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ABSTRACT 

 
Context-dependent deep neural network hidden Markov model 

(CD-DNN-HMM) is a recently proposed acoustic model that 

significantly outperformed Gaussian mixture model (GMM)-HMM 

systems in many large vocabulary speech recognition (LVSR) 

tasks. In this paper we present our strategy of using mixed-

bandwidth training data to improve wideband speech recognition 

accuracy in the CD-DNN-HMM framework. We show that DNNs 

provide the flexibility of using arbitrary features. By using the 

Mel-scale log-filter bank features we not only achieve higher 

recognition accuracy than using MFCCs, but also can formulate 

the mixed-bandwidth training problem as a missing feature 

problem, in which several feature dimensions have no value when 

narrowband speech is presented. This treatment makes training 

CD-DNN-HMMs with mixed-bandwidth data an easy task since no 

bandwidth extension is needed. Our experiments on voice search 

data indicate that the proposed solution not only provides higher 

recognition accuracy for the wideband speech but also allows the 

same CD-DNN-HMM to recognize mixed-bandwidth speech. By 

exploiting mixed-bandwidth training data CD-DNN-HMM 

outperforms fMPE+BMMI trained GMM-HMM, which cannot 

benefit from using narrowband data, by 18.4%. 

 

Index Terms— deep neural network, log filter bank, CD-

DNN-HMM, wideband, narrowband, mixed-bandwidth 

 

1. INTRODUCTION 

 
Recently a new acoustic model named context-dependent deep 

neural network hidden Markov model (CD-DNN-HMM) [1][2] 

was proposed. The CD-DNN-HMM has been shown, by many 

groups [1][2][3][4][5][6][7], to outperform the conventional 

Gaussian mixture model (GMM)-HMMs in many large vocabulary 

speech recognition (LVSR) tasks. For example, it reduced errors 

by 16% on a voice search task [1][2][8] and one-third on the 

Switchboard phone-call transcription benchmark [3], over 

discriminatively trained GMM-HMMs. 

In this paper, we investigate using mixed-bandwidth training 

data to improve the recognition accuracy for wideband speech in 

the CD-DNN-HMM framework. This study has practical 

importance since it is often the case that we have access to a large 

amount of narrowband training data but only small amount of 

wideband training data. This is typically because narrowband 

speech is easier to get than wideband speech in the past, since 

recording speech over the telephone is a relatively economical and 

efficient way to collect large amounts of data from a wide variety 

of geographic regions. For the voice search application, which is 

the focus of this study, it is mainly because the data collected from 

the old mobile devices are sampled at 8-kHz, although the new 

data are collected at sampling rate of 16-kHz. It is obvious that we 

should exploit these narrowband data to improve the wideband 

speech recognition instead of throwing them away. 

In the GMM-HMM framework this is a difficult task. Several 

approaches have been proposed in the past for utilizing the 

narrowband training data. The simplest approach is to just down 

sample both the training and testing data so that the wideband 

speech is treated as the narrowband speech. This is obviously 

suboptimal since wideband speech contains additional information 

that is useful to distinguish phones [9][10]. An alternative 

approach is to extend the bandwidth of a narrowband speech 

waveform to obtain a wideband waveform [11][12][13][14][15]. 

The bandwidth extension procedure, however, is quite 

complicated, often introduces errors and typically requires stereo 

data to train the extension model. It provides benefit only if little 

wideband speech is available [11][12]. We have never seen gains 

in the real world LVSR system when a moderate amount (>50-hrs) 

of wideband speech is available.  

Fortunately, in the CD-DNN-HMM framework exploiting 

mixed-bandwidth training data can be simple as we will show in 

this paper. This is because CD-DNN-HMMs have much higher 

flexibility than GMM-HMMs in using features other than MFCCs. 

More specifically we demonstrate that using the Mel-scale log-

filter bank features we can achieve higher recognition accuracy 

than using MFCCs on LVSR tasks. This allows us to formulate the 

mixed-bandwidth training problem as a missing feature problem, in 

which several feature dimensions have no value when narrowband 

speech is presented. This treatment makes training CD-DNN-

HMMs with mixed-bandwidth data significantly simpler since it 

does not require bandwidth extension at all. Our experiments on 

voice search data indicate that the proposed solution not only 

provides higher recognition accuracy for the wideband speech but 

also allows the same CD-DNN-HMM to recognize mixed-

bandwidth speech, which is important in practice since some users 

may use Bluetooth microphones or old devices.   

The rest of the paper is organized as follows. We will first 

briefly introduce the CD-DNN-HMM and its three core 

components in Section 2. We will then compare Mel-scale log-

filter bank features with log-FFT spectrum features and MFCCs on 

the voice search dataset in Section 3. In Section 4 we describe how 

to design the filter bank so that the narrowband speech can share a 

subset of filters in the wideband speech. We demonstrate the 

effectiveness of the proposed approach on the voice search dataset. 

We summarize our study in Section 5.  

 

2. CD-DNN-HMM 

 
In this section, we briefly describe the key components and the 



training/decoding procedures of CD-DNN-HMMs.   

 

2.1 Architecture of CD-DNN-HMMs 

 
As illustrated in Figure 1, in the CD-DNN-HMM we replace the 

Gaussian mixture model in the conventional GMM-HMM systems 

with a DNN. We compute the HMM’s state emission probability 

density function     (     )  by converting the state posterior 

probability     (     ) obtained from the DNN to 

    (     )  
    (     )

  (   )
  ( )  (1) 

where   is the tied triphone states (also known as senones),   is the 

acoustic observation vector at the current frame augmented with 

neighbor frames,   (   ) is the prior probability of state  , and 

 ( ) is independent of state.  

There are three key components in the CD-DNN-HMM shown 

in Figure 1: modeling senones directly even though there might be 

thousands or even tens of thousands of senones; using DNNs 

instead of shallow multi-layer perceptrons; and using a long 

context window of frames as the input to the DNNs. These 

components are critical in achieving the huge accuracy 

improvements reported in [1][2]. 

 

 
Figure 1:  CD-DNN-HMM and its three core components. 

 

2.2 Training and Decoding 

 
In our current implementation, CD-DNN-HMMs are initialized 

from traditional CD-GMM-HMMs. More specifically, the CD-

DNN-HMM inherits the model structure, including the phone set, 

the HMM topology, and tying of context-dependent states, directly 

from the CD-GMM-HMM system.  In addition, the senone labels 

used for training the DNNs are extracted from the forced alignment 

generated using the CD-GMM-HMM. The detailed training 

procedure, including the bridging between CD-GMM-HMMs and 

CD-DNN-HMMs as well as the learning rate and momentum 

values used in the experiments, can be found in [2]. To improve 

the training speed, GPU is used [3]. 

Decoding is done by plugging the DNN into a conventional 

large vocabulary GMM-HMM decoder with tricks also described 

in [2]. Unlike training, decoding can be carried out in real time 

even on a single CPU core by exploiting quantization and SIMD 

architectures in modern CPUs [16]. 

 

3. FEATURES 

 
One of the properties that make CD-DNN-HMMs promising for 

LVSR is the ability to use arbitrary features. To compare with CD-

GMM-HMMs, the same MFCC/PLP features were used in the 

experiments reported in [1][2]. However, it does not prevent CD-

DNN-HMMs from using other features.  

In [17], it was shown that the Mel-scaled log filter-bank feature 

outperforms the MFCC feature on the TIMIT phone recognition 

task using context-independent DNN-HMMs. In this section, we 

demonstrate that Mel-scaled log filter-bank feature also helps to 

improve accuracy on a 72-hour voice search task when CD-DNN-

HMM is used. We also compare the performance difference 

between different filter-bank designs in this section. 

 

3.1. Experiment Setup 
 

Our experiments were conducted on a commercial voice search 

(VS) task. The training data, called VS-1, consists of 72 hours of 

audio. The test set, called VS-T, has 26757 words in 9562 

utterances. Both the training and test sets were collected at 16-kHz 

sampling rate. 

The input feature to the CD-GMM-HMM system is a 36-

dimention vector converted using HLDA from the 13-dimension 

mean-normalized MFCC with up to third-order derivatives. The 

speaker-independent 3-state cross-word triphones share 1803 

senones. Each senone is modeled using a GMM with 20 Gaussian 

components on average. The CD-GMM-HMM was first trained 

with maximum likelihood estimation (MLE), and then refined 

discriminatively using the feature space minimum phone error 

(fMPE) transformation [18] and boosted maximum-mutual 

information (BMMI) [19] training.  

Following [2], the DNN used in the experiments has 7 hidden 

layers, each with 2048 nodes. The input to the DNN is a feature 

vector augmented with previous and next 5 frames (5-1-5). The 

output layer has 1803 senones, determined by the MLE trained 

GMM-HMM system. The DNN is initialized using the DBN-pre-

training procedure, and then refined with back-propagation using 

senone labels derived from the MLE model alignment [1].  

 

3.2. Compare Different Features 
 

Table 1 compares the discriminatively-trained CD-GMM-HMM 

baseline with the CD-DNN-HMMs using different input features. 

The 13-dimension MFCC feature is extracted from the 24-

dimension Mel-scale log filter-bank feature with a truncated DCT 

transform. All the input features are mean normalized and with 

dynamic features. The MFCC feature is with up to third-order 

derivatives, while the log filter-bank feature and the FFT feature 

have up to the second-order derivatives. The HLDA transform is 

only applied to the MFCC feature for the CD-GMM-HMM system.  

From this table we can make several observations.  

First, the CD-DNN-HMM with MFCC feature obtains 8.7% 

relative word error rate (WER) reduction from the fMPE+BMMI 

trained CD-GMM-HMM. This agrees with the results reported in 

[3], which indicates a 16% relative WER reduction over the 

minimum phone error (MPE) trained CD-GMM-HMM, since 

fMPE typically provides around 10% relative WER reduction over 



discriminatively trained GMM models. The smaller gain compared 

to that achieved on the SWB dataset seems to be related to the task. 

In the voice search dataset, all utterances are very short (less than 

three words per utterance on average) and have much larger 

percentage of silence. These two factors seem to have adverse 

effect to the training of CD-DNN-HMM. Our preliminary study 

indicates that reducing the silence frames during the training can 

improve the WER of CD-DNN-HMMs on our voice search task. 

 

Table 1: Comparison of different input features for DNN. All the 

input features are mean-normalized and with dynamic features. 

Relative WER reduction in parentheses. 

Setup  WER (%) 

CD-GMM-HMM (MFCC, fMPE+BMMI) 34.66 (baseline) 

CD-DNN-HMM  (MFCC) 31.63 (-8.7%) 

CD-DNN-HMM  (24 log filter-banks) 30.11 (-13.1%) 

CD-DNN-HMM  (29 log filter-banks) 30.11 (-13.1%) 

CD-DNN-HMM  (40 log filter-banks) 29.86 (-13.8%) 

CD-DNN-HMM  (256 log FFT bins) 32.26 (-6.9%) 

 

Second, we can observe that switching from the MFCC feature 

to the 24 Mel-scale log filter-bank feature leads to large WER 

reduction (4.7% relative). Increasing the number of filter banks 

from 24 to 40 only provides less than 1% relative WER reduction. 

Overall, CD-DNN-HMM outperforms CD-GMM-HMM trained 

using fMPE+BMMI by a relative WER reduction of 13.8%. Note 

that this is achieved with much simpler training procedure than that 

is used to build the CD-GMM-HMM baseline. Further 

improvement can be obtained by using sequence-level training 

[20][21] but this is not the focus of this paper. 

Third, using 256 log FFT bins directly severely degrades the 

ASR performance. We believe this is because the values of log 

FFT spectrum, although providing extra information, are much less 

invariant than that of Mel-scale log filter-banks, especially in the 

high frequency bins. 

 

3.3. Dynamic Features 
 

The dynamic feature can be obtained through a linear transform of 

the static feature with a context window. Since DNNs are very 

powerful in transforming features through many layers of 

nonlinear transformations, one would think that the dynamic 

feature can be automatically learnt if we can use a longer context 

window and thus we can eliminate the calculation of dynamic 

features. 

 

Table 2: Comparison of DNNs with and without dynamic features. 

All the input features are mean normalized.  

CD-DNN-HMM (40 log filter-banks) WER (%) 

static+Δ+ΔΔ (11-frame) 29.86 

static only      (11-frame) 31.11 

static only      (19-frame) 30.48 

 

The results in Table 2, however, seem to suggest that dynamic 

features are useful. In this table, the static feature is a vector of 40 

log filter-bank outputs. By using up to second-order delta features 

and an 11-frame context window we can get 29.86% WER on the 

test set. Keeping only the static feature and the same 11-frame 

context window increases the WER from 29.86% to 31.11%. This 

is expected because it uses fewer frames of static features than the 

baseline setup.  

However, even if we increase the number of context frames to 

19, which accounts for 2 frames at each side introduced by the 

first-order delta and 2 more frames at each side introduced by the 

second-order delta, the 30.48% WER achieved is still worse than 

that obtained by the baseline setup. We believe this last 2% relative 

difference is attributed to the training algorithm which fails to find 

a better local optimum. For this reason, we should keep using the 

dynamic features.  

 

3.4. Mean Normalization 
 

Since the voice search data come from different users and 

environments, there is a large amplitude variation across 

utterances. Thus in the above experiments, we always apply mean 

normalization to the Mel-scale log filter-bank feature. From Table 

3, however, we surprisingly observe that mean normalization is not 

necessary when Mel-scale log filter-bank feature is used. In fact, 

the system without mean normalization performs slightly better 

than the system with mean normalization. This could be attributed 

to DNNs’ ability to learn more invariant and discriminative 

features at each higher layer and so the variations at the input are 

gradually reduced after many layers of processing. Another 

possible reason is that the data comes from the same resource so 

that the mean normalization is not very important. 

 

Table 3: Comparison of features with and without mean 

normalization. Dynamic features are used.  

CD-DNN-HMM (29 log filter banks) WER (%) 

With mean normalization 30.11 

Without mean normalization 29.96 

 

4. EXPLOITING MIXED-BANDWIDTH TRAINING 

DATA 
 

Based on the investigation described in Section 3, we can clearly 

see that we should use the Mel-scale log filter-bank feature as the 

input to the DNNs. This observation suggests that we can exploit 

mixed-bandwidth training data in the CD-DNN-HMM framework 

quite easily. The only question left is how to design the Mel-scale 

filter banks so that we can align the filter banks of data sampled at 

8-kHz sampling rate with the lower filter banks of data sampled at 

16-kHz sampling rate. In other words, if we design the filter banks 

in this way the narrowband data can be considered as wideband 

data with some feature dimensions missing. The narrowband data 

can thus be used to optimize the connections between the hidden 

layers and the lower filter banks and the wideband data can be used 

to optimize the connections between hidden layers and the higher 

filter banks.  

It turns out that designing such a filter bank is trivial and it has 

been done in [22]. In this paper, we use the same filter bank design 

that is described and used in [22]. More specifically we use 22 

filter banks for 8-kHz data and 29 filter banks for 16-kHz data. The 

lower 22 filter banks for 16-kHz data spans 0-4 kHz, and are 

shared with the 22 filter banks for 8-kHz data. The higher 7 filter 

banks for 16-kHz data spans 4-8 kHz, with the central frequency of 

the first higher filter bank as 4kHz. For 8-kHz data, the 7 upper 

filter banks can be padded with either 0s (zero-padding or ZP) or 

the mean of those observed in the 16-kHz data (mean-padding or 



MP) (Figure 2). The same 29 filter banks are used in Table 1 (row 

4) for the wideband speech. 

4.1. Empirical Evaluation 
 

To evaluate the proposed approach, we used additional 197 hours 

of 16-kHz data, called VS-2, to simulate the scenario where DNNs 

are trained with the mixture of wideband and narrowband speech. 

The 8-kHz training data is obtained by down sampling the 16-kHz 

VS-2 training data, and the 8-kHz testing data for testing is 

obtained in the same way from VS-T 16-kHz testing data.  

For fair comparison, the same DNN architecture is used for all 

setups. The input layer uses 29 Mel-scale log filter-bank outputs 

(without mean normalization) together with dynamic features and 

an 11-frame context window. The input layer thus contains 

29*3*11=957 nodes. The DNN has 7 hidden layers, each with 

2048 nodes. The output layer has 1803 nodes, corresponding to the 

number of senones determined by the GMM system.  

 

 
 

Figure 2: DNN training/testing with 16-kHz and 8-kHz sampling 

data 

 

Table 4: DNN performance on wideband and narrowband test sets 

using mixed-bandwidth training data. 

Training Data 
WER (16-kHz 

VS-T) 

WER (8-kHz 

VS-T) 

16-kHz VS-1 (B1) 29.96 71.23 

  8-kHz VS-1 +  8-kHz VS-2 (B2) - 28.98 

16-kHz VS-1 +  8-kHz VS-2  (ZP) 28.27 29.33 

16-kHz VS-1 +  8-kHz VS-2  (MP) 28.36 29.37 

16-kHz VS-1 + 16-kHz VS-2 (UB) 27.47 53.51 

 

The experimental results are summarized in Table 4. In this 

table, there are two baselines. One is that using only the 72 hours 

of 16-kHz VS-1 training data (marked as B1 in the table). In this 

baseline we just throw away the narrow band training data. As 

shown in the table, we can achieve 29.96% WER on the wideband 

test data using this setup. However, since the system has not been 

exposed to any narrowband training data it performs poorly on the 

narrowband test data. The second baseline, which is marked as B2 

in the table, down samples both the training and test data to 8-kHz. 

This can be beneficial since it allows for using all the training data 

available. As indicated in the table, it achieved 28.98% WER on 

the down sampled test set. This is better than the B1 baseline 

which only uses wideband training data. This baseline setup, 

however, is suboptimal for 16-kHz testing data since the 

information in the frequency range of 4-8 kHz is not exploited. 

The results of our proposed approach are summarized as ZP 

(zero-padding) and MP (mean padding) in Table 4. It is quite 

obvious that these two padding strategies perform similarly and 

both outperform the baseline systems on the wideband testing data. 

For example, using zero-padding, we can achieve 28.27% WER on 

the wideband test set, which translates to 5.6% and 2.4% relative 

WER reduction over B1 and B2 setups, respectively. Note that, the 

systems trained using mixed-bandwidth data also perform very 

well for narrowband test data, which is a plus since many users 

may use Bluetooth microphones or old devices. We also point out 

that by using bandwidth extension techniques we seldom see 

improvements over B1 and never see improvements over B2 when 

GMM is used and a reasonable amount of wideband speech is 

available. 

To get the idea how good our proposed approach is getting, we 

compare it with the upper bound setup (UB in Table 4) which 

assumes we have access to the same amount of wideband training 

data as the narrowband data. We can see that the gap between UB 

and B2 is 1.51% absolute, consistent with what we obtained in the 

CD-GMM-HMM system internally in Microsoft. Our approach, 

which used the mixed-bandwidth training data, recovered half of 

the gap. When compared to B1, which is a poorer baseline, our 

approach recovered two-thirds of the gap. 

 

4.2. Analysis 
 

To understand the power that many layers of nonlinear feature 

transformation in DNNs brings, we take the output vectors at each 

layer   for the 8-kHz and 16-kHz input feature pair and measure 

their Euclidean distance,  

  ( 
(   )  (  ))  √∑ (  

(   )
   

(  )
)
   

   
  (2) 

where    is the number of nodes at the hidden layer  , and    is 
the value of the i-th node at that layer. For the top layer, whose 

output is the senone posterior probability, we calculate their KL-

divergence in nats, 

        ( 
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    (    
(   ))

    (    
(  ))
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where N is the number of senones, and    is the senone id. Table 5 

shows the statistics of    and    over randomly sampled 40K 

frames in the test set for both the DNN trained using wideband 

speech only (UB setup in Table 4) and that trained using mixed-

bandwidth data (ZP setup in Table 4).  

From Table 5 we can observe that in both DNNs, the distance 

between hidden layer vectors generated from the 8-kHz and 16-

kHz input feature pair is significantly reduced at the layers close to 

the output layer compared to that in the first hidden layer. 

However, what’s more interesting is that the average distances and 

variances in the data-mix DNN are consistently smaller than that in 

the 16-kHz DNN. This indicates that by using mixed-bandwidth 

training data, the DNN learns to consider the difference in the 

wideband and narrowband input features as irrelevant variations. 

These variations are suppressed after many layers of nonlinear 

transformation. The final representation is thus more invariant to 



this variation and yet still has the ability to distinguish between 

different senones. This behavior is even more obvious at the output 

layer since the KL-divergence between the paired outputs is only 

0.22 in the mixed-data DNN and is much smaller than 2.03 that is 

observed in the 16-kHz DNN. This explains why the mixed-data 

DNN significantly outperforms the 16-kHz DNN when the 

narrowband testing set is used. 

 

Table 5: The Euclidean distance (ED) for the output vectors at 

each hidden layer (L1-L7) and the KL-divergence (in nats) for the 

posterior vectors at the top layer between 8-kHz and 16-kHz input 

features 

 16-kHz DNN (UB) Data-mix DNN (ZP) 

Layer 
Mean 

(ED) 

Variance 

(ED) 

Mean 

(ED) 

Variance 

(ED) 

L1 13.28 3.90 7.32 3.62 

L2 10.38 2.47 5.39 1.28 

L3 8.04 1.77 4.49 1.27 

L4 8.53 2.33 4.74 1.85 

L5 9.01 2.96 5.39 2.30 

L6 8.46 2.60 4.75 1.57 

L7 5.27 1.85 3.12 0.93 

Layer Mean (KL)  Mean (KL)  

Top layer 2.03  0.22  

 

5. SUMMARY 
 

In this paper, we proposed a simple and effective technique to 

improve wideband speech recognition in CD-DNN-HMMs by 

exploiting mixed-bandwidth training data. Our approach is based 

on the observation that DNN has the flexibility of using arbitrary 

features and that Mel-scale log filter-bank feature outperforms the 

MFCC feature in CD-DNN-HMMs. We thus can formulate and 

reduce the mixed-bandwidth training problem into a missing 

feature problem by designing the filter-bank wisely. 

Our experiments on the voice search task clearly indicate the 

effectiveness of our proposed approach, which achieved 5.6% and 

2.4% relative WER reduction, respectively, over the system trained 

using only the wideband data (B1) and that trained using 

narrowband data by down sampling wideband speech (B2). By 

comparing with the oracle upper bound, which can only be 

achieved if the same amount of wideband speech is available, our 

proposed approach recovered two thirds and one half of the gaps 

between the upper bound and that of B1 and B2, respectively. 

Overall, by exploiting the mixed-bandwidth training data CD-

DNN-HMM outperforms fMPE+BMMI trained GMM-HMM, 

which cannot benefit from using narrowband data, by 18.4%. 

 We point out that exploiting mixed-bandwidth training data in 

the GMM framework is much more difficult and much less 

effective. Actually using bandwidth extension techniques we 

seldom see improvements over B1 and never see improvements 

over B2 when GMM is used and a reasonable amount of wideband 

speech is available. 

In this paper we have also explored three properties of the CD-

DNN-HMMs. First, CD-DNN-HMMs provide flexibility of using 

arbitrary features. We believe that features better than Mel-scale 

filter-bank may be discovered in the near future to further boost 

CD-DNN-HMMs’ performance. Second, CD-DNN-HMM has the 

ability to generate more invariant and selective features at higher 

hidden layers as demonstrated in our analysis of the 16-kHz DNN 

and mixed-data DNN. This ability allows us to just feed in 

heterogeneous data collected under different environments and 

expect DNNs to reduce the mismatch and be robust to the 

variation. Third, building a state-of-the-art LVSR system using 

CD-DNN-HMM is much easier than using GMM-HMM. We 

believe these properties would make CD-DNN-HMM a very 

promising model for LVSR. 

 

REFERENCES 

 
[1] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-

tuning in context-dependent DNN-HMMs for real-world 

speech recognition,” in Proc. NIPS Workshop on Deep 

Learning and Unsupervised Feature Learning, Dec. 2010. 

[2] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent 

pre-trained deep neural networks for large vocabulary speech 

recognition,” IEEE Trans. Speech and Audio Proc., vol. 20, 

no. 1, pp. 30 – 42, 2012. 

[3] F. Seide, G. Li, and D. Yu, “Conversational speech 

transcription using context-dependent deep neural networks,” 

in Proc. Interspeech, 2011. 

[4] D. Yu, F. Seide, G. Li, J. Li, and M. Seltzer, “Why deep 

neural networks are promising for large vocabulary speech 

recognition,” submitted to IEEE Trans. on Audio, Speech, and 

Language Processing, 2012. 

[5] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An 

application of pretrained deep neural networks to large 

vocabulary conversational speech recognition,” Tech. Rep. 

001, Department of Computer Science, University of Toronto, 

2012. 

[6] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, 

“Improvements in using deep belief networks for large 

vocabulary continuous speech recognition,” Tech. Rep. UTML 

TR 2010-003, Speech and Language Algorithm Group, IBM, 

February 2011 

[7] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. 

Novak, A.-r. Mohamed, “Making deep belief networks 

effective for large vocabulary continuous speech recognition”, 

in Proc. ASRU 2011, pp. 30-35. 

[8] D. Yu, Y. C. Ju, Y. Y. Wang, G. Zweig, and A. Acero, 

“Automated directory assistance system --- from theory to 

practice,” in Proc. Interspeech, 2007, pp. 2709–2711. 

[9] P. Moreno and R. M. Stern, “Sources of degradation of 

speech recognition in the telephone network,” in Proc. 

ICASSP, Adelaide, Australia, vol. I, pp.109-112, Apr. 1994. 

[10] X. Huang, A. Acero, and H. -W. Hon, Spoken Language 

Processing, Prentice-Hall, May 2001. 

[11] M. L. Seltzer and A. Acero, “Training wideband acoustic 

models using mixed-bandwidth training data for speech 

recognition”, IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 15, no. 1, pp. 235 – 245, 2007. 

[12] M. L. Seltzer, A. Acero, and J. Droppo, “Robust bandwidth 

extension of noise-corrupted narrowband speech,” in Proc. 

Interspeech, pp. 1509-1512, 2005. 

[13] Y. M. Cheng, D. O’Shaughnessy, and P. Mermelstein, 

“Statistical recovery of wideband speech from narrowband 

speech,” IEEE Trans. Speech Audio Process., vol. 2, no. 4, 

pp. 544–548, Oct. 1994. 

[14] K.-Y. Park and H. S. Kim, “Narrowband to wideband 

conversion of speech using GMM based transformation,” in 



Proc. ICASSP, Istanbul, Turkey, Jun. 2000, vol. 3, pp. 1843–

1846. 

[15] P. Jax and P. Vary, “Wideband extension of telephone speech 

using a hidden Markov model,” in IEEE Workshop on Speech 

Coding, Delavan, WI, Sep. 2000, pp. 133–135. 

[16] A. Senior V. Vanhoucke and M. Z. Mao (2011), “Improving 

the speed of neural networks on CPUs,” in Proc. Deep 

Learning and Unsupervised Feature Learning Workshop, 

NIPS, 2011. 

[17] A. Mohamed, G. Hinton, and G.  Penn, “Understanding how 

deep belief networks perform acoustic modelling”, in Proc. 

ICASSP, pp. 4273-4276, 2012. 

[18] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau and G. 

Zweig, “fMPE: discriminatively trained features for speech 

recognition,” in Pro. ICASSP, 2005. 

[19] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. 

Saon and K. Visweswariah, “Boosted MMI for model and 

feature space discriminative training”, in Proc. ICASSP, 2008 

[20] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-

sequence training of deep belief networks for speech 

recognition”, in Proc. Interspeech 2010, pp. 1692-1695. 

[21] B. Kingsbury, “Lattice-based optimization of sequence 

classification criteria for neural-network acoustic modeling,” 

in Proc. ICASSP 2009, pp. 3761–3764. 

[22] X. Fan, M. Seltzer, J. Droppo, H. Malvar, and A. Acero, 

“Joint encoding of the waveform and speech recognition 

features using a transform codec,” in Proc. ICASSP, pp.5148-

5151, May 2011. 


