may reach a destination

multiple times since a computer may forward commands to

different destinations in the old and the new architectures.

In some cases, an optimization may be performed when the

shared application is in a quiescent state, in which case

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1424

distribution semantics are not impacted by the change. For

example, a switch may happen during think times if they

are high. Alternatively, the system could ensure a quiescent

state by delaying an optimization until users take a break.

In general, however, an optimization may be triggered

when the shared application is in a non-quiescent state. One

approach to performing the optimization atomically is to

suspend user inputs during the switch and wait for the

distribution of commands already in the system to complete

before starting the optimization. An issue with this solution

is that response times of commands can be high if the

switch time is long. A more intelligent solution is to run the

old and new configurations in parallel and switch to the

new configuration when it is fully deployed, which is done

by Chung for processing architecture changes [2]. As this

approach has been implemented previously for processing

architecture changes, we did not duplicate it in our system.

However, as discussed below, our system demonstrates that

the general idea of concurrently running two architectures

can be applied to other reconfiguration steps. Specifically, a

compromise taken by our system is to break the

optimization into three sequential atomic sub-steps, one for

each response time factor, and suspend user inputs only

during the processing architecture change. Since the

processing architecture defines which computers process

inputs, it must be deployed before the communication

architecture as the latter dictates how inputs are distributed.

The scheduling policy can be changed last as it is

independent of the two architectures.

Our system first changes the processing architecture by

reconfiguring the client components of the sharing system.

To bring program components up to date on computers

changing from a slave to a master, it uses Chung’s solution

[2] of replaying input commands to these components. To

support the replay, the system logs input commands on

master computers. It picks one old master at random to

replay commands to new masters. During the change, the

system suspends user inputs.

One issue when deploying a new processing architecture is

deciding what communication architecture and scheduling

policy should be used until they are also changed. In

particular, since the new processing architecture redefines

which users process input commands, a previous multicast

architecture may distribute input commands to new slave

computers, which is inconsistent with the notion of

collaboration architectures. Therefore, when changing the

processing architecture, the system changes the

communication architecture to unicast. The system must

also choose a scheduling policy to use. It simply keeps the

old scheduling policy since, as mentioned above, task

scheduling is independent of the processing architecture.

Once the new processing architecture is deployed, the

system resumes user inputs and begins the communication

architecture change. During this step, the system changes

the communication pattern among the client components.

To handle user inputs, the system continues to distribute

them using the old architecture while it deploys the new

one. The new communication architecture is activated only

once it has been deployed on all computers, and it is

immediately used for all new commands.

An important aspect of the system is that it does not discard

the old architecture immediately after activating the new

one. The reason is that when the new architecture is

activated, there may be commands that have been only

partially distributed using the old architecture. Thus, the old

architecture continues to distribute these commands. To

help each other decide which architecture to use, source

computers tag each command with the version number of

the architecture that should be used to distribute it. The net

effect of using the old architecture for commands entered

before the new architecture is activated is that from the

perspective of commands, the change is atomic because a

command is distributed using only the old or only the new

architecture. Eventually, the old architecture can be torn

down. To ensure that it is not removed prematurely, the tear

down should be delayed by the maximum response time. In

our experience, a delay of several minutes is sufficient.

Finally, the system performs the scheduling policy change.

A scheduling policy change is always atomic from the

perspective of user commands because scheduling policies

do not determine the distribution of commands. However,

using a mix of old and new policies may lead to

performance degradations because the performance was not

predicted for any mix of policies. Fortunately, it is a

temporary degradation; once the computers switch to the

new policy, the performance will improve as predicted.

Minimizing Overhead Impact on Performance

The optimization steps described above require both CPU

and network resources. Therefore, care must be taken so

that they do not negatively impact performance.

Two of these steps have to be executed by the client

components on the users’ computers. Only these

components can accurately measure the model parameters,

and only they can reconfigure themselves when an

optimization is performed. The data collection and

reporting overheads can negatively impact the response

times of the local user, although in our experiments they

were insignificant. If these overheads are an issue, they can

be reduced by increasing (a) the number of commands a

client waits before reporting data, (b) reducing the network

latency polling frequency of a client, and (c) reducing the

number of destinations in each latency poll.

The remaining steps are particularly CPU intensive. One

reason is that they involve the execution of the multicast

algorithm, which requires heavy computation when there

are many users. Fortunately, these steps do not need to be

executed by the client components. We encapsulate them

into a component called the server component. An

important issue is the location of the server. We do not

centralize it on a user machine for fear of degrading the

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1425

user’s response times. An alternative is to distribute the

server among multiple machines. While this decentralized

approach reduces the performance impact on any single

user, such approaches in general suffer from a distributed

consensus problem. To avoid the consensus issue, we

centralize the server, but on an infrastructure (non-user)

computer, such as the one running the session manager.

Such a computer exists even in the most highly distributed

systems, and is often called the bootstrapping node [15]. An

issue with this approach is that computing an optimization

may take a long time when there are many concurrent

sessions. Fortunately, this issue is temporary, as the system

eventually finishes the computation. More importantly, it

does not degrade response times during this time.

EVALUATION
So far, we have presented the self-optimizing system. An

important question is whether it has practical benefits.

Experiments vs. Simulations
In computer science, it is common that the performance of a

system is evaluated through experiments and simulations.

Experiments measure the performance of a system in use,

while simulations estimate the performance of a system by

using an analytical model of the system. Simulations are

more than a pure theoretical evaluation, however. While

theoretical evaluations can give trends and implications,

simulations can also provide quantitative results.

The choice between experiments and simulations involves a

tradeoff. Although experimental results are arguably more

believable than simulated results, simulations generally

require fewer resources than experiments making them

easier to run. In fact, when large scale experiments are not

possible because of a lack of resources, simulations may

still be possible. In this case, one way of reducing the

“believability gap” is to validate subparts of the simulation

with small-scale experiments.

Whenever possible, we performed experiments instead of

simulations. Unfortunately, in our lab, we do not have a

sufficient number of machines to perform large experiments

– we only have ten. Although public clusters, such as

PlanetLab and Amazon’s EC2, provide access to a large

number of machines, they do not offer sufficient control

needed for performance experiments. For instance, there is

no way to ensure that the same set of machines is always

used. In addition, in PlanetLab, machine loads can vary

across experiments because users share machines. Thus, for

our large scale scenarios, we had to use simulations.

When we performed large-scale simulations, we also

carried out smaller-scale experiments that were possible on

our equipment to validate subparts of the simulations. We

used a virtualization approach in which we treat each user’s

computer as a virtual computer that is mapped to a physical

computer. One physical computer may have multiple virtual

computers mapped to it. We added the virtualization

functionality to our framework. It supports mapping up to

one hundred users onto a single computer before memory

becomes an issue. The performance data for users who are

not mapped to a dedicated physical computer must be

discarded because when multiple users are mapped to a

single physical computer, timing measurements for them

and thus any users downstream from them are not reliable.

Processing Architecture Automation Experiments
We used experiments to study the impact on performance

of processing architecture changes in practical scenarios. To

obtain realistic user commands and think times, we logged

a collaborative Checkers game in which users play together

against the computer. We chose this program because it is a

computer-intensive task and its transmission costs are low,

allowing us to validate the effect of processing time

differences. In the experiments we conducted to gather

these logs, two users played together against the computer

and both users made Checkers moves. We assumed that the

data in the logs is independent of the number of

collaborators, their devices, and network latencies.

We used three computers, a Core2 2.0GHz desktop, a P4

1.7GHz desktop, and a P3 500MHz desktop, which have

processing power differences that can be expected when

users collaborate. We use the P3 desktop to simulate next-

generation mobile devices and current generation netbooks.

The computers are connected on a local LAN. Thus, the

latencies between them were low (i.e., ~0ms).

To replay the logs, we added functionality to our system

that enables us to replay previously recorded logs. For fear

of having our measurements affected by other applications,

we removed as many active processes as possible on each

computer, which is a common approach in experiments

comparing alternatives. Nevertheless, as LAN delays and

CPU loads vary during an experiment, we performed each

one ten times and report the average performances.

We performed the following three-user experiment.

Initially, two users are playing Checkers. User1 is using the

P4 and user2 the P3 desktop. Suppose that the users are on

the same LAN. Suppose also that after fifteen turns, user3

joins using a Core2 desktop on the same LAN. We

performed two sets of three experiments. In both sets, we

used all three possible initial architectures: replicated,

centralized on user1’s P4 desktop, and centralized on user2’s

P3 desktop. In the first set of experiments, the optimization

system was disabled so the architecture did not change

during the session, while in the second set, it was enabled.

We did not provide any historical performance data to the

optimization system; it collected all data from reports sent

during the session. We configured (a) the client components

to send reports after each command, (b) the clients to poll

for network latencies every sixty seconds, and (c) the server

component to perform optimizations every five commands.

Finally, we used a total order function that ranks one

system to be better than another if the former gives better

response times to more users than the latter.

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1426

We expect two optimizations. We expect the first one to

occur five moves into the game as the system gathers

sufficient data by then. It should result in a switch to the

centralized architecture in which the P4 is the master. The

reason is that the P4 is more powerful than the P3. We

expect the other optimization to happen after the twentieth

move as this is five moves after user3 joins, which means

that sufficient data has been collected for user3’s computer.

It should result in a switch to the centralized architecture in

which the Core2 is the master because it is the most

powerful computer in the session. Specifically, we also

expect that when the user3 joins, the arrival does not trigger

an optimization as there is no data for user3’s computer. It

should join as a slave of user1. Since we expect

optimizations after the fifth and twentieth commands, we

present the average response times for commands one to

five, six to twenty, and twenty-one to forty-eight (the end).

As Table 1 shows, in all cases except one, the performance

is either better or no worse with than without optimization.

As mentioned above, we consider a change of 50ms in

response times significant. The highlighted cells in the table

show noticeable improvements. Consider user2’s response

times. When the replicated architecture is used initially, the

user2’s average response times are improved by 133ms and

77.9ms after the first and second optimization, respectively.

The only case in which performance is worse with than

without the self-optimizing system occurs for user3 for

commands six through twenty when the replicated

architecture is used initially. This is actually expected. The

reason is when the optimization system is running, by the

time user3 joins, the system had switched to the centralized

architecture in which user1’s computer is the master. Thus,

when user3 joins, user3’s computer joins as a slave of

user1’s computer. On the other hand, when the system is not

running, the architecture had not changed from replicated to

centralized before user3 joined. Thus, user3’s computer

would have joined as a master. Since user3 has a more

powerful computer than user1, the architecture in which it is

the master will offer better performance to user3.

As described earlier, user inputs are paused during a

processing architecture change. In our experiments, the

pause did not negatively impact performance. The reason is

that the maximum switch time, 360ms, was less than the

minimum think time, 2134ms, so a switch could only

happen either during think time or overlap with at most one

command. The former was always true in our experiments.

System overheads also had no impact on response times.

Such an impact would be betrayed in the response times for

the first five commands. The reason is that in the case when

our system is running, it does not change the architecture

during the first five commands but it is still collecting data.

As Table 1 shows, the response times for the first five

commands with and without our system are the same.

Communication Architecture Automation Experiments
As mentioned above, the choice of unicast or multicast

communication is important when the cost of transmitting

commands is high. Thus, to study the effects of multicast on

response times, we must consider large scale scenarios.

Because large scale experiments were infeasible for us, we

relied on simulations to evaluate the benefits of our system

in large scale scenarios. Since simulations use an analytical

model of a system to predict the performance of the system,

the analytical model used in our simulations is the same as

the model used by the self-optimizing system.

As was the case with experiments, we used realistic

simulation data in the simulations. We considered a

PowerPoint scenario in which the presentation is being

given to 100, 200, 300, 400, and 500 audience members

around the world. PowerPoint is a good choice of

application for two reasons. It is perhaps a popular business

collaborative application. Also, its transmission costs can

be high, and thus multicast could help with its performance.

To obtain realistic PowerPoint commands and think times,

we identified user-commands in logs of actual PowerPoint

use. We analyzed recordings of two presentations. These

recordings contain actual data and users’ actions –

PowerPoint commands and slides. We assumed that the

data in the logs is independent of the number of

collaborators, their devices, and network latencies.

To obtain the processing and transmission costs, we ran

small scale distributed PowerPoint sessions with our

system. We configured to system to just collect parameters

without making optimization decisions. We then replayed

Architecture
User1 User2 User3

1-5 6-20 21-48 1-5 6-20 21-48 1-5 6-20 21-48

Initial Opt? Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev

Cent on

User1

No 44.3 34.2 74.0 48.7 33.1 16.0 67.1 27.8 88.4 46.6 48.8 15.9 61.8 43.9 34.1 16.2

Yes 44.8 33.8 75.4 48.9 19.2 6.25 64.0 30.8 87.4 47.7 29.6 7.16 63.0 46.6 16.9 6.42

Cent on

User2

No 128 91.3 217 139 98.9 49.3 131 89.0 221 139 104 49.3 174 121 98.1 49.1

Yes 126 86.1 75.6 48.9 18.5 7.06 130 85.8 87.8 46.5 29.9 7.03 62.0 45.0 16.7 7.19

Rep
No 43.8 33.8 74.7 48.9 34.0 16.2 135 88.9 222 138 107 49.6 26.7 17.0 15.9 6.13

Yes 43.9 33.6 75.3 48.4 19.4 6.45 133 86.3 88.9 46.2 29.1 6.64 62.6 44.3 17.1 6.73

Table 1. Response times (ms) measured during the Checkers architecture optimization experiment for commands before the first

optimization (1-5), after the first but before the second optimization (6-20), and after the second optimization (21-48)

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1427

the logs. To get costs for different machines, we repeated

the procedure with four different computers: Core2 2.0GHz

desktop; P4 1.7GHz desktop; P3 500MHz desktop; and

1.6GHz Atom netbook. As with the Checkers experiment,

we removed all active processes that we could from the

computers in order to reduce noise in the measurements.

Based on the published network latency data between 1740

computers [12], we set the network latencies between all

users equal to those between a random subset of 100, 200,

300, 400, and 500 of the 1740 computers. Zhang et al. [18]

showed that such subsets are representative of the entire set.

To create a multicast tree, we ran the HMDM algorithm

with the latencies and measured transmission cost values.

Finally, we simulated the performance for a scenario in

which (a) the centralized architecture is used, (b) the

transmit-first policy is in effect, (b) the presenter is using a

netbook, (c) the remaining users are using a random mix of

netbooks and P3, P4, and Core2 desktops, and (d) a total

order function that prioritizes maximum remote response

times is used. We configured the system to use historical

data and existing latencies instead of gathering them

dynamically. We also configured it to begin performing the

first optimization once the first command is replayed. We

performed ten simulations and report the average results.

Table 2 shows the maximum remote response times as the

number of users varied. The maximum remote response

times increased much faster with unicast than with

multicast as the number of users grew. As the number of

users increased from 100 to 500, the maximum unicast

remote response time grew by 5104ms, while the multicast

remote response times grew only by 54.31ms. Also, the

remote response times are noticeably better with multicast

than with unicast for all sizes of collaborations: 1052ms

better with 100 and 6102ms better with 500 users. The local

response times are shown in Table 3. As Table 3 shows,

with unicast, the local response time increased linearly with

the number of users (427.6ms), while with multicast, it

increased slightly (2.03ms). More importantly, local

response times were significantly better with multicast than

with unicast for all sizes of collaborations: 82.41ms better

with 100 and 509.0ms better with 500 users. We did not

find high maximum remote response time variability. The

randomness in the simulations came mainly from randomly

assigning realistic computer types to users and latencies

among these computers, which mainly impact the multicast

algorithm. The HMDM scheme was able to consistently

navigate this randomness, which is a tribute to its design.

The simulation results show that the system can noticeably

improve performance through multicast. Whether the

system would actually deploy multicast depends on the

response time function. If the function favors configurations

that minimize the maximum local or remote response times,

then the system would deploy multicast. Also, although

multicast appears to always be better than unicast, unicast is

still useful. Unicast is easy to deploy and maintain while

multicast requires computation for both. Thus, unicast can

be the default option that is overridden by multicast only

when it is noticeably worse than multicast.

Through limited experiments made possible by our

virtualization approach described earlier, we compared the

simulated and experimental values for a scenario with 2 and

100 users. We found that in all but one case, the simulated

value was within 10ms of the measured value. The case it

was not within 10ms was the maximum remote response

time in the 100 user scenario, where it was 79.1ms lower.

However, the measured value was 1415ms. Thus, the error,

though higher than the noticeable threshold, was less than

6%. Even with the error, the response time trends predicted

in the simulations were observed in the experiments.

Scheduling Policy Automation Experiments
We also measured the impact on response times of

automating the scheduling policy maintenance. Because of

space restrictions, we only give a summary of the results.

We wanted to verify that our system choses the same

scheduling policies as those predicted by Junuzovic and

Dewan simulations [11]. They found that on single-core

devices, the lazy, transmit-first, and concurrent policies do

not dominate each other. Hence, the one that optimizes

response times depends on the users’ response time

requirements. They also show that on multi-core devices,

the parallel policy dominates all single-core policies,

although in some cases using a single-core policy on a

single-core can give performance that is equivalent to that

when using multiple cores with the parallel policy.

As for the communication architecture results, we used the

simulation-and-validation approach. We showed that on

single-core devices, our system chooses the scheduling

policy that best meets response time requirements. In

particular, if the response time function favors a system that

(a) provides the best local response times, our system

deploys the lazy policy, (b) provides the best remote

response times to as many users as possible, our system

switches to the transmit-first policy, and (c) improves as

many remote response times as possible without noticeably

degrading the local response times, the system deploys the

lazy policy. In all simulations, the remote response time

requirements would have been satisfied noticeably worse

with other policies. Moreover, we show that on multi-core

devices, the system uses the parallel policy only if it gives

Num Users 100 200 300 400 500

Unicast 1651 2923 4227 5510 6756

Multicast 599.3 615.4 640.5 647.5 653.7

Table 2. Average maximum remote response times (ms)

Num Users 100 200 300 400 500

Unicast 164.2 271.2 378.1 485.0 591.9

Multicast 80.85 82.00 82.16 82.94 82.88

Table 3. Average local response times (ms)

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1428

significantly better performance than all of the single-core

policies. These results confirm simulations from prior work.

DISCUSSION
In this section, we discuss the broader impact and issues

with the adoption of the self-optimization system.

Beyond the Scope
It is important to note that the limitations of the model used

by our system are not limitations of the system. The

implementation issues we presented are orthogonal to the

choice of analytical model. Regardless of the model, it is

necessary to gather its parameters, handle nuances in its

application, and compute multicast overlays. The remaining

issues, namely, the steps required to keep overheads low

and preserve coupling semantics, are model independent.

On the other hand, the scope of applications whose

performance can be improved by our system is dictated by

the scope of applications supported by the analytical model

it uses to predict performance. Since the applications in our

driving problems had only coupling functionality, it was

sufficient for our system to use a model that accounted only

for coupling commands. As new performance models are

created that relax this assumption, they can be used by our

system to expand its application scope. For instance, new

models that account for costs of consistency maintenance

and conflict resolution could be used in our system to

improve performance in scenarios where users generate a

high rate of small actions, such as real-time editing systems.

Even with the current model, our system can still be useful

for applications that have optional functionality. For

instance, World of Warcraft has concurrency control. Thus,

our system with the current model may not correctly predict

performance when conflicts occur and may even degrade it.

However, the model still applies to, and our system will still

improve, the performance of, non-conflicting commands.

Hence, if our system happens to degrade performance of

conflicting commands, the degradation has to be weighed

against the improved performance of non-conflicting

commands. This is important given that the majority of

commands do not conflict. In fact, sometimes conflicts do

not occur at all. For instance, they did not happen in the

collaborations we logged. Also, in some scenarios, social

protocols prevent conflicts or users do not care about them.

In the scenarios we tested, users took turns to play a game

and broadcasted a presentation. Ideally, we should also

evaluate the system for scenarios with co-authoring actions,

such as co-creating a presentation. Unfortunately, such logs

are not publicly available, and we did not have an

opportunity to observe and log any such sessions ourselves.

Immediate Applicability
An important question is whether performance of

collaborative systems is an issue today. Consider Citrix

GoToMeeting, Cisco Webex, and Microsoft Live Meeting,

three of the most popular collaborative systems. Websites

for all three products contain instructions on how to

improve performance. Moreover, numerous unofficial

websites offer help to users who are suffering from poor

mouse and keyboard response times in these systems. Thus,

performance of systems today does indeed matter.

We have shown that a window of opportunity for

improving performance exists in some practical scenarios

assuming that 50ms is a noticeable threshold. While 50ms

is the only noticeable threshold reported by prior work, it

was not studied using PowerPoint, Checkers, or Instant

Messaging, so it is possible that it may not apply to these

applications. More studies are needed to resolve this issue.

Also, there is no guarantee that a noticeable improvement is

always possible. We have shown that it is possible when

resources are somewhat stressed. An important question is

whether these conditions occur in practice.

Even if a noticeable performance improvement is possible,

an important question is whether the complexity of the

optimization system is worth it. As with any complex

system, it has development and deployment costs, but it is

not all or nothing. The components for optimizing each of

the three factors are logically independent, and it is possible

to implement some but not all of them to get some but not

all of the benefits. The amount of implementation effort is

proportional to the benefits it provides. For instance,

applications typically support either centralized or

replicated semantics. To get the full benefit of our system,

they can be updated to support both architectures, or they

stay unchanged but still get the benefit of our system’s

communication architecture and scheduling policy

automation. This is consistent with the philosophy in

successful commercial software, which provides features

that are not used all the time. Also, in our case, the extra

functionality does not have a performance overhead, as we

see above, and unlike several commercial systems, no user

overhead, as the user-interface is not changed. In general,

implementation overhead is less important than

performance or user overhead, as it does not deteriorate the

end-user experience. Moreover, such a system has to be

implemented and tested only once for all applications.

Additional complexity arises from the sharing sub-system,

as the component situated between the user-interface and

program components has to be implemented for each

application. However, Chung [2] has already shown that its

implementation is straightforward for applications with

well-defined user-interface and program components and

whose source code is available. In addition, we were also

able to implement it for a black-box application, which, as a

result, does not satisfy these requirements – PowerPoint.

PowerPoint provides a COM interface. To bridge Java and

COM, we used J-Integra, and then we were able to build the

client component for PowerPoint. The process took two

weeks. The majority of the time was spent on investigating

COM-Java bridges. Thus, building the component for other

COM applications will take less time. We anticipate similar

investments for applications with other types of interfaces.

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1429

Future Applicability
An important question is whether our system will be useful

in the future. For instance, as processor and network speeds

improve, it may seem that processing and transmission

costs will decrease. As a result, the choice of processing

and communication architectures may not matter. However,

historically, increasing processor and network speeds have

resulted in more complex applications with increasing

resource requirements. Also, on mobile devices, the

hardware capabilities are developing less rapidly because of

power conservation issues. Thus, architectures will continue

to matter. Similarly, as devices become multi-core, it may

seem that the choice of scheduling policy will not matter.

Multi-core processors, however, are less power efficient,

which is an issue for mobile devices. For this reason, many

mobile devices still use a single-core processor. Thus,

scheduling policies will continue to matter.

CONCLUSION
This paper makes two main contributions. First, it shows

that it is possible to develop a self-optimizing system for

collaborative applications that uses an analytical model to

drive optimizations. It also presents new implementation

issues relevant to all future self-optimizing frameworks. In

addition, the presented system can be used as an

instructional tool for teaching students about collaborative

systems. In particular, students can use the system to

experience the impact on response times of processing

architecture, multicast, and scheduling policy. Currently,

we are incorporating it into a graduate collaborative

systems course and plan to make it available for download.

It will be useful to (a) extend the design space of

applications that can benefit from our system; (b) improve

the performance of massive online virtual worlds, such as

Second Life; and (c) perform user studies to evaluate the

perceived benefits of our system in actual collaborations. It

is also important to study multi-pronged solutions to user

experience issues caused by high response times. For

instance, our work improves user experience by reducing

response times. An orthogonal approach, taken by Savery

and Graham in the TimeLines model [13], is to adjust

processing of commands in a manner that masks them.

Neither approach is perfect: ours does not reduce response

times to zero and theirs does not perfectly mask them. It

would be useful to first reduce responses times with our

system and then use TimeLines to mask them as this may

give a better user experience than with either system alone.

It would also be interesting to add performance parameters

that capture human factors as users can work around some

performance issues. While functional, these workarounds

may prevent optimal use of a system and may open other,

potentially hidden, opportunities for improvement.

ACKNOWLEDGEMENTS
This research was funded in part by an NSERC scholarship,

a Microsoft Research fellowship, and NSF grants IIS

0712794 and IIS-0810861.

REFERENCES
1. Brosh, E. and Yuval, S. Approximation and heuristic

algorithms for minimum-delay application-layer

multicast trees. IEEE INFOCOM, 2004.

2. Chung, G. Log-based collaboration infrastructure. Ph.D.

Dissertation, UNC Chapel Hill, 2002.

3. Dewan, P. Architectures for Collaborative Applications.

CSCW: Trends in Software, 7, 1999, edited by

Beaudouin-Lafon, M.

4. Ellis, C.A, Gibbs, S.J., and Rein, G. Groupware: some

issues and experiences. ACM CACM, 34, 1 (Jan 1991).

5. Graham, T.C.N., Phillips, W.G., and Wolfe, C. Quality

analysis of distribution architectures for synchronous

groupware. CollaborateCom, 2006.

6. Gutwin, C., Dyck, J., and Burkitt, J. Using cursor

prediction to smooth telepointer actions. ACM GROUP,

2003.

7. Gutwin, C., Fedak, C., Watson, M., Dyck, J., and Bell,

T. Improving network efficiency in real-time groupware

with general message compression. ACM CSCW, 2006.

8. Jay, C., Glencross, M., and Hubbold, R. Modeling the

effects of delayed haptic and visual feedback in a

collaborative virtual environment. ACM TOCHI, 14, 2

(Aug 2007).

9. Jeffay, K. Issues in multimedia delivery over today’s

internet. IEEE Multimedia Systems. Tutorial. 1998.

10. Junuzovic, S. and Dewan, P. Multicasting in groupware?

IEEE CollaborateCom, 2007.

11. Junuzovic, S. and Dewan, P. Scheduling in variable-core

collaborative systems. ACM CSCW, 2011.

12. p2pSim: a simulator for peer-to-peer protocols.

http://pdos.csail.mit.edu/p2psim/kingdata. Mar 4, 2009.

13. Savery, C. and Graham, T.C.N. It's about time:

confronting latency in the development of groupware

systems. ACM CSCW, 2011.

14. Shneiderman, B. Response time and display rate in

human performance with computers. ACM CSUR, 16, 3

(Sep 1984).

15. Wikipedia. Bootstrapping Node, Dec 27, 2009.

16. Wolfe, C., Graham, T.C.N., Phillips, W.G., and Roy, B.

Fiia: user-centered development of adaptive groupware

systems. ACM Symposium on Interactive Computing

Systems, 2009.

17. Youmans, D.M. User requirements for future office

workstations with emphasis on preferred response times.

IBM United Kingdom Laboratories (Sep 1981).

18. Zhang, B., Ng, T.S.E, Nandi, A., Riedi, R., Druschel, P.,

and Wang, G. Measurement-based analysis, modeling,

and synthesis of the internet delay space. ACM

Conference on Internet Measurement, 2006.

Session: Achieving Harmony through Technology February 11-15, 2012, Seattle, WA, USA

1430

