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ABSTRACT 

 
By explicitly modelling the distortion of speech signals, model 

adaptation based on vector Taylor series (VTS) approaches have 

been shown to significantly improve the robustness of speech 

recognizers to environmental noise. However, the computational 

cost of VTS model adaptation (MVTS) methods hinders them from 

being widely used because they need to adapt all the HMM 

parameters for every utterance at runtime. In contrast, VTS feature 

enhancement (FVTS) methods have more computation advantages 

because they do not need multiple decoding passes and do not 

adapt all the HMM model parameters. In this paper, we propose 

two improvements to VTS feature enhancement: updating all of 

the environment distortion parameters and noise adaptive training 

of the front-end GMM. In addition, we investigate some other 

performance-related issues such as the selection of FVTS 

algorithms and the spectrum domain that MFCC is extracted from. 

As an important result of our investigation, we established the 

FVTS method can achieve comparable accuracy as the MVTS 

method with a smaller runtime cost. This makes FVTS method an 

ideal candidate for real world tasks. 
Index Terms— VTS, feature enhancement, model adaptation, 

robust ASR 

 

1. INTRODUCTION 
Environment robustness in automatic speech recognition (ASR) 

remains a difficult problem despite many years of research. The 

difficulty arises due to many possible types of distortions, 

including additive and convolutive distortions, which are not easy 

to predict accurately when developing the recognizers. In recent 

years, a model-domain approach that jointly compensates for 

additive and convolutive distortions (e.g., [1][2][3][4][5]) has 

yielded promising results. The various methods proposed so far use 

a parsimonious nonlinear physical model to describe the 

environmental distortion and use the vector Taylor series (VTS) 

approximation technique to find closed-form hidden Markov 

model (HMM) adaptation and noise/channel parameter estimation 

formulas. As shown in [5], VTS model adaptation achieves much 

better accuracy than other model adaptation technologies. 

Although VTS model adaptation can achieve high accuracy, 

the computational cost is very high as all the Gaussian parameters 

in the recognizer need to be updated every time the environmental 

parameters (noise and/or channel) change. This time-consuming 

requirement hinders VTS model adaptation from being widely 

used, especially in large vocabulary continuous speech recognition 

(LVCSR) where the number of model parameters is large.  

VTS feature enhancement has been proposed as a lower-cost 

alternative to VTS model adaptation. For example, a number of 

techniques have been proposed that can be categorized as model-

based feature enhancement schemes [6][7]. These methods use a 

small GMM or HMM in the front end and the same methodology 

used in VTS model adaptation to derive a minimum mean squared 

error estimate of the clean speech features given the noisy 

observations. In addition to the advantage of low runtime cost, 

VTS feature enhancement can be easily combined with other 

popular feature-based technologies, such as HLDA, fMPE, etc., 

which are challenging to VTS model adaptation. 

Recently, two improvements to VTS model adaptation have 

been introduced. First, a maximum likelihood updating of all of the 

environmental distortion parameters was proposed [4][5]. 

Significant improvements were obtained by updating the static and 

dynamic means and variances of noise and channel parameters 

rather than just their static means as was typically done previously. 

Second, a noise-adaptive training method was proposed that 

enabled models suitable for VTS adaptation to be trained from 

noisy training data [8]. This is a significant improvement as it 

removes the requirement that the model be trained from clean 

speech and enables VTS adaptation to be used in situations where 

systems are trained from noisy data typically captured from real-

world deployed applications.  

In this paper, we examine how these improvements to VTS 

model adaptation can be incorporated into VTS feature 

enhancement and whether they provide similar gains in accuracy.  

In addition, we highlight other algorithmic considerations that 

impact the performance of VTS feature enhancement including the 

order of the Taylor series expansion and the use of features derived 

from the magnitude spectrum versus the power spectrum.  

The paper is organized as follows. Section 2 presents the VTS 

model adaptation (MVTS) method. Section 3 presents VTS feature 

enhancement (FVTS). Advanced technologies for improving FVTS 

are presented in Section 4. In Section 5, a number of experiments 

are performed to evaluate the performance of techniques proposed 

in this paper. Finally, we summarize our study and draw 

conclusions in Section 6. 
 

2. VTS MODEL ADAPTATION 

 
The nonlinear distortion model of speech signal in cepstral domain 

is [1]: 
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where  ,   ,  , and   are the clean speech, noise, channel, and 

distorted speech, respectively, in the cepstral domain. By taking 

the expectation on both sides of Eq. (1) and use vector Taylor 

series (VTS) expansion, the static mean of the distorted speech 

signal    is  
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and   is the DCT matrix. By noting,  
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we can derive the MVTS adaption formulations for the static 

HMM parameters for  the k-th Gaussian in the j-th state as 

(following [5]): 
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The dynamic HMM parameters can be adapted using the 

continuous time approximation [5]. We have proposed re-

estimation formulas for the static noise and channel mean, and the 

static and dynamic noise variances in [5]. 

The implementation steps of the MVTS HMM adaptation 

algorithm described so far in this section and used in our 

experiments are summarized in the following: 

1. Read in a distorted speech utterance; 

2. Set the channel mean vector to all zeros; 

3. Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames from the utterance; 

4. Compute the Gaussian-dependent G(.) with Eq.(4), and adapt 

the HMM parameters; 

5. Decode the utterance with the adapted HMM parameters; 

6. Re-estimate the noise and channel distortions using the above-

decoded transcription;  

7. Adapt the HMM parameters again; 

8. Use the final adapted HMM model obtained in step 7 to 

decode the distorted speech feature and get output 

transcription. 

 

3. VTS FEATURE ENHANCEMENT 
In this section, we summarize how to enhance distorted speech 

features using FVTS. In contrast to MVTS, we use a GMM to 

represent the underlying speech space. The GMM is trained using 

all the training data. 

1. Read in a distorted speech utterance; 

2. Set the channel mean vector to all zeros; 

3. Initialize the noise mean vector and diagonal covariance 

matrix using the first and last N frames from the utterance; 

4. Compute the Gaussian-dependent G(.) with Eq.(4), and adapt 

the GMM parameters (Note that there is no state in GMM, 

therefore the (   ) element in MVTS should now be denoted 

as the ( ) element in FVTS); 

5. Re-estimate the noise and channel distortions;  

6. Adapt the GMM parameters again; 

7. Use the adapted GMM model to create an MMSE estimate of 

the clean speech given the observed noisy speech Eq. (11) or 

Eq. (14); 

8. Use the HMM model to decode the cleaned speech feature 

obtained in step 7 and get output transcription. 

There is no more HMM adaptation step in this FVTS 

algorithm. Given that the number of model parameters in a GMM 

usually is smaller than that in an HMM, FVTS has significantly 

lower runtime cost. In the following, we present two FVTS 

algorithms that can be used in step 7.  

In general, we can use the minimum mean square error 

(MMSE) method to get the estimate of clean speech  
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Suppose the clean-trained GMM is denoted as 
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together with Eq. (1), we have  
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Here, the Gaussian occupancy probability is calculated as 
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              are the adapted distorted speech static mean and 

variance of the kth component of the GMM. If we use the 0th-order 

VTS approximation for the nonlinear term in Eq. (9), we can get 

the MMSE estimation of cleaned speech   as 
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This formulation was first proposed in [1], and we denote it as 

FVTS-0. 

In [6], another solution was proposed when expanding Eq. (1) 

with the 1st-order VTS. For the kth component of GMM, the joint 

distribution of   and   is modeled as 

[
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With some Bayesian formulation, we have 
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With the 1st-order VTS expansion of Eq. (1) and the property 

that speech and noise are independent, it is easy to get  
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Then we can get the MMSE estimate of clean speech as 
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We denote the solution of Eq. (14) as FVTS-1. 

The key of FVTS is to get a reliable estimation of noise and 

channel distortion parameters, and accurately calculate the 

Gaussian occupancy probability. In contrast to Eq. (10), which 

only uses static feature to calculate the Gaussian occupancy 

probability, the static and dynamic features are used to get a more 

reliable Gaussian occupancy probability [9] 
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which is plugged into Eqs. (11) and (14).  

Regarding the runtime cost, MVTS needs to adapt HMM 

parameters twice (in Step 4 and 7), while FVTS needs to adapt 

GMM parameter twice (in Step 4 and 6). Usually, the number of 

parameters in the GMM is much smaller than that in the HMM. 



Furthermore, two rounds of decoding (in Step 5 and 8) are needed 

in MVTS while only one round decoding (in Step 8) is performed 

in FVTS. As consequence, FVTS has much lower computational 

cost than MVTS. 

 

4. IMPROVEMENTS TO FVTS  
In this section, we show how recent improvements in MVTS can 

be incorporated into FVTS.  

 

4.1 Updating all distortion parameters 
In [1] and [6], only static noise and channel mean vectors are re-

estimated: 
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In contrast, we propose to update all the distortion parameters. 

Here, we re-estimate the static noise variance by using a second-

order approach  
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where   is the EM auxiliary function of the current utterance [5]. 

The dynamic noise variances     and      are updated in a 

similar way. Note that the dynamic means of the channel and noise 

are assumed to be zero. This follows from the assumption that the 

channel is deterministic and the noise is stochastic but stationary. 

Please refer [5] for the detailed formulation.  

After updating both the static and dynamic model parameters 

with the online distortion re-estimation, we can have a more 

accurate estimation of the Gaussian posterior probabilities.  

 

4.2 Noise adaptive training of GMM 
In FVTS, it is assumed that a GMM trained from clean speech is 

available. However, in real world tasks, sometimes it is hard to get 

clean training data that is otherwise matched to the speech 

expected to be seen in deployment. Therefore, the underlying 

GMM is trained from observed noisy speech, i.e. multi-condition 

training data. In this case, the physical model in Eq. (1) is no 

longer valid and FVTS should not be directly applied in theory. 

Noise adaptive training (NAT) [8] was proposed as a solution to 

this problem. NAT estimates a pseudo-clean canonical speech 

model from noisy training data by incorporating VTS model 

adaptation into the model training procedure. As an analogy, 

speaker adaptive training (SAT) starts from a speaker-independent 

model and iteratively updates the of the speaker transforms and the 

HMM parameters to estimate a canonical model with less speaker 

variability. In much the same way, NAT starts with a multi-

condition model and iteratively updates the distortion parameters 

and the HMM parameters to estimate a canonical model with less 

environmental variability. For example, given an estimate of the 

distortion parameters of each utterance in the training set, the 

updated pseudo-clean mean vector can be expressed as  
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where, i is the utterance index,        is current value for the static 

mean of the kth Gaussian component and   
 is the posterior 

probability.  The update expressions for the dynamic means and 

static and dynamic variances can be similarly derived. The detailed 

process and formulas are described in [8]. While NAT was 

originally proposed for HMM training, it can be easily used for 

training a GMM from multi-condition training data that is suitable 

for use with FVTS.  

 

5. EXPERIMENTS 
The VTS algorithms presented in this paper are first evaluated on 

the standard Aurora 2 task [10]. The clean training set is used to 

train the standard “complex backend” HMM model [10], which 

has 3628 Gaussians. We also train a GMM with 552 Gaussians for 

FVTS. The test material consists of three sets of distorted 

utterances. Set-A and set-B contain eight different types of additive 

noise while set-C contains two different types of noise and 

additional channel distortion. Following the standard evaluation of 

Aurora 2, we report average accuracy which is the average of 

accuracy of all three test sets. 

The acoustic features are 13-dimensional MFCCs, appended 

by their first- and second-order time derivatives.  The cepstral 

coefficient of order 0 is used instead of the log energy in the 

original script.  

The VTS algorithms presented in this paper are then used to 

adapt the above MLE HMMs or to enhance the distorted features 

utterance-by-utterance for the entire test set (Sets-A, B, and C). We 

use the first and last N=20 frames from each utterance for initial 

estimation of the noise means and variances. 

 

5.1 Impact of online distortion estimation 
In most literature [1][6], only static distortion parameter is re-

estimated. In contrast, we updated all the distortion parameters so 

that a more reliable Gaussian occupancy probability (Eq. (15)) can 

be obtained. We evaluated the impact of online distortion 

estimation in Table 1. The MFCCs are computed from the power 

spectrum. The baseline accuracy (Acc.) on Aurora2 is 61.51%. It is 

clear that updating all of the distortion parameters is significantly 

better than updating only mean noise and channel parameters for 

both FVTS-0 (Eq. (11)) and FVTS-1 (Eq. (14)). 

 

Table 1: Impact of re-estimation of the distortion parameters on 

Aurora2. The baseline model is trained with clean data. 
Acc. FVTS-0 FVTS-1 

update static noise and channel 

mean parameters only [1][6] 

86.72 84.69 

update all mean and variance 

distortion parameters 

88.61 86.08 

 

5.2 Impact of spectrum domain for MFCC extraction 
Table 2 summarizes the recognition accuracy of the baseline and 

two different FVTS methods with the MFCC features extracted 

from power spectrum and magnitude spectrum. For both features, 

FVTS-0 is better than FVTS-1, especially when the features are 

extracted from power spectrum. Also, it is clear that FVTS works 

better on MFCCs extracted from the magnitude spectrum rather 

than from the power spectrum. This is consistent with what has 

been observed in MVTS [5].  

 

Table 2: Comparison of different FVTS methods and MFCC 

derived from different spectrum on Aurora2. The baseline model is 

trained with clean speech. 

Acc. Baseline FVTS-0 FVTS-1 

Power spectrum 61.51 88.61 86.08 

Magnitude spectrum 50.64 89.71 89.60 



5.3 Comparison of Different FVTS methods 
 

From Table 1 and 2, we can see that FVTS-0 outperforms FVTS-1 

in all setups. In the remaining experiments, we will only discuss 

FVTS-0 with MFCC features extracted from magnitude spectrum, 

which is the best option in Table 2.  

 

5.4 Working with noisy training data 

 
In this section, we study the performance of FVTS in the absence 

of clean training data.  Two tasks are used for evaluation. One is 

Aurora2 with multi-condition training data. The HMM (containing 

3628 Gaussians) and GMM (containing 552 Gaussians) models are 

trained with the same method as with the clean training data.  

The second task is Aurora3 [11], which consists of noisy digit 

recognition under realistic car environments and contains three 

testing conditions: well matched, medium matched, and highly 

mismatched. The MFCC features are extracted using the same 

process as in Aurora2. The HMM model is trained using the 

standard “simple backend” script. All the Gaussians from this 

HMM model are collapsed to form the GMM used for FVTS.  

Table 3 compares FVTS-0 with NAT-FVTS-0, which uses 

NAT to generate a pseudo-clean model to enhance the training and 

testing features with FVTS-0. Although breaking the assumption in 

Eq. (1), the accuracy of FVTS-0 is still better than the baseline. 

However, on both Aurora2 and Aurora3 tasks, FVTS-0 is much 

worse than NAT+FVTS-0, which is consistent with the assumption 

in Eq. (1) and should be the right way to work with noisy training 

data. Comparing Tables 2 and 3, it is evident that using multi-

condition training data and NAT results in higher accuracy for 

FVTS (92.92%) that the traditional approach where the GMM and 

HMM are trained from clean speech (89.71%).  

 

Table 3: Comparison of FVTS-0 and NAT + FVTS-0 with multi-

condition training data 

Acc. Aurora2 Aurora3 

Baseline 83.17 77.94 

FVTS-0 87.35 84.05 

NAT + FVTS-0 92.92 89.11 

 

5.5 Accuracy gap between FVTS and MVTS 

 
In Table 4, we compare the accuracy between FVTS and MVTS. 

With much better accuracy achieved than literature (e.g., [6]), 

FVTS presented in this paper has a comparable accuracy as 

MVTS. The tradeoff between accuracy and computation cost will 

determine which technology is more suitable to be used in the real 

world deployment scenario.  

 

Table 4: Comparison of FVTS and MVTS on Aurora 2 and Aurora 

3 when multi-condition training data and NAT are used. 

Acc. Aurora 2 Aurora 3 

NAT + FVTS-0 92.92 89.11 

NAT + MVTS 93.75 90.66 

 

6. CONCLUSIONS 

 
In this paper, we gave a comprehensive study on issues related 

with the VTS feature enhancement (FVTS) technologies. To 

improve FVTS, we incorporated recent advancements developed in 

VTS model adaptation (MVTS). In contrast to previous works, we 

re-estimate both static and dynamic distortion parameters and get 

more reliable Gaussian occupancy probability estimates. This 

enabled our FVTS methods to obtain much higher accuracy than 

the previous works (e.g., [6]). We also showed that additional 

gains in FVTS can be obtained by using multi-condition training 

data in conjunction with noise adaptive training to obtain a pseudo-

clean canonical GMM. We also showed that the FVTS method 

with Eq. (11) is more effective than the method with Eq. (14) in 

dealing with noise. It was demonstrated that MFCC extracted from 

magnitude spectrum gives higher accuracy for FVTS, which is 

consistent with our discovery in MVTS. Finally, we highlighted 

the remaining accuracy gap between FVTS and MVTS on Aurora2 

and Aurora3 tasks.  

Several issues should be addressed in the future. First, the 

experiments reported in this paper were limited to digit recognition 

tasks. The computational advantage of FVTS over MVTS is 

significant when the number of GMM parameters is much smaller 

than that of HMM parameters, which is true in the LVCSR 

scenario. We will work on noisy LVCSR tasks to verify the 

effectiveness of FVTS. Second, in current study, we only use the 

standard VTS technology to update GMMs while it has been 

shown that VTS with phase-sensitive distortion [5] and unscented 

transform [12] technologies can help to improve the modeling 

quality.  We will apply these technologies to FVTS in the future.  
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