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1 Introduction

Over the last five years, Web-based crowdsourcing platforms have become avail-
able for providing programmatic access to populations of workers with diverse
capabilities. Crowdsourcing systems include games with a purpose [21] and task
markets such as Mechanical Turk. We address a central challenge with the har-
nessing of human talent via these systems: incentivizing workers to contribute
to the best of their abilities.

Designing a crowdsourcing application involves the specification of incentives
for services and the checking of the quality of contributions. Methodologies for
checking quality include providing a payment if the work is approved by the task
owner and also hiring additional workers to evaluate contributors’ work. Both
of these approaches place a burden on people and organizations commission-
ing tasks. And there are multiple sources of inefficiency: Recent experiments
on Mechanical Turk have demonstrated that task markets may be negatively
affected by the strategic behaviors of workers and task owners [12, 15]. For ex-
ample, there can be strategic manipulation of work by participants that reduces
their contribution but increases payments. And task owners may prefer to reject
contributions simply to reduce the payments they owe to the system. Moreover
neither a task owner nor the task market may know the task well enough to be
able to evaluate worker reports. In this paper, we introduce incentive mecha-
nisms that promote truthful reporting among workers of a crowdsourcing system
and prevent task owner manipulations.

We focus on a specific class of crowdsourcing tasks that we refer to as con-
sensus tasks, but the ideas presented here can be generalized to many settings
in which multiple reports collected from people are used to make decisions.
Consensus tasks are aimed at determining a single correct answer or a set of
correct answers to a question or challenge, such as identifying labels for items,
quantities, or events in the world, based on multiple noisy reports collected
from human workers. Consensus tasks include a large swath of citizen science
projects where non-experts assist with identifying ground truth. An example of
a large-scale consensus task is the classification of galaxies identified in a com-
prehensive sky survey, where workers label galaxies based on their appearance
in astronomical images [13]. Consensus tasks can also be subtasks of a larger
complementary computing task, where a computer system is recruiting human
workers to solve pieces of a larger problem that it cannot solve. For example,
a computer system for providing real-time traffic directions may recruit drivers
from a certain area to report about traffic conditions, so that the system is able
to provide up-to-date directions more confidently.

We study different payment rules for incentivizing workers in crowdsourc-
ing systems and the properties of these rules. We first analyze existing payment
rules used in consensus tasks and show that they are vulnerable to worker manip-
ulations. Next, we adapt peer prediction rules to the domain of crowdsourcing.
These rules were introduced by Miller, Resnick and Zeckhauser to gather honest
reviews of products by making use of proper scoring rules [16]. In our adapta-
tion to the domain of crowdsourcing, these rules pay a worker depending on how
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well her report helps to predict another worker’s report for the same task. We
demonstrate the way payments can be computed with the peer prediction rules
for consensus tasks based on the other components of a system, and we study
the important challenges in applying them in real-world multi-agent systems.

To address some shortcomings of the peer prediction rule, we introduce a
novel payment rule, called consensus prediction rule. This more sophisticated
payment rule couples payment computations with planning to generate a ro-
bust signal for evaluating worker reports. This rule rewards a worker based on
how well her report can predict the consensus of other workers. It incentivizes
truthful reporting, while providing better fairness than peer prediction rules.

Peer prediction and consensus prediction rules make strong common knowl-
edge assumptions to promote truthful reporting. For the domain of consensus
tasks, these assumptions mean that every worker shares the same prior about
the likelihoods of answers and the likelihoods of worker reports, and the system
knows this prior. This assumption is one of the biggest obstacles in applying peer
and consensus prediction rules in a real-world system, in which these likelihoods
can only be predicted based on noisy predictive models. We study approaches
for relaxing this assumption. We show that in settings where common knowl-
edge assumptions do not hold, workers can be incentivized to communicate and
collaborate with the system to correctly estimate the true prior, and the true
likelihoods of worker reports.

We empirically evaluate different payment rules with simulations which val-
idate their truthfulness and fairness properties. Our analyses show that crowd-
sourcing systems that are not implementing incentive compatible payments may
suffer significantly, and that payments calculated with the consensus prediction
rule achieve high levels of fairness. To the best of our knowledge, we present the
first empirical study of the behavior of peer prediction and consensus predic-
tion rules with strategic agents when common knowledge assumptions do not
hold. We study settings in which payments are computed based on predictions
of noisy models. The study shows that the incentive compatibility properties of
these rules are robust to noise.

2 Related Work

With the recent advances in using crowdsourcing for solving tasks that com-
puters cannot easily do alone, there has been growing interest in principles and
algorithms for efficient crowdsourcing. An active area of research has been on
understanding and modeling worker behavior in task markets, including efforts
for predicting reservation wage for a given task [8], for predicting the way task
features and payment features affect the quality of outcome [9], for predicting
worker contribution as a function of payment [14], and for identifying content
contributors that are untrustworthy or inaccurate [5]. Another line of research
has focused on planning algorithms to determine the optimal task structure and
hiring policies for solving a task with crowdsourcing [19, 3, 11, 20].

In contrast to efforts to address challenges in modeling and planning, there

2



has been little work on building incentive mechanisms for crowdsourcing sys-
tems. Find-fix-verify has been proposed as a policy that hires additional workers
for quality tracking [1]. Another approach suggests verifying the competency
and honesty of workers by asking a set of easily verifiable questions [12, 19]. Both
of these approaches introduce additional costs either in the form of recruiting
additional workers or burdening workers with redundant questions. There has
been complementary work on incentivizing workers of a crowdsourcing system
to attract competent peers to contribute to a task [23, 4].

Prediction markets and market scoring rules incentivize truthful reporting
for tasks for which the true answer is eventually revealed [2, 7]. However for
many crowdsourcing tasks the true answer may never be revealed and such
tasks are the focus of this paper. This paper builds on the prior work on peer-
prediction methods to promote truthful reporting without inducing additional
costs. Peer-prediction methods were first introduced by [16] to gather honest
reviews of products, papers, and proposals by making use of proper scoring
rules. These methods are supported by empirical evidence showing that people
indeed learn to maximize their payoff by reporting truthfully when payments
are calculated with respect to a proper scoring rule [17]. Collective revelation
is an alternative approach that inherently weighs an agent’s report more if the
agent is more informative, but it requires each agent to report twice, based on
a consideration with and without evidence, and is only valid if the distribution
over the correct outcome has a well-understood structure (e.g., Normal distri-
bution) [6]. The Bayesian Truth Serum makes weaker assumptions on common
knowledge, but requires each agent to report predictions about other agents’
predictions, which may be too costly for workers within a crowdsourcing system
[18].

3 A Mechanism for Solving Consensus Tasks

Our overarching goal is to design autonomous systems that collect information
from people to recover the true state of the world, and thus to make effective
decisions. We focus on crowdsourcing systems for solving consensus tasks as a
real-world example.

An automated system for consensus tasks has access to a population of
workers, who are able to make inferences about the correct answer of a consensus
task. We use the term ”worker’s inference” to refer to the worker’s true belief
about the correct answer of a task. A worker’s report to the system may differ
from the inference, for example if the worker strategizes about what to report.
The goal of the system is to deduce an accurate prediction of the correct answer
of a task by making use of multiple worker reports. We now formally define
consensus tasks, and then present a system design for solving these tasks.

Definition 1. Let I denote the set of workers in worker population, A =
{a1, ..., an} denote the set of possible answers for task t ∈ T . f is the set of
features describing the task and workers. Task t is a consensus task if,
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• There exists a mapping t→ a∗ ∈ A, where a∗ is the correct answer of task
t.

• Let A∗ be a random variable for the correct answer of a given task, and Cp
be another random variable for the answer inferred by a random worker in
the population. A∗ is stochastically relevant for Cp conditional on f . That
is, for any distinct realization of A∗, ã and ā, there exists a realization of
Cp, cp, such that
Pr(Cp = cp|A∗ = ã, f) 6= Pr(Cp = cp|A∗ = ā, f).

• Let Ci be a random variable denoting the answer inferred by worker i, and
Cj be another variable denoting the answer inferred by a random worker
from the remaining population I−i = I \ {i}. For any worker i in the
worker population, Ci is stochastically relevant for Cj conditional on f .

For simplicity, Definition 1 assumes consensus tasks to have a single correct
answer; however, the results presented in this work generalize to cases in which a
set of answers may serve as correct answers. The second condition of Definition
1 ensures that the worker population is informative for a given task. The third
condition is the foundation of the truth promoting payment rules that we will
focus on later. This condition is realistic for many domains in which worker
inferences about a task depends on the correct answer of the task or the hidden
properties of the task, thus a worker’s inference helps to predict other workers’
inferences. For example, a worker of the Galaxy Zoo system classifying a galaxy
as a spiral galaxy increases the probability that another worker will provide the
same classification [13].

A successful crowdsourcing system needs to satisfy both task owners and
workers. Thus, the system designers face two key challenges: (1) generating a
policy for solving a given task, and (2) providing compelling and fair incentives
to workers. To address these challenges, a system for solving consensus tasks
needs to generate models that predict the correct answer of a task at any point
during execution as well as the worker reports that will be obtained by the
system. In addition, based on these models, the system needs a policy for
deciding whether to hire a new worker or to terminate and deliver the most
likely answer to the task owner, and provide payments to workers in return for
their effort. The detailed investigations of learning these predictive models and
developing policies for consensus tasks have been presented separately [11]. In
this work, we provide a summary of the key findings from this previous work,
and focus on the unanswered challenge of designing incentives for workers.

The models for predicting the correct answer and for predicting worker re-
ports makes inferences based on a set of features that represent the character-
istics of tasks and workers. To build these models, the system collects data
about the system, workers, and tasks being executed. For a given task, fea-
ture set Ft include features that are initially available in the system. Ft may
contain features of the task (e.g., task difficulty, task type and topic), features
of the general worker population (e.g., population competency), and features
about the components of the system (e.g., minimum and maximum incentives
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offered). Feature set Fwi includes features of a particular worker i, which may
include the personal competency of the worker, her availability and her abilities.
Feature set Fi = Fwi

∪Ft represents the complete set of evidential observations
or features relevant for making predictions about worker i’s report. After col-
lecting m worker reports, F = Ft∪Fw1∪ ...∪Fwm

represents the complete set of
evidential observations or features relevant for predicting the correct answer of
a task. F may contain hidden features (e.g., the difficulty of a task), which may
need to be predicted to make accurate inferences about the correct answer and
about the worker reports. Fi is provided as input to the model that predicts the
report of worker i. The full feature set F is provided as input to the model that
predicts the correct answer of a task. For simplicity of notation, Pr(X|F = f)
denoted as Prf (X) throughout the paper.

The system harnesses two predictive models for making hiring decisions and
for calculating payments: The answer model (MA) and the report model (MR)
(See [11] for details on these models). MA(a, ft) is the prior probability of the
correct answer being a given the initial feature set of the task. For example, if
a galaxy has features that resemble a spiral, the prior probability of this galaxy
being a spiral galaxy is higher. MR(ri, a∗, fi) is the probability of worker i
reporting ri given that the correct answer of the task is a∗ and the set of features
relevant to the worker report is fi. The likelihood of a worker identifying a
galaxy correctly may depend on the features of the task and of the worker. This
likelihood tends to be relatively higher if the galaxy is easy to classify, or the
worker is competent. Since Fk includes all relevant features to predict any kth

worker’s report, for all worker couples i and j, Ri and Rj are independent given
Fi, Fj and A∗.

At each point during execution, the system makes a decision about whether
to hire a new worker or terminate the task. When it decides not to hire ad-
ditional workers, it deducts a consensus answer â based on aggregated worker
reports and delivers this answer to the owner of the task. Given a sequence of
reports collected from workers, r = {r1, ..., rm}, it chooses â as given below:

â = argmax
a∈A

Prf (A∗ = a|R1 = r1, ..., Rm = rm)

The system implements a policy for deciding when to stop hiring workers
and deliver the consensus answer to the task owner. For simplicity of analysis,
we limit policies to make decisions about how many workers to hire and not to
make decisions about who to hire and how much to pay. A sample policy that
we will be using through the paper continuously checks whether the system’s
confidence about the correct answer has reached a threshold value T . The policy
hires a new worker if target confidence T has not been reached after receiving
a sequence of reports r:

(max
a∈A

Pr(A∗ = a|R = r,F = f)) < T

A more sophisticated policy that can make hiring decisions by solving a Partially
Observable MDP has been introduced in previous work [11].
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Let π be the policy implemented by the system. We define a function Mπ

such that for a given sequence of worker reports r and feature set f , Mπ(r, f)
is ∅ if π does not terminate after receiving r, and is â, the consensus answer,
otherwise.

4 Incentives for Truthful Reporting

Among various factors that motivate workers, including enjoyment, altruism
and social reward, monetary payments are the most generalizable and straight-
forward to replicate. We shall focus on quantifiable payments as incentives in
crowdsourcing tasks, which can be monetary payments or reputation points.

Following the literature on prediction markets, an intuitive approach to re-
warding workers in consensus tasks is rewarding agreements with the correct
answer. A challenge with this approach is that the correct answer may take too
long to be revealed—or may never be revealed. Moreover, the signal about the
correct answer may be unreliable; if the correct answer is revealed by the task
owner, the owner may have an incentive to lie to decrease payments. We now
present payment rules that reward workers without knowing the correct answer.
These rules use peer workers’ reports to evaluate a worker, and does not require
input from task owners, thus prevents task owner manipulations.

4.1 Preliminary

In this section, we present the background, definitions and analysis that are
needed to formalize payment rules for consensus tasks. We start by stating our
assumptions in designing payments. In consensus tasks, workers report on a
task once and maximize their individual utilities for the current task. We follow
the common knowledge assumptions made by the prior work on peer prediction
methods. These common knowledge assumptions translate to the domain of
consensus tasks as follows: The probability assessments performed by models
MA and MR are accurate and common knowledge. These assumptions can be
realized by a crowdsourcing system by collecting evidence about previous tasks
and workers, and by building accurate predictive models. For cases in which
predictions of the system are accurate but individual workers’ predictions are
not, the assessments of the system can be made common knowledge with public
revelation. In Section 5, we explore approaches for relaxing common-knowledge
assumptions in real-world systems.

We model a consensus task as a game of incomplete information in which
players’ strategies consist of their potential reports 1. We perform Bayesian-
Nash equilibrium analysis to study the properties of payment rules. A worker’s
report is evaluated based on a peer worker’s report for the same task or a subset
of such reports. τi(ri, r−i)→ R̄ denotes the system’s payment to worker i, based
on ri, worker i’s report, and r−i, a sequence of reports collected for the same

1Our analysis focuses on the reporting behavior of workers once they decide to participate
in a consensus task.
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task excluding ri. C−i is a random variable for the sequence of inferences by
all workers except worker i. ΩR is the domain of worker inferences and reports.
Let sti be a reporting strategy of worker i such that for all possible inferences
ci she can make for task t, sti(ci ∈ ΩR) → ri ∈ ΩR. st is a vector of reporting
strategies for all workers reporting to the system, st−i is defined as st \ {sti}.

st is a strict Bayesian-Nash equilibrium of the consensus task t if, for each
worker i and inference ci,∑
c−i

τi(sti(ci), s
t
−i(c−i)) Prf (C−i = c−i|Ci = ci) >

∑
c−i

τi(r̂i, st−i(c−i)) Prf (C−i = c−i|Ci = ci)

for all r̂i ∈ ΩR \ {sti(ci)}.

A strategy sti is truth-revealing if for all ci ∈ ΩR, sti(ci) = ci. M = (t, π, τ),
mechanism for task t with policy π and payment rule τ , is strict Bayesian-Nash
incentive compatible if truth-revelation is a strict Bayesian-Nash equilibrium of
the task setting induced by the mechanism2.

We use proper scoring rules as the main building blocks for designing pay-
ment rules that promote truthfulness in consensus systems. We define proper
scoring rules for the forecast of a categorical random variable. The set of possi-
ble outcomes for the variable is Ω = {ω1, ..., ωn}. A forecaster reports a forecast
p, where p is a probability vector (p1, ..., pn), and pk is the probability forecast
for outcome ωk. A proper scoring rule S takes as input the probability vector p
and the realized outcome of the variable ωi, and outputs a reward in R̄ for the
forecast. Let the probability vector q be the forecaster’s true forecast for the
random variable, a function S is a strictly proper scoring rule if the expected
reward is maximized when p = q. Function S measures the performance of
a forecast in predicting the outcome of a random variable. Three well-known
strictly proper scoring rules are:

1. Logarithmic scoring rule:

S(p, ωi) = ln(pi)

2. Quadratic scoring rule:

S(p, ωi) = 2pi −
∑
ωk

pk

3. Spherical scoring rule:

S(p, ωi) =
pi

(
∑
ωk
p2
k)1/2

Next, we present the general idea for using proper scoring for calculation
of truth-promoting payments in consensus tasks. We pick a public signal for

2Task t specifies the strategies available for workers as well as features of the task and the
worker population.
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which a worker’s report is stochastically relevant for. The worker’s report gives
a clue about what the value of the signal will be. We use the worker’s report
to generate a forecast about the signal and reward the worker based on how
well the forecast predicts the realized value of the signal. From the definition
of proper scoring rules, the reward of the worker is maximized when ri = ci. In
the following sections, we propose signals that can be used to evaluate worker
reports and provide methods for calculating the payment of a worker reporting
to a real-world consensus system.

4.2 Applying Existing Payment Rules To Consensus Tasks

We now explore different payment rules that have been proposed by previous
work within and beyond the literature on crowdsourcing systems. We describe
how these rules can be computed for consensus tasks and analyze their incentive
compatibility and fairness properties.

4.2.1 Basic Payment Rules

A number of crowdsourcing systems have implemented payment rules that re-
ward workers based on agreement among workers. Two examples of these rules
are the basic peer rule which rewards a worker if her report agrees with a ran-
domly selected worker’s report on the same task (e.g., implemented in the ESP
game [21]) and the basic answer rule which rewards a worker if her report agrees
with the consensus answer (e.g., some tasks in Mechanical Turk). We refer to
these rules as basic payment rules as worker payments depend on agreements
among the reports of workers, independent of the likelihood of agreement.

Basic payment rules are not guaranteed to promote truthful reporting for
consensus tasks. We propose an example from the Galaxy Zoo domain to demon-
strate that systems implementing basic payments might be negatively affected
by strategic reporting. We will use this example continuously in this paper for
demonstrating properties of other payment rules. For the example, the cor-
rect classification of any galaxy can either be elliptical (e) or spiral (s). Based
on the features of a given galaxy, the priors for the type of the galaxy are
Pr(A∗ = e) = 0.8 and Pr(A∗ = s) = 0.2. The accuracy of each worker is 70%
in predicting the correct answer. The consensus system implements a simple
policy that terminates after hiring 4 workers. For all basic payment rules, the
best response of a worker is always reporting e, when other workers are report-
ing truthfully, or reporting strategically. Thus, it is not possible to solve this
task with strategic workers if basic payments are provided as incentives.

The absence of incentive compatibility in a system introduces important
challenges for both workers and the system. To maximize payments, workers
need to strategize and need to reason about other workers and the likelihood
of their reports, which may be a difficult cognitive challenge. Since the worker
reports are not guaranteed to be truthful, the policy implemented in the mech-
anism needs to reason about the different strategies that workers may employ,
which makes the planning process harder.
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4.2.2 Peer Prediction Rule

The peer prediction rule is proposed by Miller et. al. for domains in which users’
truthful reviews about products and services are valuable. This rule assumes
that a user’s review about a product is stochastically relevant for another user’s
review about the same product. A user is evaluated based on how well her
review helps to predict the other user’s review, and a proper scoring rule is
used to calculate the reward of the user for writing the review. In this section,
we show that the peer prediction is a natural rule to incentivize workers of a
consensus system. We reward a worker based on how well her report can predict
the report of another worker. In addition to demonstrating that this payment
rule promotes truthful reporting in consensus systems, we investigate multiple
issues that have not been investigated before in applying this rule to a real-world
system.

Proposition 1. For a given consensus task t and policy π, let rj be the report
of a random worker from I−i. M = (t, π, τp) is strict Bayesian-Nash incentive
compatible, where worker i’s payment, τpi , for reporting to task t is,

τpi (ri, rj) = S(pp, rj), where
for all rk ∈ ΩR, p

p
k = Prf (Cj = rk|Ci = ri)

Proof. Given the definition of consensus tasks and the fact that Ci is stochas-
tically relevant for Cj given f , the proof follows from the definition of proper
scoring rules.

As long as a worker i trusts the system to accurately calculate Prf (Cj |Ci =
ri) and believes that other workers report honestly, it is a best response for the
worker to report truthfully without performing any complex calculations. For
the Galaxy Zoo example presented earlier, when other workers are reporting
truthfully, a worker inferring the correct answer of a galaxy as s has a higher
expected payment for reporting truthfully than reporting the likely label e.

Calculations of conditional probabilities needed for computing these pay-
ments is a central problem that is not addressed by previous work. In a consen-
sus system, the probability distribution Prf (Cj |Ci) may depend on the identity
of workers reporting to the system as well as the features of the task they are
reporting for. For example, this conditional probability is different if one of the
workers is highly competent or the task is difficult. In the equilibrium when
all workers report their true inference, we show below that Prf (Cj |Ci) can be
computed by applying the Bayes rule and by making use of answer and report
models presented in Section 3 based on the set of features f .

Prf (Cj = rj |Ci = ri) =
∑
a∈AMA(a, ft)MR(ri, a, fi)MR(rj , a, fj)∑

a∈AMA(a, ft)MR(ri, a, fi)
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A direct enhancement of the peer prediction rule is the average peer predic-
tion rule, τa. For any worker i contributing to r, τai is computed as below.

τai (ri, r−i) =
∑

rj∈r−i

τpi (ri, rj)
|r−i|

The incentive compatibility property of peer prediction rule holds for τa.
We revisit the example given in Section 4.2.1 to analyze the fairness prop-

erties of peer prediction rules. It is possible to normalize the peer prediction
payments calculated with the quadratic or spherical proper scoring rules to [0,1]
interval (or any desired interval) without impairing their incentive compatibility
properties by calculating the minimum and maximum payments that can be re-
ceived for task (i.e., a linear transformation of a proper scoring rule is a proper
scoring rule). A galaxy task has the correct answer e and receives the sequence
of reports {e, s, e, e}. The sets of normalized payments computed by τp and
τa are {0.66, 0, 1, 1} and {0.89, 0, 0.89, 0.89}. As shown by this example, the
payments computed by the peer prediction rule are affected by the randomness
in selecting the worker for comparison. Two workers of the same competency
predict the answer correctly, but receive different payments. Moreover, both
sets of payments suffer from the variance in worker reports. A worker reporting
correctly receives a lesser payment because there is another worker reporting
incorrectly. Thus, this worker may envy the higher amount of payment another
competent worker may receive for reporting to a task for which every worker
correctly reports.

Fairness is important for the happiness of workers and health of the system as
fair incentives reward successful workers and motivate them to participate and
do their best in the system. As shown by the analysis above, the sensitivity of
peer prediction payments to variance in worker reports result in diminished fair-
ness for workers. In the next section, we propose a more sophisticated payment
rule that provides higher levels of fairness to workers of a consensus system.

4.3 Consensus Prediction Rule

We now present a novel payment rule, called the consensus prediction rule, which
rewards a worker according to how well her report can predict the outcome of
the system (i.e., the consensus answer that will be decided by the system), if
she was not participating in it. Calculation of this payment for the worker is a
two-step process. In the first step, we use the worker’s report as a new feature
to update the system’s predictions about the likelihood of answers and worker
reports. Based on these updated predictions, we simulate the system to generate
a forecast about the likelihoods of possible consensus answers. In the second
step, we use reports from all other workers to predict the most likely consensus
answer as if the worker in question never existed. The worker is rewarded
based on how well the forecast generated based on only her report can predict
the realized consensus answer by her peers. This payment rule forms a direct
link between a worker’s payment and the outcome of this system. Because
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the outcome of a successful system is more robust to erroneous reports than
the signal used in peer prediction rules, this payment rule has better fairness
properties.

Before we go into the formal definition of the consensus prediction rule, and
its calculations, we demonstrate the way this rule is computed on our Galaxy
Zoo toy example. In this example, the system follows the simple policy that
terminates after collecting reports from four workers. Let’s assume that we col-
lect report sequence {e, s, e, e}. As an example, we calculate the payment for
the first worker. This worker reporting e increases the likelihood of the correct
answer being e and other workers reporting e. To generate the forecast about
the consensus answer, as if we do not have access to any real worker reports, we
simulate all possible report sequences from four hypothetical workers. Next, we
calculate the likelihood of each simulated sequence, along with the consensus
answer for that sequence, based on updated answer priors and report likeli-
hoods. The cumulative likelihoods of consensus answers over all possible report
sequences form the forecast. The forecast computed for this example for the set
of possible values (e,s) is (0.85, 0.15). Next we predict the most likely consensus
answer based on second, third and fourth workers’ reports. In this example, the
most likely answer is e, since the other workers reported the sequence {s, e, e}.
The first worker is rewarded ln(0.85) based on the likelihood of answer e in the
forecast when the logarithmic rule is used to calculate payments.

We use the simplified Galaxy Zoo example to demonstrate the fairness prop-
erties of consensus prediction payments. When normalized payments are com-
puted with this rule, the payment vector is (1, 0, 1, 1). As shown by this exam-
ple, the reward of workers are not affected by the erroneous reports as long as
the system can predict the correct answer accurately based on other workers’
reports.

We present a formal definition of the consensus prediction rule. Let t be a
consensus task, r be the sequence of worker reports collected for the task, and
r−i be the sequence excluding worker i’s report. Â−i is a random variable for
the consensus answer decided by the system if the system runs without access to
worker i. In defining consensus prediction payments, we assume that a worker’s
inference is stochastically relevant for Â−i given feature set f . This is a realistic
assumption because an inference of a worker provides evidence about the task,
its correct answer, and other workers’ inferences, which are used to predict a
value for Â−i.

Proposition 2. For a given consensus task t and policy π, let â−i be the con-
sensus answer predicted based on r−i. M = (t, π, τ c) is strict Bayesian-Nash
incentive compatible for any worker i, where

τ ci (ri, r−i) = S(pc, â−i), where

for all ak ∈ A, pck = Prf (Â−i = ak|Ci = ri)

Proof. Under the assumption that Ci is stochastically relevant for Â−i given f ,
the proof follows from the definition of proper scoring rules.
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4.3.1 Calculating Consensus Prediction Payments

Next, we demonstrate the way payments can be calculated with the consensus
prediction rule for consensus tasks in the equilibrium when all workers report
their true inferences. The calculation of τ ci payments is a two step process;
generating a forecast about Â−i based on worker i’s report, and calculating a
value for â−i based on r−i.

To generate a forecast for Â−i, we simulate the consensus system for all
possible sequences of worker reports that reach a consensus about the correct
answer. L∅ is defined as the set of all such sequences. For any sequence r′ in L∅,
Mπ(r′, f) is the consensus answer decided based on reports in r′. For each r′, we
calculate Prf (r′|ri), the likelihood of report sequence r′ conditional on the fact
that worker i already provided report ri for the same task. Prf (Â−i = a|Ci =
ri) is computed as the cumulative probabilities of all r′ ∈ L∅ that converge
to answer a. For any value of a ∈ A and ri ∈ ΩR, Prf (Â−i = a|Ci = ri) is
computed as given below:

Prf (Â−i = a|Ci = ri) =
∑
r′∈L∅

Prf (r′|ri) 1{a}(Mπ(r′, f))

We use the report of worker i as a feature to predict the likelihood of a report
sequence r′ ∈ L∅. Using the Bayes rule, Prf (r′|ri) is calculated as given below:

Prf (r′|ri) ∝
∑
a∗∈A

MA(a∗, ft)MR(ri, a∗, fi)
|r′|∏
l=1

MR(rl, a∗, fl)

The second step of τ ci calculation is predicting the realized value for Â−i
based on r−i, the actual set of reports collected from workers excluding worker
i. â−i, the most likely value for Â−i based on r−i, is calculated as follows:
If there exists a substring of r−i that starts with the first element of r−i and
converges on an answer, â−i is assigned the value of this answer. Otherwise,
calculating â−i requires simulating all report sequences that start with r−i and
reach a consensus on the correct answer. Lr−i

is the set of such sequences. â−i
is the answer that is most likely to be reached by the report sequences in Lr−i

.

â−i = argmax
a∈A

∑
r′∈Lr−i

Prf (r′|r−i) 1{a}(Mπ(r′, f))

4.3.2 Calculating Consensus Prediction Payments Efficiently

Calculating payments with the consensus prediction rule is computationally
more expensive than computing other payment rules introduced in this pa-
per, as an iteration over exponential number of report sequences is required.
The bottleneck of this computation is the calculation of Prf (Â−i|Ci = ri).
We approximate this value efficiently by using importance sampling. Let X
be a random variable for the value of Prf (Â−i = a|Ci = ri). Sampling a
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report sequence r′ ∈ L∅, such that the likelihood of the sample is propor-
tional to h(r′) = Prf (r′|ri), takes linear time in the length of r′. After sam-
pling n report sequences r′1, ..., r

′
n, the expected value of X is computed as

µ = Σnt=1g(r′t), where g(r′t) = 1{a}(Mπ(r′t, f)), and the variance is computed as
σ2 = V arh(g(r′))/n. Let εs be a constant. We define λs as the likelihood that
the error in calculating Prf (Â−i = a|Ci = ri) exceeding constant εs. Using
Chebyshev’s inequality, we can calculate n, the number of samples needed to
bound λs, as n ≤ σ2/λs.

In Section 6, we empirically evaluate the effect of calculating consensus pre-
diction payments with this approximation on the truth promoting behavior of
this rule.

4.4 Analysis of Payment Rules

The consensus prediction payment rule incentivizes workers to report truthfully
under two conditions; (1) worker and answer models are common knowledge
among the system and the workers, (2) a worker’s inference (Ci) is stochasti-
cally relevant to Â−i, the consensus answer that would be decided by the system
without this worker’s inference. We revisit the Galaxy Zoo example to demon-
strate the incentive compatibility properties of consensus prediction payments.
In the Galaxy Zoo example given earlier, all workers are equally competent in
predicting the correct answer of a task. A worker inferring the correct answer
of a galaxy as s increases the likelihood that the correct answer being s and
also the likelihood of other workers inferring s. Consequently the worker’s in-
ference changes the likelihood of the value of Â−i, which satisfies the stochastic
relevance requirement. Given the common knowledge assumptions, the system
can best predict Â−i if the worker reports truthfully. Thus, a worker maximizes
her payment by reporting truthfully, even when she infers the unlikely answer,
when other workers are reporting truthfully. The same reasoning can be used
for worker populations including workers of varying competencies. For exam-
ple, a system may have access to a low ratio of expert workers that can predict
the correct answer with high accuracy and a larger ratio of workers that can
barely do better than random. When the common knowledge assumption is
satisfied, the system is able to distinguish competent workers from incompetent
workers and calculate payments accordingly. For example, the influence of an
expert’s inference on predicting the system’s likelihood of the correct answer
and on predicting other workers’ inferences would be different than the influ-
ence of a non-expert’s inference. In such a domain, as long as the common
knowledge assumptions are satisfied and the system can distinguish expert and
non-expert workers, all workers are incentivized to report truthfully regardless
of their relative ratios.

A consensus system may implement different policies from simple to compli-
cated to decide on a consensus answer. The policy implemented in the system
is used in the calculation of consensus prediction payments. This may raise
a question about whether the implemented policy may affect the behavior of
workers. The policy is used to calculate the signal for evaluating worker i’s
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report (i.e., the realized value of Â−i, the answer that would be decided by the
system without worker i’s report). We will show that a worker cannot affect
the evaluation signal Â−i with its report to the system, regardless of the policy
implemented. Given that worker and answer models are common knowledge,
a worker may affect Â−i only by influencing r−i, the sequence of worker re-
ports obtained from workers other than i. We will consider the approaches a
worker may take to influence r−i; (1) by influencing the workers that are hired
by the system, and (2) by influencing the number of workers hired by the sys-
tem. Given the definition of the policy, the system does not control who is hired
next, so a worker cannot influence the workers that are hired. Moreover, the
prediction of Â−i is independent of the number of workers hired by the system,
as this calculation considers report sequences of any lengths that converge on
an answer. Thus, a worker cannot influence the evaluation signal, regardless of
the policy implemented. Due to the proper scoring rules used in payment cal-
culations, a worker’s expected payment depends on how well the realized value
of Â−i can be predicted based on the worker’s report. Under the assumption
that worker and answer models are common knowledge and other workers are
reporting truthfully, the worker maximizes her expected payment always by re-
porting truthfully, regardless the policy implemented. The same reasoning can
be used to conclude that the implemented policy does not affect the behavior
of workers when peer prediction rules are used to incentivize workers.

The consensus prediction payment rule may have practical advantages over
the peer prediction rule due to its better fairness properties. Imagine a difficult
task for which only a few number of competent workers can predict the correct
answer. A system requires competent workers for solving such a task. When the
peer prediction payment rule is implemented, a competent worker may receive
a payment that is only as much as the payment of an incompetent worker,
which may discourage the competent worker from participating. When the
system implements consensus prediction payment, the payment of a competent
worker is likely to be higher than the payment of an incompetent worker, if the
system can deduce the correct answer and has accurate worker models. Thus,
the system implementing consensus prediction payments is more likely to attract
high quality workers and discourage low quality workers, which results in higher
efficiencies for the system and the task owner.

An advantage of the peer prediction and consensus prediction payment rules
is that they can adapt to changing worker populations with updating worker
models in real-time as they make new observations about workers. For exam-
ple, a group of malicious workers may collude on a strategy to increase their
payments in a consensus system. Although these workers may initially succeed,
the system can update the worker models as it makes observations about these
workers. When the worker models can model the behavior of these workers
properly, these workers may start getting penalized for not reporting honestly
to the system.

This paper focuses on the challenge of incentivizing workers to report truth-
fully to a consensus system once they decide to participate in the system. A
consensus system may face additional challenges in real-world applications in
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terms of attracting workers. For example, the expected payment of a competent
worker may be lower for a difficult task. The system may not be able to solve
the task due to not being able to attract competent workers. Another chal-
lenge may arise if workers’ expected payments vary depending on when they
participate in the system. A worker may decide to wait to participate in the
system which may reduce the efficiency of the system. An advantage of the
payment rules that employ proper scoring rules is that the expected payment
of a worker can be scaled to any desired value without degrading the incentive
compatibility properties of these rules. It is a challenge for future work to de-
velop methods for appropriately scaling payments in real-world applications to
overcome difficulties in attracting workers.

5 Real-World Considerations

Systems implementing peer prediction and consensus prediction rules are incen-
tive compatible under strong common knowledge assumptions. For a consensus
system to have incentive compatibility, the prior probabilities on answers and
the likelihoods of worker reports (conditioned on the task and the set of work-
ers) should be common knowledge. This assumption is the biggest limitation in
using these payment rules in real-world systems. We now explore approaches
for relaxing these assumptions.

It is not realistic in many real-world settings to expect that workers of a
system will have enough information about tasks and workers to accurately es-
timate prior probabilities on answers and the likelihood of worker reports. This
situation clearly violates the common knowledge assumptions. One simple way
to relax these assumptions is building trust between the system and the work-
ers (e.g., via transparency of predictive models). As long as workers trust the
system to calculate peer prediction or consensus prediction payments correctly,
it is the best response for workers to reveal their true inference about a correct
answer.

It is generally assumed that a system has enough history to learn prior an-
swer probabilities and worker report probabilities. This history needs to be
collected from truthful workers so that the system can learn about the true
inferences of workers, and these models can be used for payment calculations.
This requirement raises a question: How history data is collected from truthful
workers without an incentive-compatible system in place? To address this ques-
tion, there has been recent work on collecting truthful reports when participants
of a system have private beliefs [22]. This work proposes a two-step revelation
approach in which a participant reveals her belief before and after receiving a
signal (experiencing a product or answering to a consensus task). The system
uses the difference in these beliefs to infer the true report of the worker. The
two-step revelation approach can be used with both the peer prediction and
consensus prediction rules to promote truthful reporting when common knowl-
edge assumptions do not hold. Having two-step revelation over beliefs clearly
increases the reporting cost of a participant, but offers a viable approach to
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collect enough data about workers’ inferences until the system is able to train
accurate predictive models.

Next, we address a more complicated case in which the system does not
know about some features of the task at hand or the workers hired for the task,
and thus cannot calculate payments accurately. As stated in previous sections,
the incentive compatibility of consensus systems depends on whether payments
can be computed accurately. Because payments are computed based on the
predictions of predictive models, doing so not only requires having accurate
models, but also having comprehensive set of evidences and features that can
perfectly model a task and workers reporting for the task. If a system does
not know some of the features that workers know, the common knowledge as-
sumptions may not hold. For example, if a system cannot judge how difficult
a task is, but a worker can, the worker may strategize to improve her payment
by not reporting truthfully. The proposition below shows that when workers
and the system have a channel to communicate, peer prediction and consensus
prediction rules incentivize workers to communicate the difficulty of the task (or
any other feature in f that the worker knows but the system does not) so that
the common knowledge assumptions are satisfied and the system can accurately
calculate payments.

We define two sets of features Fwi , Fsi such that Fi = Fwi ∪ Fsi . Fsi is the
set of features that the system can infer correctly. This set may include the
general statistics about the worker population and the tasks. Fwi is the set of
features that workers can infer correctly, but the system may not. This set may
include the personal competency of worker i, whether the given task is relevant
to the worker, and how difficult the task is for the worker. We define fsi as the
true valuation of Fsi , fwi as the true valuation of Fwi , and f̄wi as the system’s
estimation of the features in Fwi . We assume that Fwi is stochastically relevant
for Cj for any worker j conditional on fsi and any realization of Ci (i.e., knowing
the true value for these features help to better predict other workers’ reports).
We show below that if a system is implementing peer prediction rules, it is the
equilibrium of the system for every worker i to report fwi as well as her true
inference about the correct answer.

Proposition 3. It is a strict Bayesian Nash equilibrium of M = (t, π, τp) for
each worker i to report her inferences about Fwi truthfully in addition to her
report about the correct answer.

Proof. We will use the logarithmic scoring rule in this proof for ease of rep-
resentation. We show that the expected payment of worker i increases if she
chooses to report fwi rather than not reporting. Let Vi(ri, fwi ) be the expected
payment of worker i when she reports ri and fwi . We use Pr(cj |ci, fwi ∪ fsi ) as
a shorthand for Pr(Cj = cj |Ci = ci,F = fwi ∪ fsi ).
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Vi(ri, fwi )− Vi(ri, ∅) =
∑
cj

(Pr(cj |ci, fwi ∪ fsi ) ln(Pr(cj |ci, fwi ∪ fsi )))−

∑
cj

Pr(cj |ci, fwi ∪ fsi ) ln(Pr(cj |ci, f̄wi ∪ fsi )

= DKL(Pr(cj |ci, fwi ∪ fsi )||Pr(cj |ci, f̄wi ∪ fsi )))

The difference in expected payments is the weighted KL divergence between
the probability distribution when worker i’s inference about Fwi is revealed
and when it is not revealed. Given that Fwi is stochastically relevant for Cj ,
the KL divergence between these two distributions is always positive. Thus,
Vi(ri, fwi ) > Vi(ri, ∅).

Proposition 3 holds for the consensus prediction rule under the assumption
that Fwi is stochastically relevant for Â−i conditional on fsi and any realization
of Ci. This stochastic relevance assumption is realistic because knowing the
true values of the features in Fwi help to better predict the correct answer of a
task and the way workers report for the task, and thus help to predict Â−i.

6 Empirical Evaluation

This section presents empirical evaluation of different payment rules when they
are implemented in a system for solving consensus tasks. Our experiments focus
on three main points; (1) understanding the way strategic reporting may hurt
performance if the system is not incentive-compatible (2) comparing the fair-
ness properties of peer prediction and consensus prediction rules, (3) studying
the way peer prediction and consensus prediction rules behave when common
knowledge assumptions do not hold.

To evaluate different payment rules in varying conditions, we developed a
simulation system. The system takes as input consensus tasks with n possible
answers. Prior probabilities over answers are generated randomly for each task.
The correct answer is selected randomly such that the likelihood of an answer
being correct is proportional to the answer’s prior probability. Workers are as-
signed competency values that represent the likelihood that they will provide
the correct answer. Competency values are sampled from a Gaussian distribu-
tion with a mean representing the population competency and a variance that
is large enough to allow incompetent workers in a highly competent population
and vice versa. A worker with minimum competency of 0 randomly selects an
answer among n possibilities, and a worker with maximum competency of 1
always infers the correct answer. For any worker with a competency value that
lies between 0 and 1, the likelihood of inferring the correct answer is linearly in-
terpolated in [1/n, 1]. Neither workers, nor the system know workers’ individual
competencies. The system terminates a task when it reaches 95% confidence on
an answer. For the first set of experiments, the prior probabilities on answers
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Figure 1: Effect of strategic reporting on system accuracy when basic payments
are implemented.

and the average competency of the population are common knowledge between
the system and the workers. Later in this section, we experiment when this
condition does not hold.

In all experiments, workers are strategic. A strategic worker reports truth-
fully if reporting truthfully is an equilibrium of the system. Otherwise, she
calculates the set of pure strategies that are equilibriums of the system and
randomly picks a strategy from this set to follow.

The first set of experiments study the effect of truthful reporting on the
system’s performance. In these experiments, we randomly generated 10000
tasks for each experimental condition, and we vary the population competency
between low (0.2), medium (0.5) and high (0.8). Figure 1 compares the sys-
tem’s performance in predicting the correct answer when the peer prediction or
the consensus prediction rule is implemented and all workers are incentivized
to report truthfully, and when basic payments are implemented and workers
strategize about what to report. These results show that when a system is not
incentive compatible, its performance may be significantly degraded by strategic
reporting. The effect is more significant for systems recruiting workers of low
competency in that the accuracy of the system is nearly halved due to strategic
reporting. The effect of strategic reporting may become even more severe if
workers find a way to coordinate on an equilibrium when truthful reporting is
not an equilibrium.

Given the analysis of the accuracy degrading effect of strategic reporting
on consensus tasks, we provide an analysis of truth promoting payment rules
through the rest of the section. In the first set of experiments, we assume that
common knowledge assumptions hold and thus all workers follow the equilibrium
strategy of truthful reporting. In this equilibrium of truthful reporting, we
focus on understanding the fairness properties of peer prediction and consensus
prediction rules. We define fairness as providing rewards to workers who provide
correct reports. We define a fairness metric, absolute fairness as the correlation
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Figure 2: The comparison of fairness of truth promoting payment rules.

between correctness of a worker’s report and the corresponding payment 3. A
system with high absolute fairness offers a fair value to all workers that provide
the correct answer of a task and thus contribute to the system. In such a system,
there would be less envy among people that all provide the correct answer of a
task.

Figure 2 compares the absolute fairness of payment rules. The results show
that the peer prediction rule has the worst fairness properties. When peer
prediction payments are distributed, a worker providing the correct answer of a
task may unfairly receive a lesser payment compared to other workers providing
the correct answer for the same task or other tasks. The fairness properties of
the average peer prediction rule is better than the peer prediction rule, but is
worse than the consensus prediction rule. When the average peer prediction
rule is implemented, a worker with the correct report receives the same amount
as other workers reporting correctly for the same task, but she may receive a
lesser amount compared to other workers reporting correctly for other tasks.
The consensus prediction rule outperforms other rules in terms of fairness for
all competency levels because it rewards workers consistently depending on how
well their reports contribute to the answer that is predicted by the system.

Next, we study the way payments computed with the peer and consensus
prediction rules incentivize workers when common knowledge assumptions do
not hold and thus the payment calculations are noisy. We add noise sampled
from a Gaussian distribution to each prediction obtained by the system from
the answer and report models for calculating payments. We perform a worst-
case analysis such that workers can observe the true probabilities and also the
noisy probabilities used by the system, all workers are strategic, and they are
computationally powerful to compute peer prediction and consensus prediction
rules. In this worst case setting, we calculate the percentage of strategic work-
ers that deviate from reporting truthfully. The population competency varies
between low and high competency. The consensus prediction rule is computed

3All correlations are statistically significant with p=0.01.
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with sampling (εs = 0.1, δs = 0.01), which introduces another type of noise
to the consensus prediction payment calculations. We vary the magnitude of
noise by varying the standard deviation of the Gaussian distribution σ between
no noise (σ = 0), low noise (σ = 0.01), medium noise (σ = 0.05), high noise
(σ = 0.1) and very high noise (σ = 0.2).

Figure 3 reports the ratio of truthful reporting for peer prediction and con-
sensus prediction rules, and for basic payment rules when varying levels of noise
are added to the predictive models used in payment calculations. These results
show that the incentive compatibility of both peer prediction and consensus pre-
diction rules are robust to low levels of noise in predictive models. In addition,
the consensus prediction rule is robust to low levels of noise introduced by the
approximate calculation of these payments. When the noise increases to high
levels, the ratios of truthful reporting for these rules degrade slightly. However,
despite the increasing noise, the results show that these rules are significantly
better at promoting truthful reporting than basic payments even when the noise
level is very high.

Figure 3 presents promising results about the performance of peer predic-
tion and consensus prediction payment rules even when common knowledge as-
sumptions do not hold. These experiments employ a simple policy in payment
calculations that does not reason about the noise in predictive models while
deciding on consensus. Because the consensus prediction payments use the con-
sensus answer derived by the system as the signal for evaluating worker reports,
the robustness of this payment rule can be further improved with better poli-
cies that can reason about the noise in predictive models in its decision-making
process. When coupled with such policies, the robustness of the consensus pre-
diction rules may outperform the robustness of the peer prediction rules. It is
important to note that the truth promoting properties of these rules are likely to
be better in real-world systems in which the worst case assumptions presented
above do not necessarily hold. In settings in which workers are computationally
bounded or they cannot infer the noise in the system, it may be impractical
for workers to strategize over a system implementing peer prediction or consen-
sus prediction payments. In addition, as demonstrated by Proposition 3, the
system may be able to correct the noise in predictive models by establishing
communication and collaboration with workers.

To the best of our knowledge, this evaluation is the first empirical study
of the behavior of peer prediction rules and consensus prediction rules when
common knowledge assumptions do not necessarily hold. We believe that un-
derstanding the behavior of different payments rules in real-world systems with
noise and computational limitations will help to determine which payment rule
is more suitable for a given domain, and thus will foster the application of these
ideas in diverse settings.
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Figure 3: Worst-case analysis of the incentive compatibility of payments for
varying levels of noise.

7 Future Work and Conclusions

We reviewed key opportunities and challenges for developing truthful, fair, and
computationally feasible incentive mechanisms for crowdsourcing. We also stud-
ied the issues that arise in applying peer prediction and consensus prediction
rules in real-world systems. We believe that the results in this paper pave the
way for future work in the directions of formalized approaches for more effi-
cient crowdsourcing systems, and application of peer prediction and consensus
prediction rules to diverse real-world systems.

Future work on crowdsourcing includes designing truthful incentive mecha-
nisms for a larger variety of tasks, including opinion tasks and tasks that may
require complex workflows, and developing mechanisms to prevent collusion
among workers [10]. Research directions on prediction rules include the pursuit
of new approaches for relaxing common knowledge assumptions and studying
the properties of these payment rules in other real-world settings. We believe
that the use of truthful and fair mechanisms promises to enhance the operation
of crowdsourcing for both authors and contributors, and can promote the wider
use of such systems as a trusted methodology for problem solving.
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