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Abstract 

By exploiting a model of environmental distortion, model 

adaptation based on vector Taylor series (VTS) approaches 

have been shown to significantly improve the robustness of 

speech recognizers to environmental noise. However, the 

computational cost of VTS model adaptation (MVTS) 

methods hinders them from being more widely used. In this 

paper, we propose to reduce the computational cost of MVTS 

by replacing the Jacobian matrix used in the vector Taylor 

series approximation with a diagonal Jacobian matrix 

(DJVTS). We verify this approximation by showing that the 

Jacobian matrices are dominated by their diagonal elements 

and therefore the model distortion introduced by this 

approximation is very small. DJVTS gives similar accuracy as 

the standard MVTS method with significant reduction in 

computational cost. The proposed method also achieves higher 

accuracy than VTS-based feature enhancement.  

Index Terms: vector Taylor series, Jacobian matrix, robust 

ASR 

1. Introduction 

It is well known that the accuracy of speech recognition 

systems degrades in noisy environments. This degradation is 

caused by a mismatch between the noisy speech seen in 

deployment and the speech used to train the recognizer. 

Acoustic model adaptation has been proposed as one way to 

reduce this mismatch and improve performance. The most 

successful methods of adaptation exploit a physical model of 

the relationship between clean speech and the observed 

speech. Because this relationship is nonlinear, model 

adaptation is performed using a vector Taylor series (VTS) 

approximation [1][2][3][4][5]. 

Although VTS model adaptation can achieve high 

accuracy, its computational cost is very high. In standard VTS 

model adaptation (MVTS), it is necessary to calculate a 

Jacobian matrix for each Gaussian distribution in the 

recognizer. These Gaussian-dependent Jacobians are necessary 

to adapt the HMM model parameters and to re-estimate the 

noise and channel distortion model parameters [5]. Computing 

the Jacobian matrix for all Gaussians requires a large number 

of matrix multiplications, which hinder MVTS from being 

more widely used.  

As a solution, joint uncertainty decoding (JUD) was 

proposed to calculate the Jacobian matrices on a per-

regression class basis instead of on a per-Gaussian basis [6]. 

Using fewer regression classes than Gaussians reduces the 

computational cost. VTS-JUD calculates a Jacobian matrix for 

each regression class but still adapts each Gaussian 

distribution individually [7]. Different from VTS-JUD, 

predictive constrained maximum likelihood linear regression 

(PCMLLR) is a method that applies the learned transforms to 

the feature space [7].  

All of these methods save computation by estimating the 

Jacobian for each regression class rather than for each 

Gaussian. However, in VTS-JUD, there is no computation 

saving in the model adaptation step since the Jacobian 

matrices still need to be applied to all Gaussians. In PCMLLR, 

fewer Jacobian matrices are typically used but they need to be 

applied to the acoustic features of each frame.  

VTS feature enhancement (FVTS) has been proposed as a 

lower-cost alternative to VTS model adaptation. A number of 

techniques categorized as model-based feature enhancement 

schemes have been proposed, e.g. [8][9]. These methods use a 

small GMM or HMM in the front end and the same 

methodology used in VTS adaptation to derive a minimum 

mean-squared error estimate of the clean speech features given 

the noisy observations. However, even after incorporating 

recent advances in VTS model adaptation into FVTS, the 

performance of FVTS still lags behind that of MVTS [10].  

Thus, while FVTS has advantages in computational 

complexity, it comes at the price of reduced performance. 
In this paper, we present a novel method to reduce the 

computational complexity of MVTS. Our approach 

specifically targets the Jacobian matrix as it represents the 

computational bottleneck in the VTS algorithm. In Section 2, 

we review VTS model adaptation in more detail and examine 

the computational complexity of the various steps in the 

algorithm. In Section 3, we perform an empirical analysis of 

the Jacobian matrices generated during adaptation. This 

analysis motivates an efficient approximation to the VTS 

algorithm that utilizes approximated Jacobian matrices with 

diagonal structure. The formulation of MVTS with diagonal 

Jacobian matrices (DJVTS) is given and the computational 

costs of standard MVTS and DJVTS are compared. In Section 

4, we perform a series of experiments to show the efficacy of 

the proposed algorithm. Evaluated on Aurora2, the proposed 

DJVTS achieves accuracy comparable to standard MVTS with 

a significant reduction in computational cost. We also show 

that DJVTS also outperforms feature enhancement using 

FVTS. Finally, we summarize our study and conclude the 

paper in Section 5. 

2. VTS Model Adaptation  

In this section, we first briefly review the standard VTS model 

adaptation algorithm (MVTS) and then examine its 

computational cost.  

2.1. Standard VTS Model Adaptation Algorithm 

The nonlinear distortion model between clean and distorted 

speech can be expressed in the cepstral domain as [2]: 
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where  ,  ,  , and   are the clean speech, noise, channel, and 

distorted speech, respectively.   is the discrete cosine 

transform (DCT) matrix. By taking the expectation on both 

sides of (1), the static mean of the distorted speech signal    

can be written as   
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where 
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and              are the static cepstral means of clean 

speech, noise, channel, respectively. In VTS adaptation, the 

nonlinear function in (3) is approximated using vector Taylor 

series expansion. Using this approximation, the model 

parameters for Gaussian k in state j can be updated as 

(following [4]): 
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where  (   ) is the Gaussian-dependent Jacobian matrix 

defined as   
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The delta and delta-delta parameters can be similarly updated 

(following [4]): 
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Significant improvements in the performance of MVTS 

can be obtained by re-estimating the distortion model 

parameters based on the first-pass decoding result. For 

example, the mean of the noise    can be updated according to  

             (11) 
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where   (   ) is the posterior probability for Gaussian k in 

state j. The channel mean    can be estimated similarly. To 

estimate the D-dimensional static noise variance vector 
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, we use 

Newton’s method, an iterative second order approach. Full 

derivations of the update formulae for the distortion model 

parameters can be found in [5]. 

2.2. Computational analysis of VTS adaptation 

The computational cost of the steps in standard MVTS is 

analyzed in the following. Every element in the full     

dimension Jacobian matrix in (6) requires  ( ) calculations, 

where   is the dimension of static cepstra. Therefore, for a 

system with a total of N Gaussians, the cost to calculate all 

Jacobian matrices is  (   ). When adapting the static mean 

with (4), every element in the mean vector requires  ( ) 

calculations. Therefore, the total cost is  (   ). This is also 

true for the adaptation of other model parameters. In (11), 

(   (   ))
 
  

  (   )(   (   )) is a full matrix and 

requires  (  ) caluclations. Hence, the total cost is  (   ) 

for re-estimation of the noise mean and channel mean. Re-

estimation of the noise covariance also requires  (   ) 

calculations since the Hessian matrix has    elements and 

each element needs  (  ) calculations [5]. 

3. VTS with Diagonal Jacobian Matrix 

It is well-known that the DCT matrix has the orthogonality 

property, i.e.       . With this property, the Jacobian 

 (   ) in (6) can be rewritten as  
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Since DCT matrix is used for decorrelation, an intuition 

is to approximate the off-diagonal components in  (12) with 0 

if we assume     (
 

     (   (     (   )   ))
) is the 

covariance of some variables.  

We verified this by analyzing the element-wise average 

of the absolute values of the Jacobian matrices obtained from 

the standard Aurora 2 task [11]. In Figure 1, we plot those 

values for two SNR conditions in test set A with noise type 1 

(subway noise). In both conditions, we can see that the 

diagonal elements have much higher values than the off-

diagonal elements, which suggests that a diagonal 

approximation of the Jacobian matrices is reasonable. Note 

that in the 0 dB SNR condition, the diagonal components are 

Figure 1: The element-wise average of the absolute values 

of the Jacobian matrices in SNR20 and SNR0 conditions 

in Aurora 2 test set A with noise type 1 (subway noise). 

 



not as dominant as in the 20 dB SNR condition. This means 

that the diagonal approximation is more accurate in high SNR 

conditions. Similar observations were also made for different 

types of noise. 

Based on these observations,  (   ) can be approximated 

as a diagonal matrix: 

 (   )      (    (   )    (   )      (   ) )  (13) 

Using (13), almost all matrix and vector operations in the 

original MVTS formulations (except (4)) can be reduced to 

scalar operations. This greatly reduces the computational cost. 

We refer to MVTS using the diagonal Jacobian approximation 

as DJVTS.  

Using DJVTS, (5), (7)-(10) can be simplified to the 

following scalar operations with         
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The re-estimation of the distortion parameters can be 

similarly simplified. For example, the noise mean    can be 

updated under DJVTS as  

                  (19) 
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Updating the noise covariance is also simplified as it now only 

requires a vector of second-derivatives rather than the 

computation of the full Hessian matrix. 

The comparison of the computational cost of the various 

steps in MVTS and DJVTS is shown in Table 1. With (13), 

only   elements need  ( ) calculations. Therefore, for the a 

total of N Gaussians, the cost to calculate the Jacobian 

matrices is  (   ). Using a diagonal Jacobian approximation 

has no impact on static mean with (4). Therefore, the total cost 

to adapt static mean remains  (   ). However, the 

adaptation of other model parameters only requires  (  ) 

since these can now be done dimension by dimension. The re-

estimation of the noise and channel mean can also be done 

with scalar manipulation as shown in (19). Hence, the cost is 

 (  ), with a relative reduction of   (  ) from standard 

MVTS. With the noise variance update, only   elements are 

necessary to compute and every element only needs  ( ) 

calculations. This can be seen by simplifying the noise 

covariance update expression in [5] with the diagonal Jacobian 

approximation. Therefore, the cost for updating the noise 

variance is also  (  ) in DJVTS.
 

4. Experimental Evaluation 

The proposed DJVTS algorithm presented in Section 3 has 

been evaluated on the Aurora 2 task [11] of recognizing digit 

strings subject to noise and channel distortions. The clean 

training set was used to train the HMMs using maximum 

likelihood estimation (MLE). The test material consists of 

three sets of distorted utterances. Sets A and B contain eight 

different types of additive noise while Set C contains two 

different types of noise plus additional channel distortion. 

Each type of noise is added into a subset of clean speech 

utterances, at seven different SNRs. This generates seven 

subgroups of test sets for a specified noise type, with clean, 

20db, 15db, 10db, 5db, 0db, and -5db SNRs. The experimental 

setup follows the standard recipe provided by ETSI, using the 

standard complex backend [12] which generates HMMs with a 

total of 3628 Gaussians.  

The features are 13-dimension MFCCs extracted from 

magnitude spectrum, appended by their first- and second-order 

time derivatives.  The cepstral coefficient of order zero is used 

instead of the log energy.  

The standard MVTS and DJVTS algorithm presented in 

this paper are used to adapt the MLE-trained HMMs utterance-

by-utterance for the entire test set (Sets A, B, and C). The 

implementation steps described in [4] are used for all 

experiments. We use the first and last 20 frames from each 

utterance for initializing the noise means and variances and the 

channel mean is initialized to zero. For each utterance, a single 

iteration of distortion parameter re-estimation is performed.  

We first performed an experiment to measure the 

accuracy of the diagonal Jacobian approximation. We 

evaluated the average KL divergence of the Gaussians adapted 

with DJVTS from the Gaussians adapted with standard VTS. 

The smaller this measure, the more accurate the approximation 

is. In addition to evaluating a diagonal Jacobian matrix, we 

also examined a banded matrix structure which includes the 

main diagonal and a number of additional diagonals on either 

side. The results are shown in Figure 2 for test data from 20 

dB and 0 dB SNR with noise type 1 (subway noise). The x-

axis shows the number of diagonals in the Jacobian matrix (the 

band-width of the matrix).  The values at     represent the 

KL distance between the uncompensated clean model and 

standard VTS-adapted model using full Jacobians. The values 

at      show how far the models adapted with DJVTS are 

from those adapted with standard MVTS. As the width of the 

band increases (moving to the right on the x-axis in the 

figure), more diagonal bands in the Jacobian matrices are 

included. When     , none of the elements is set as zero 

and the full Jacobian is used. This is equivalent to MVTS and 

therefore, the KL divergence is 0.  

 

Table 1: Comparison of approximated computation cost of 

standard MVTS and DJVTS. N is the number of Gaussians, D is 

the dimension of the static cepstral feature vector. 

  

Processing  

Steps 

Standard 

MVTS 
DJVTS 

Relative 

Cost 

Reduction 

Calculate Jacobian 

matrix 
𝒪(𝑁𝐷 ) 𝒪(𝑁𝐷 ) 𝒪(𝐷) 

Adapt static  

means 
𝒪(𝑁𝐷 ) 𝒪(𝑁𝐷 ) 0 

Adapt remaining 

model parameters 
𝒪(𝑁𝐷 ) 𝒪(𝑁𝐷) 𝒪(𝐷) 

Estimate distortion 

model parameters 
𝒪(𝑁𝐷 ) 𝒪(𝑁𝐷) 𝒪(𝐷 ) 

 



We have the following observations from Figure 2:  

1) The distortion introduced by setting the off-diagonal 

elements in Jacobian transform is much smaller than the 

KL divergence between the clean model and full-

Jacobian-transformed model. Therefore, the diagonal 

approximation of Jacobian matrices is reasonable. 

2) Setting the off-diagonal elements in the Jacobian matrix 

to zero in high SNR conditions brings less distortion than 

in low SNR conditions. This is consistent with the 

observation in Figure 1, where the diagonal elements 

were more dominant in high SNR conditions. 

 

We next compared the recognition accuracies obtained by 

the different VTS algorithms. Table 2 reports the average of 

accuracy of all three test sets. Following the standard practice 

for Aurora 2 [12], the overall average accuracy shown in the 

last row is computed from SNRs between 0 and 20 dB. In high 

to moderate SNR conditions (from clean to 5 dB), DJVTS has 

comparable accuracy to standard MVTS. This validates our 

observation that at these SNRs, the diagonal elements 

dominate the Jacobian matrices, and therefore the diagonal 

approximation is accurate. At SNRs below 5 dB, the 

approximation is less accurate, and there is an obvious gap 

between standard MVTS and DJVTS.  

We also compared the performance of DJVTS to VTS 

feature enhancement (FVTS) studied in [10]. Both methods 

reduce the computational cost of VTS, but with different 

approaches. FVTS operates using a small GMM with fewer 

Gaussians than in the HMM to save computation. If M is the 

number of Gaussians in the front-end GMM in FVTS, the 

costs of computing the Jacobian matrices, adapting model 

parameters, and updating the distortion parameters are 

 (   ),  (   ), and  (   ), respectively. If     , 

then the cost of the feature VTS is actually larger than the cost 

of DJVTS. In the experiments reported in [10],  =3628, 

     , and     . In this case, DJVTS has both better 

accuracy and lower computational cost than feature VTS. 

5. Conclusions 

In this paper, we have presented an efficient VTS adaptation 

algorithm using a diagonal Jacobian approximation. We 

observed that Jacobian matrix used in the VTS approximation 

is largely dominated by its diagonal elements, and we 

therefore proposed to approximate it as a diagonal matrix. We 

showed this diagonal approximation introduces very small 

modeling error to the true VTS-adapted model in terms of KL 

divergence. Using the diagonal Jacobian approximation 

significantly reduces the computational cost of all the three 

major components of standard VTS model adaptation, with 

reductions of  ( ) for Jacobian calculation,  ( ) for most 

parts of model adaptation, and  (  ) for re-estimation of the 

distortion model parameters. In the experimental evaluation on 

the Aurora 2 task, the proposed DJVTS has comparable 

accuracy to standard VTS at SNRs as low as 5 dB. The 

proposed DJVTS method also outperforms VTS-based feature 

enhancement at all SNRs, and in some cases may have lower 

computational cost.   
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Table 2: Recognition results for the baseline system and for 

three VTS setups with clean-trained complex backend HMMs.  

 

Accuracy Baseline 
Standard 

MVTS 

DJVTS Feature 

VTS [10] 

Clean 99.48 99.58 99.59 99.59 

20 dB SNR 91.38 99.16 99.21 99.10 

15 dB SNR 76.99 98.40 98.51 98.38 

10 dB SNR 52.98 96.56 96.58 95.90 

5 dB SNR 27.69 91.08 90.85 88.74 

0 dB SNR 12.81 75.57 71.92 66.75 

-5 dB SNR 8.56 40.07 34.41 32.63 

Average 50.64 92.18 91.61 89.71 

 

 
Figure 2: Average KL divergence between Gaussians adapted 

using an approximate Jacobian and Gaussians adapted using 

the full Jacobian for the 20 dB and 0 dB SNR conditions of 

Aurora 2 test set A with noise type 1 (subway noise). 

http://www.science-direct.com/science?_ob=PublicationURL&_tockey=%23TOC%236749%232009%23999769996%23991061%23FLA%23&_cdi=6749&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=517b028c58b654b4254e4d2bd6d0284f
http://www.science-direct.com/science?_ob=PublicationURL&_tockey=%23TOC%236749%232009%23999769996%23991061%23FLA%23&_cdi=6749&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=517b028c58b654b4254e4d2bd6d0284f
http://www.science-direct.com/science?_ob=PublicationURL&_tockey=%23TOC%236749%232009%23999769996%23991061%23FLA%23&_cdi=6749&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=517b028c58b654b4254e4d2bd6d0284f

