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Abstract. We extend the Bayesian skill rating system of TrueSkill to
accommodate score-based match outcomes. TrueSkill has proven to be
a very effective algorithm for matchmaking — the process of pairing
competitors based on similar skill-level — in competitive online gam-
ing. However, for the case of two teams/players, TrueSkill only learns
from win, lose, or draw outcomes and cannot use additional match out-
come information such as scores. To address this deficiency, we propose
novel Bayesian graphical models as extensions of TrueSkill that (1) model
player’s offence and defence skills separately and (2) model how these of-
fence and defence skills interact to generate score-based match outcomes.
We derive efficient (approximate) Bayesian inference methods for infer-
ring latent skills in these new models and evaluate them on three real
data sets including Halo 2 XBox Live matches. Empirical evaluations
demonstrate that the new score-based models (a) provide more accu-
rate win/loss probability estimates than TrueSkill when training data is
limited, (b) provide competitive and often better win/loss classification
performance than TrueSkill, and (c) provide reasonable score outcome
predictions with an appropriate choice of likelihood — prediction for
which TrueSkill was not designed, but which can be useful in many ap-
plications.
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1 Introduction

In online gaming, it is important to pair players or teams of players so as to
optimise their gaming experience. Game players often expect competitors with
comparable skills for the most enjoyable experience; match experience can be
compromised if one side consistently outperforms the other. Matchmaking at-
tempts to pair players such that match results are close to being even or a draw.
Hence, a prerequisite for good matchmaking is the ability to predict future match
results correctly from historical match outcomes — a task that is often cast in
terms of latent skill learning.

TrueSkill [5] is a state-of-the-art Bayesian skill learning system: it has been
deployed in the Microsoft Xbox 360 online gaming system for both matchmaking
and player ranking. For the case of two teams/players, TrueSkill, like Elo [4],
is restricted to learn skills from match outcomes in terms of win, lose, or draw
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(WLD). While we conjecture that TrueSkill discards potentially valuable skill
information carried by score-based outcomes, there are at least two arguments
in favour of TrueSkill’s WLD-based skill learning approach:

– WLD-based systems can be applied to any game whose outcome space is
WLD, no matter what the underlying scoring system is.

– In many games, the objective is not to win by the highest score differential,
but rather simply to win. In this case, it can be said that TrueSkill’s skill
modeling and learning from WLD outcomes aligns well with the players’
underlying objective.

On the other hand, we note that discarding score results ignores two important
sources of information:

– High (or low) score differentials can provide insight into relative team strengths.
– Two dimensional score outcomes (i.e., a score for each side) provide a direct

basis for inferring separate offense and defense strengths for each team, hence
permitting finer-grained modeling of performance against future opponents.

In this work, we augment the TrueSkill model of WLD skill learning to learn
from score-based outcomes. We explore single skill models as well as separate
offense/defense skill models made possible via score-based modeling. We also
investigate both Gaussian and Poisson score likelihood models, deriving a novel
variational update for approximate Bayesian inference in the latter case. We
evaluate these novel Bayesian score-based skill-learning models in comparison to
TrueSkill (for WLD outcomes) on three datasets: 14 years of match outcomes
for the UK Premier League, 11 years of match outcomes for the Australian
Football (Rugby) League (AFL), and three days covering 6,000+ online match
outcomes in the Halo 2 XBox video game. Empirical evaluations demonstrate
that the new score-based models (a) provide more accurate win/loss probability
estimates than TrueSkill (in terms of information gain) with limited amounts
of training data, (b) provide competitive and often better win/loss classifica-
tion performance than TrueSkill (in terms of area under the curve), and (c)
provide reasonably accurate score predictions with an appropriate likelihood —
prediction for which TrueSkill was not designed but important in cases such as
tournaments that rank (or break ties) by points, professional sports betting and
bookmaking, and game-play strategy decisions that are dependent on final score
projections.

2 Skill Learning using TrueSkill

Since our score-based Bayesian skill learning contributions build on TrueSkill [5],
we begin with a review of the TrueSkill Bayesian skill-learning graphical model
for two single-player teams. We note that TrueSkill itself allows for matches
involving more than two teams and learning team members’ individual perfor-
mances, but these extensions are not needed for the application domains consid-
ered in the paper.
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Suppose there are n teams available for pairwise matches in a game. Let
M = {i, j} specify the two teams participating in a match and define the outcome
o ∈ {team-i-win, team-j-win, draw}. TrueSkill models the probability p(o|l,M) of
o given the skill level vector l ∈ Rn of the teams in M , and estimates posterior
distributions of skill levels according to Bayes’ rule

p(l|o,M) ∝ p(o|l,M)p(l), (1)

where a factorising Gaussian prior is assumed:

p(l) :=

n∏
i=1

N (li;µi, σ
2
i ). (2)

To model the likelihood p(o|l,M), each team i is assumed to exhibit a stochastic
performance variable pi ∼ N (pi; li, β

2) in the game 4. From this we can model
the performance differential d as an indicator function p(d|p,M) = δ(d = pi−pj)
and finally the probability of each outcome o given this differential d:

p(o|d) =


o = team-i-win : I[d > ε]

o = team-j-win : I[d < −ε]
o = draw : I[|d| ≤ ε],

(3)

where I[·] is an indicator function. Then the likelihood p(o|l,M) in (1) can be
written as

p(o|l,M) =

∫
· · ·
∫
Rn

∫ +∞

−∞
p(o|d)p(d|p,M)

n∏
i=1

p(pi|li) dpdd.

The entire TrueSkill model relevant to M is shown in the factor graph of Figure 1
with P (o|d) given for the case of o = team-i-win. TrueSkill uses message passing
to infer the posterior distribution in (1) — note that the posterior over li and
lj will be updated according to the match outcome while the posterior over lk
(k /∈ {i, j}) will remain unchanged from the prior. An optimal message passing
schedule in the TrueSkill factor graph (Figure 1) is provided in the caption; the
message along arrow 2 is a step function that leads to intractability for exact
inference and thus TrueSkill uses message approximation via moment matching.

TrueSkill is an efficient and principled Bayesian skill learning system. How-
ever, due to its design goals, it discards score information and does not take into
account associated domain knowledge such as offence/defence skill components.
Next, we propose extensions of the TrueSkill factor graph and (approximate)
inference algorithms for score-based Bayesian skill learning, which address these
limitations.

4 Note that we sometimes abuse notations on the use of p, pi and p. p is a probability
measure; pi and p represent performance variables. The meaning of them is clear
from the context.
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Fig. 1. TrueSkill factor graph for a match between two single-player teams with team
i winning. There are three types of variables: li for the skills of all players, pi for the
performances of all players and d the performance difference. The first row of factors
encode the (product) prior; the product of the remaining factors characterizes the
likelihood for the game outcome team i winning team j. The arrows show the optimal
message passing schedule: (1) messages pass along gray arrows from top to bottom, (2)
the marginal over d is updated via message 1 followed by message 2 (which requires
moment matching), (3) messages pass from bottom to top along black arrows.

3 Score-based Bayesian Skill Models

In this section, we introduce three graphical models as extensions for the TrueSkill
factor graph (Figure 1) to incorporate score-based outcomes in skill learning. Our
first two graphical models are motivated by modeling score-based outcomes as
generated by separate offence and defence skills for each team. The first genera-
tive score model uses a Poisson, which is natural model when scores are viewed
as counts of scoring events. The second generative model uses a simpler Gaus-
sian model. Our third model is a simplified version of the Gaussian model, which
like TrueSkill, only models a single skill per team (not separate offence/defence
skills) and places a Gaussian likelihood on the score difference, which may be
positive or negative. Next we formulate each model in detail.

3.1 Offence and Defence Skill Models

In a match between two teams i and j producing respective scores si ∈ Z and
sj ∈ Z for each team, it is natural to think of si as resulting from i’s offence
skill oi ∈ R and j’s defence skill dj ∈ R (as expressed in any given match) and
likewise for j’s score as a result of j’s offence skill oj ∈ R and i’s defence skill
di ∈ R. This is contrasted with the univariate skill estimates of team i’s skill li
and team j’s skill lj used in TrueSkill, which lump together offence and defence
skills for each team.
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Given scores si and sj for teams i and j, we model the generation of scores
from skills using a conditional probability p(si, sj |oi, oj , di, dj). We assume that
team i’s score si depends only on oi and dj and likewise that team j’s score sj
depends only on oj and di:

p(si, sj |oi, oj , di, dj) = p(si|oi, dj)p(sj |oj , di). (4)

Like TrueSkill, we assume that the joint marginal over skill priors independently
factorises:

p(oi, oj , di, dj) = p(oi)p(dj)p(oj)p(di). (5)

Given an observation of scores si for team i and sj for team j, the problem is
to update the posterior distributions over participating teams’ offence and de-
fence skills. According to Bayes rule and the previous assumptions, the posterior
distribution over (oi, oj , di, dj) is given by

p(oi, di, oj , dj |si, sj) ∝ p(si, sj |oi, di, oj , dj)p(oi, di, oj , dj)
∝ [p(si|oi, dj)p(oi)p(dj)] [p(sj |oj , di)p(oj)p(di)]. (6)

Here we observe that estimating p(oi, di, oj , dj |si, sj) factorises into the two
independent inference problems:

p(oi, dj |si) ∝ p(si|oi, dj)p(oi)p(dj), and (7)

p(oj , di|sj) ∝ p(sj |oj , di)p(oj)p(di). (8)

All models considered in this paper (including TrueSkill) assume Gaussian
priors on team i’s offence and defence skills, i.e., p(oi) := N (oi;µoi, σ

2
oi) and

p(di) := N (di;µdi, σ
2
di). Our objective then is to estimate the means and vari-

ances for the posterior distributions of p(oi, dj |si) and p(oj , di|sj). So far, the
only missing pieces in this skill posterior update are the likelihoods p(si|oi, dj)
and p(sj |oj , di) that specify how team i and j’s offence and defence skills prob-
abilistically generate observed scores. For this we discuss two possible models in
the following subsections.

Poisson Offence/Defence Skill Model Following TrueSkill, we model the
generation of match outcomes (in our case, team scores) based on stochas-
tic offence and defence performances that account for day-to-day performance
fluctuations. Formally, we assume that team i exhibits offence performance
poi := N (poi; oi, β

2
o) and defence performance pdi := N (pdi; di, β

2
d). With these

performances, we model team i’s score si as generated from the following process:
team i’s offence performance poi promotes the scoring rate while the defence per-
formance pdj inhibits this scoring rate, the difference poi−pdj being the effective
scoring rate of the offence against the defence.

Finally, we model the score by si ∼ Poisson(λ), where a requirement of a
positive rate λ for the Poisson distribution requires the use of λ = exp(poi−pdj)
since poi−pdj may be negative.5 Likewise, one can model sj by applying the same

5 This exponentiation of poi − pdj may seem to be made only to ensure model cor-
rectness, but we show experimentally that it has the benefit of allowing the Poisson
model to accurately predict scores in high-scoring games even when team skills are
very close (and hence poi − pdj ≈ 0).
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strategy when given λ = exp(poj − pdi). We represent the resulting Poisson-OD
model in Figure 2(P) where the joint posterior is

p(oi, dj , poi, pdj |si) ∝ p(si|poi, pdj)p(poi|oi)p(pdj |dj)p(oi)p(dj),
p(oj , di, poj , pdi|sj) ∝ p(sj |poj , pdi)p(poj |oj)p(pdi|di)p(oj)p(di).

We are only interested in the posterior distributions of oi, dj and oj , di given si
and sj , respectively. Thus, we integrate out the latent performance variables to
obtain the desired posteriors

p(oi, dj |si) =

∫ +∞

−∞

∫ +∞

−∞
p(oi, dj , poi, pdj |si)dpoidpdj ,

p(oj , di|sj) =

∫ +∞

−∞

∫ +∞

−∞
p(oj , di, poj , pdi|sj)dpojdpdi.

Like TrueSkill, we use Bayesian updating to update beliefs in the skill levels of
both teams in a pairwise match based on the score outcome, thus leading to an
online learning scheme. Posterior distributions are approximated to be Gaussian
and used as the priors in order to learn each team’s skill for the next match.
Approximate belief updates via variational Bayesian inference in this model will
be covered in Section 4.2.

Gaussian Offence/Defence Skill Model An alternative to the previous Pois-
son model is to model si ∈ R and assume it is generated as si ∼ N (µ, γ2), where
µ = poi − pdj . One can similarly model sj by applying the same strategy when
given µ = poj − pdi. We note that unlike the Poisson model, µ can be negative
here so we need not exponentiate it. While this allows us to directly model match
outcomes that allow negative team scores (c.f., Halo2 as discussed in Section 5.1),
it is problematic for other match outcomes that only allow non-negative team
scores. One workaround would be to introduce a truncated Gaussian model to
avoid the problem of assigning non-zero probability to negative scores, but we
avoid this complication in exchange for the simple and exact updates offered by
a purely Gaussian model.

We show the resulting Gaussian-OD model in Figure 2(N), which differs from
our proposed Poisson model only in modeling the observed score si (sj) for team
i (j) given the univariate performance difference variable x (y). In this model, all
messages passed during inference are Gaussian, allowing for efficient and exact
belief updates.

3.2 Gaussian Score Difference (SD) Model

Again assuming si ∈ R and sj ∈ R, algebra for the performance means in
Figure 2(N) gives:

si = poi − pdj , sj = poj − pdi. (9)
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Fig. 2. The Poisson-OD (P) and Gaussian-OD (N) variants of TrueSkill factor graph
for skill update of two teams based on the match score outcome (Left: modeling si;
Right: modeling sj). Note that the Poisson-OD and Gaussian-OD graphical models
are merged due to limited space. Note also that the score observation factors use the
Poisson distribution for the Poisson-OD model and the normal distribution for the
Gaussian-OD model. The shaded variables are the observed ones. For each team i, it
is characterized by offence skill oi (the offence skill of team i) and defence skill di (the
defence skill of team i). Given sj for team j, the posterior distributions over (oi, dj)
are inferred via message passing.

This implies

si − sj = (poi − pdj)− (poj − pdi)
= (poi + pdi)︸ ︷︷ ︸

pli

− (poj + pdj)︸ ︷︷ ︸
plj

, (10)

which is like modeling the score difference with performance expressions pli and
plj of respective univariate skill levels, li and lj . Motivated by (9), we propose
a score difference (SD) Gaussian model that uses a likelihood model for the
observed difference s := si − sj specified as s ∼ N (pli − plj , γ2) as shown in
Figure 3.

4 Skill and Win Probability Inference

We infer skill distributions in all proposed models via online Bayesian updating.
While exact inference in the purely Gaussian models can be achieved by solving
linear systems, Bayesian updating provides an efficient (also exact) incremental
learning alternative. Equations for Bayesian updates and win probability infer-
ence are model-dependent and presented below.



8 S. Guo, S. Sanner, T. Graepel, W. Buntine

p
i

l
i

p
j

l
j

d

N (l
i
; μ

i
, σ

i

2)                       N (l
j
; μ

j
, σ

j

2)

 N (p
i
; o

i
, β2)                   N (p

j
; d

j
, β2) 

δ ( d
  
= p

i 
- p

j  
)

 
 

s

N (s; d, γ2) 

Fig. 3. Gaussian-SD model for skill learning from score differences. Both team i and
team j are characterized by skill level li and lj , respectively. The shaded variable s
(s = si− sj) denotes the score difference between si and sj . Bayesian inference for the
posterior skill level distributions has a closed-form solution.

4.1 Inference in TrueSkill

Bayesian update: The Bayesian update equations in the TrueSkill model (Fig-
ure 1) are presented in [5].
Win probability: Given skill levels of team i and j, li ∼ N (li;µi, σ

2
i ) and

lj ∼ N (lj ;µj , σ
2
j ), we first compute the distribution over performance difference

variable d, and get d ∼ N (d;µd, σ
2
d) with µd = µi − µj and σ2

d = σ2
i + σ2

j + 2β2.
The winning probability of team i is given by the probability p(d > 0) defined
as

p(d > 0) = 1− Φ
(
−µd
σd

)
, (11)

where Φ(·) is the normal CDF.

4.2 Inference in Poisson-OD Model

Bayesian update: Some of the update equations in the Poisson-OD model
(Figure 2(P)) have been presented in [5], with the exception of the marginal
distribution over x and the message passing from the Poisson factor to x. Given
a prior Gaussian distribution over x, N (x;µ, σ2), we next demonstrate how to
update the belief on x when observing team i’s score si.

By the sum-product algorithm [7], the marginal distribution of x is given by
a product of messages

p(x|si) = mδ→x(x)msi→x(x). (12)

To avoid cluttered notation, let us usem1(x) to representmδ→x(x) = N (x;µ, σ2),
i.e., the message passing from the factor δ(·) to x, and m2(x) for msi→x(x) =
Poisson(si; exp(x)), i.e., the message passing from the Poisson factor to x (c.f.,
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messages labeled 1 and 2 in Figure 2(P)). Due to the multiplication of m1(x) and
m2(x), the exact marginal distribution of p(x|si) is not Gaussian, which makes
exact inference intractable. To maintain a compact representation of offence and
defence skills, one can approximate p(x|si) within a variational Bayes framework
by choosing a Gaussian distribution q(x)∗ : N (x;µnew, σ

2
new) that minimizes the

KL divergence between p(x|si) and q(x), i.e.,

q(x)∗ = arg min
q(x)

KL [q(x)||p(x|si)] . (13)

We derive a fixed-point approach for optimizing q(x) [12] and describe this
approach below.
Minimizer q(x) for KL(q(x)||p(x|si)): We first expand the KL-divergence into
its definition:

KL (q(x)||p(x|si)) =

∫
q(x) log

(
q(x)

p(x|si)

)
dx

= − log
√

2πeσ2
new − Ex∼q(x) log (p(x|si)) , (14)

where p(x|si) is the posterior probability of x when observing the score si. Since
q(x) is Gaussian and the posterior has convenient Gaussian parts, manipulation
of this yields an equation for µnew and σ2

new that can be solved using an iterative
fixed-point approach:

Lemma 1. Values for µnew and σ2
new minimizing KL (q(x)||p(x|si)) satisfy

µnew = σ2 (si − eκ) + µ,

σ2
new =

σ2

1 + σ2eκ
, (15)

where

κ = log

(
µ+ siσ

2 − 1− κ+
√

(κ− µ− siσ2 − 1)2 + 2σ2

2σ2

)
. (16)

Proof. The second term in (14) is evaluated using Bayes Theorem, p(x|si) =
p(si|x)p(x)/p(si). The term in log p(si) can be dropped because it is constant
with respect to µnew and σ2

new. The term Ex∼q(x)[log p(si|x)] is found by expand-

ing the Poisson distribution and noting Ex∼p(x)[exp(x)] = exp(µ + σ2/2) (see

the Supplemental material6 for derivation). Thus it becomes

siµnew − exp(µnew + σ2
new/2)− log(si!) . (17)

The term Ex∼q(x)[log p(x)] according to the derivation in the Supplemental
material becomes

−1

2
log(2πσ2)− 1

2σ2

(
σ2
new + µ2

new − 2µµnew + µ2) . (18)

6 Available at http://users.cecs.anu.edu.au/~sguo/sbsl_ecml2012_final_

supple.pdf
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Plugging (17) and (18) into (14) gives

arg min
q(x)

KL (q(x)||p(x|si)) ≡ arg min
q(x)
− log

√
2πeσ2

new−(
siµnew − exp(µnew + σ2

new/2)− log(si!)︸ ︷︷ ︸
Ex∼q(x)(log p(si|x))

−1

2
log(2πσ2)− 1

2σ2

(
σ2
new + µ2

new − 2µµnew + µ2)︸ ︷︷ ︸
Ex∼q(x)(log p(x))

)
.

To find the minimizer q(x), we calculate the partial derivatives of KL (q(x)||p(x|si))
w.r.t. µnew and σnew, and set them to zero, leading to

µnew = σ2

(
si − exp

(
µnew +

σ2
new

2

))
+ µ,

σ2
new =

σ2

1 + σ2 exp(µnew +
σ2
new
2

)
.

Summing the first plus half the second of these equations, and defining κ =
µnew + σ2

new/2 yields the equation for κ of

κ = µ+ σ2(si − exp(κ)) +
σ2

2(1 + σ2 exp(κ))
, (19)

and one gets (15) in terms of κ.
We convert (19) by solving for exp(κ) as it appears on the right-hand side.

This yields a quadratic equation, and we take the positive solution since exp(κ)
must be non-negative (see the Supplemental material). The result gives us (16).

We can use (16) as a fixed-point rewrite rule. For a given µ and σ2 together
with an initial value of κ, one iterates (16) until convergence. Empirically, this
happens within 2-3 iterations. With convergence, we substitute the fixed-point
solution into (15) to get the optimal mean and variance for q(x)∗.
Win probability: Suppose we are given the offence and defence skills for team
i and j, we can estimate the distributions over performance difference variables
of x and y (c.f., Figure 2), and compute the Poisson parameters for si and sj
by using λi = exp(x) and λj = exp(y). To compute the winning probability of
team i, i.e., p(si > sj), we first construct a new variable s = si − sj , the differ-
ence variable between two Poisson distributions, which proves to be a Skellam
distribution in [10]. Thus, we can compute the win probability of P (s > 0) of
team i, according to the probability mass function for the Skellam distribution

P (s = k;λi, λj) = e−(λi+λj)

(
λi
λj

)k/2
I|k|

(
2
√
λiλj

)
,

where Ik(z) is the modified Bessel function of the first kind given in [1]. We
approximated P (s > 0, λi, λj) with

∑n
k=1 P (s = k;λi, λj) using n = 100 since

P (s = k;λi, λj) ≈ 0 for all of our experiments when k > 100.
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4.3 Inference in Gaussian-OD Model

Bayesian update: In the Gaussian-OD model (Figure 2(N)), all messages are
Gaussian so one can compute the belief update in closed-form as follows

πoi =
1

σ2
oi

+
1

β2
1 + β2

2 + γ2 + σ2
dj

, τoi =
µoi
σ2
oi

+
si + µdj

β2
1 + β2

2 + γ2 + σ2
dj

,

πdj =
1

σ2
dj

+
1

β2
1 + β2

2 + γ2 + σ2
oi

, τdj =
µdj
σ2
dj

+
µoi − si

β2
1 + β2

2 + γ2 + σ2
oi

, (20)

where µoi and σoi are the mean and standard deviation of the prior offence skill
distribution of team i, πoi(πdj ) = 1

σ2
post

and τoi(τdj ) =
µpost

σ2
post

are the precision and

precision-adjusted mean for the posterior offence (defence) skill distribution of
team i (j). Likewise, one can derive the update equations for team j’s offence
skill oj and team i’s defence skill di.
Win probability: To compute the probability of team i winning vs team j, we
first use message passing to estimate the normally distributed distributions for
score variables si and sj , and then compute the probability that si − sj > 0,
i.e., team i’s score is larger than team j’s. Given si ∼ N (si;µsi, σ

2
si) and sj ∼

N (sj ;µsj , σ
2
sj), we can compute the winning probability of team i by

p(s > 0) = 1− Φ

(
−(µsi − µsj)
σ2
si + σ2

sj

)
. (21)

4.4 Inference in Gaussian-SD Model

Bayesian update: In the Gaussian-SD model (Figure 3), all messages are Gaus-
sian so we can again derive the update for the single team skills li and lj in
closed-form as follows:

πli =
1

σ2
li

+
1

β2
1 + β2

2 + γ2 + σ2
lj

, τli =
µli
σ2
li

+
(si − sj) + µlj

β2
1 + β2

2 + γ2 + σ2
lj

, (22)

πlj =
1

σ2
lj

+
1

β2
1 + β2

2 + γ2 + σ2
li

, τlj =
µlj
σ2
lj

+
µli − (si − sj)

β2
1 + β2

2 + γ2 + σ2
li

, (23)

where µli (µlj ) and σli (σlj ) are the mean and standard deviation of team i’s
(team j’s) prior skill distribution, πli (πlj ) and τli (τlj ) are the precision and
precision adjusted mean for team i’s (team j’s) posterior skill distribution.
Win probability: To estimate the winning probability of team i for a match
with team j, one can first use message passing to estimate the normally dis-
tributed score difference variable s, and then compute the winning probability
of team i by

p(s > 0) = 1− Φ
(

li − lj
σ2
i + σ2

j + 2β2

)
, (24)

where li and σi are the mean and standard deviation for team i’s skill level,
and β the standard deviation of the performance variable.
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5 Empirical Evaluation

5.1 Data Sets

Experimental evaluations are conducted on three data sets: Halo 2 XBox Live
matches, Australian Football (Rugby) League (AFL)and UK Premier League
(UK-PL)7. The Halo 2 data consists of a set of match outcomes comprising 6227
games for 1672 players. We note there are negative scores for this data, so we
add the absolute value of the minimal score to all scores to use the data with all
proposed models.

The training and testing settings are described as follows. For Halo 2 8, the
last 10% of matches are used for testing, and we use different proportions of the
first 90% of data for training. There are 8 proportions used for training, ranging
from 10% to 80% with an increment of 10%, and 90% is not used for training due
to cross validation. To cross validate, we sample the data and run the learning
20 times at each proportion level to get standard error bars. Note that there
are some players in the testing games who are not involved in any training data
sets, particularly when small proportion of training data set is selected (e.g., the
first 10 percent games); we remove these games in the testing set when reporting
performances for all models.

For both UK-PL and AFL datasets, cross validation is performed by training
and testing for each year separately (14 years for UK-PL, and 11 years for AFL).
For these two datasets, we test the last 20% percent of matches in each year,
with the training data increasing incrementally from 10% to 80% of the initial
matches.

5.2 Evaluation Criteria

Information Gain The first criterion we use to evaluate different approaches
is information gain, which is proposed in the Probabilistic Footy Tipping Com-
petition9: if a predictor assigns probability p to team i winning, then the score
(in “bits”) gained is 1 + log2(p) if team i wins, 1 + log2(1 − p) if team i loses,
1+(1/2) log2(p(1−p)) if draw happens. In Section 4, we showed how to compute
the win probability p for each model.

Win/no-Win Prediction Accuracy While information gain provides a sense
of how well the models fit the data, it is also interesting to see how accurate
the models were at predicting match outcomes in terms of win/no-win (e.g.,
loss/draw). To compare classification performance of each model, we report the
win/not winning prediction accuracy in terms of area under the curve (AUC)
for the games with a win or loss outcome.

7 http://www.football-data.co.uk/englandm.php
8 Credit for the use of the Halo 2 Beta Data set is given to Microsoft Research Ltd.

and Bungie.
9 Refer to http://www.csse.monash.edu.au/~footy/



Score-based Bayesian Skill Learning 13

Score Prediction Error We evaluate the score prediction accuracy for Poisson-
OD and Gaussian-OD models for each team in terms of the mean absolute error
(MAE). Note that we must omit the Gaussian-SD model since it can only predict
score differences rather than scores.

5.3 Results

Experimental results are reported according to the parameter configurations
shown in Table 1. All results are presented in Figure 4 and discussed below.

Table 1. Parameter settings. Priors on offence/defence skills: N (µ0, σ
2
0) with µ0 = 25

and σ0 = 25/3. Performance variance: β, βo, βd.

Model Parameter (ε, γ empirically estimated)

TrueSkill β = σ0/2, ε: draw probability
Poisson-OD βo = βd = σ0/2

Gaussian-OD βo = βd = σ0/2, γ: score variance
Gaussian-SD β = σ0/2, γ: score difference variance

Information Gain For relatively small amounts of training data (10% – 30%),
the Gaussian models (OD and SD) statistically significantly outperform TrueSkill
and Poisson-OD in terms of win/loss probability accuracy. On all data sets except
AFL, the Gaussian models perform comparably to TrueSkill for larger amounts
of training data. Gaussian-OD statistically significantly outperforms Gaussian-
SD for Halo 2, indicating that separate offence/defence modeling helps.

Win/no-Win Prediction Accuracy In terms of win/no-win prediction accu-
racy, the Gaussian-OD model generally provides the best average AUC, followed
by Gaussian-SD, then TrueSkill (with the exception of cases for Halo 2 with
more than 40% training data where TrueSkill performs best), then Poisson-oD.
Again, we see that the separate offence/defence skill modeling of Gaussian-OD
gives it a performance edge over the combined skill model of Gaussian-SD.

Score Prediction Errors As shown in the third column in Figure 4, Gaussian-
OD predicts more accurate scores on the UK-PL and Halo datasets, while
Poisson-OD is more accurate for the AFL dataset. This can be explained by
a simple skill analysis — the learned skills on the UK-PL dataset tend to show
a larger variance (for all models), whereas the learned skills on the AFL dataset
show little variance (for all models except Gaussian-SD). Thus, the use of an ex-
ponentiated scoring rate in the Poisson-OD model would seem to amplify these
small performance differences in learned AFL skills to make more accurate score
predictions on AFL data. This amplification appears to hurt the Poisson-OD
model on the lower-scoring UK-PL and Halo dataset (the mean score for the
AFL data is 95.4 vs 42.7 and 1.3 respectively for the Halo 2 and UK-PL data).
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Fig. 4. Results on the UK-PL, Halo, and AFL datasets evaluated using information
gain (left column), win/loss prediction accuracy in term of the area of the curve (AUC)
(middle column), and score prediction error (right column). Error bars indicate 95%
confidence intervals.

6 Related Work

Skill rating dates at least as far back as the Elo system [4], the idea of which is
to model the probability of the possible game outcome as a function of the two
players’ skill levels. Players’ skill levels are updated after each game in a way
such that the observed game outcome becomes more likely and the summation
of players’ ratings remains unchanged.

The Elo system cannot handle the case when three or more teams participate
in one match, a disadvantage addressed by TrueSkill [5]. Further extensions of
TrueSkill incorporate time-dependent skill modeling for historical data [3].

In [2], the authors model and learn the correlation between all players’ skills
when updating skill beliefs, and develop a method called “EP-Correlated”, con-
trasted with the independent assumption on players’ skills (EP-Independent).
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Empirically, EP-Correlated outperforms EP-Independent on professional tennis
match results; this suggests modeling correlations in extensions of the score-
based learning presented here.

These skill learning methods all share a common feature that they are re-
stricted to model WLD only and have to discard meaningful information carried
with scores. While we proposed score-based extensions of TrueSkill in this work;
it remains to incorporate other extensions motivated by this related work.

Score modeling has been studied since the 1950s [15] [16] [11] [14] [13];
one of the most popular score models is the Poisson model, first presented in
[15], and this work continues to the present [13]. Other commonly used score
models are based on normal distributions [11]. However, it appears that most
score-based models do not distinguish offence and defence skills of each team
and the results here indicate that such separate offence/defence skill models can
perform better than univariate models with limited data.

7 Conclusion

We proposed novel score-based, online Bayesian skill learning extensions of TrueSkill
that modeled (1) player’s offence and defence skills separately and (2) how these
offence and defence skills interact to generate scores. Overall these new models
— and Gaussian-OD (using a separate offence/defence skill model) in particular
— show an often improved ability to model winning probability and win/loss
prediction accuracy over TrueSkill, especially when the amount of training data
is limited. This indicates that there is indeed useful information in score-based
outcomes that is ignored by TrueSkill and that separate offence/defence skill
modeling does help (c.f. the performance of Gaussian-OD vs. Gaussian-SD).
Furthermore, these new models allow the prediction of scores (unlike TrueSkill),
with the Poisson-OD model and its variational Bayesian update derived in Sec-
tion 4.2 performing best on the high-scoring AFL data. Altogether, these re-
sults suggest the potential advantages of score-based Bayesian skill learning over
state-of-the-art WLD-based skill learning approaches like TrueSkill.

Future research could combine the proposed models with related work that
models home field advantage, time-dependent skills, multi-team games, and cor-
related skills to utilise score-based outcomes.
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