
CONCEPTS IN RELIABLE AND OPTIMAL SYSTEMS

DESIGNS

A Project Report

submitted by

MOHAMMED SHOAIB

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

MAY 2008

THESIS CERTIFICATE

This is to certify that the thesis titled CONCEPTS IN RELIABLE AND OPTIMAL

SYSTEMS DESIGN, submitted by Mohammed Shoaib, to the Indian Institute of Tech-

nology, Madras, for the award of the degree of Master of Technology, is a bona fide

record of the research work done by him under our supervision. The contents of this the-

sis, in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Kamakoti. V

Research Guide

Assoc. Professor, Dept. of CSE

IIT Madras, Chennai 600 036

Srinivasan. S

Research Guide

Professor, Dept. of EE

IIT Madras, Chennai 600 036

Place: Chennai

Date: 01st May 2008

ACKNOWLEDGEMENTS

“One can pay back the loan of gold, but one dies forever in debt to those who are kind.”-

A Malay Proverb

I am thankful and beholden to God for his infinite mercy and blessings showered on me.

I am superlatively saddled by my parents support, encouragement and prayers in making

this all happen. My brother, Adnan, has been my single most important mentor, buddy

and card-carrier throughout my five year stint at IIT Madras. I would like to acknowledge

his help and thank him for all the wonderful discussions I had with him - every one of

them was so important in reaching this milestone.

I am delighted to express my deepest sense of gratitude to Dr. Kamakoti, my advisor

and guide at the Computer Science and Engineering (CSE) Department at IIT Madras. He

kept me focused with his tremendous help, energy and motivation all through the wonder-

ful year I spent at The Reconfigurable and Intelligent Systems Engineering (RISE) lab.

The resources at the lab have been impeccable and I would like to thank him for helping

me grow in such a world class facility. This overture would be left void if I equivocate the

kind concern and guidance of Dr. Srinivasan, my co-advisor from the Electrical Engineer-

ing (EE) Department at IIT Madras. His forbearance has been phenomenal in carrying me

along the various crests and troughs in my graduate career. In fact, the entire faculty at

the EE department has been responsible for casting my foundation in VLSI and the CSE

faculty has collectively been responsible for helping me build upon this strong founda-

tion. Dr. Shankar, Dr. Debdeep and Dr. Ravindran have been instrumental in helping me

look beyond the horizons of current technology. Their qualitative excellence and commit-

ment to research has helped me transpire constructively and continue working on topics

of significant importance.

This rubric would be incomplete without acknowledging the friendly support and

enormous motivation from Noor, my closest pal at the RISE lab. His beneficial cona-

i

tus has been pivotal in this work - technical and otherwise. I would like to thank him for

introducing me to evolutionary computing and helping me with various simulations, paper

writing, discussions and outages. Vimal, a third year undergraduate student in CSE at IIT

Madras has also been very helpful through various simulations and discussions. I grate-

fully acknowledge his contribution to this work and thank him for all the useful inputs. I

would like to thank my other lab mates - Venkat for his terrene and seraphic discussions

at the lab, Rajesh for his terrene discussions outside the lab and Chester for his seraphic

discussions within and outside the lab. I would also like to express my appreciation and

thanks to Kumar Dhirendra Pratap Singh Yadav from the EE department who has been a

wonderful companion and a good friend of mine at IIT Madras.

I cannot put in words, my expression of gratitude to the members of RISE lab at IIT

Madras for the numerous inputs, ideas and discussions, all of which were so very useful

in shaping up this work. Finally, I would like to mention significant motivation and fun-

times stocked up by my dorm mates - Saurabh, Nitin, Gaurav, Shashank, Lokesh and

Dhirendra. Their repose at restaurant lounges, movie theaters, gymnasiums and sports

grounds was something I’ll have to thank for - a kinesis which was subservient to my

survival in research.

“What we have done for ourselves alone dies with us; what we have done for others and

the world remains and is immortal ”- Albert Pike

SHOAIB, MOHAMMED

Indian Instt. of Tech. Madras

ii

ABSTRACT

KEYWORDS: Reliable Systems; Mathematical Optimization; Genetic Algorithms;

Reconfigurable Hardware.

Designing reliable and optimal systems is one of the most challenging goals in con-

temporary electronics. As technologies scale and information processing gets critical,

reliability in high performance systems plays a vital role in maintaining prolonged up-

time and dependable outputs. In this work, we provide insights into designing reliable

systems with optimal configurations using a popular stochastic technique called the Ge-

netic Algorithm (GA). GAs are highly tunable algorithms which work with large amounts

of data and simple operators to yield optimal solutions to difficult problems. The thesis

uses abstractions at the transistor, gate and systems level to demonstrate the heuristics

and challenges in the same. In a transistor optimization problem the thesis propounds a

novel technique for evolving transistor net lists directly from truth table descriptions of

arbitrary digital circuits. A salient feature of the proposed technique is the bypassing of

gate level representation and optimization in the VLSI design flow. This leads to gener-

ation of custom and semi-custom library cells on the fly. The second problem involves

finding input vector pairs that cause maximum power dissipation in digital circuits. A

modified genetic search and a vector partitioning approach are used to obtain good lower

bounds for the same. GA heuristics for FIR Filters are presented in a third problem. The

thesis demonstrates that the filters thus designed are self-adaptive; respond to arbitrary

frequency response landscapes; have built-in coefficient error tolerance capabilities; and

have a minimal adaptation latency. As a byproduct of this, it also proposes a novel flow

for the complete hardware design of what is termed as an Evolutionary System on Chip

(ESoC). Finally a fourth optimization problem outlines the design methodology of a SEU

tolerant Distributed RAM using Configurable Logic Blocks (CLBs) on FPGAs incorpo-

rating unused CLB BlockRAMs for high speed On-Chip memories and SEU resistant

Tri-State Buffers (BUFTs) for the ECC.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES ix

LIST OF FIGURES xii

ABBREVIATIONS xiii

NOTATION xv

1 MOTIVATION AND BACKGROUND 1

1.1 Design Optimization Paradigms . 1

1.2 Evolutionary Optimization . 2

1.2.1 Genetic Algorithms: Principles of Natural Selection 4

1.2.2 A Basic GA Cycle . 5

1.2.3 Representation (ϕ) . 6

1.2.4 Variation (υ) . 7

1.2.5 Evaluation (ε) . 8

1.2.6 Selection (ζ) . 9

1.3 Reconfigurable Hardware and Reliability 10

1.3.1 Logic Cell . 10

1.3.2 Interconnect and Routing . 11

1.3.3 Internal RAM . 11

1.3.4 Errors in High Performance Memories 12

1.4 Context and Objective . 13

1.5 Organization of Thesis . 15

iv

2 A GENETIC APPROACH TO GATELESS CUSTOM VLSI DESIGN FLOW 16

2.1 Introduction and Background . 16

2.2 Genetic Topological Synthesis . 19

2.2.1 Representation and initial population 19

2.2.2 Variation: Crossover and Mutation 22

2.2.3 Selection and termination: . 23

2.3 Experimental Results . 24

2.4 Future Work . 29

2.5 Summary . 30

3 VECTOR PARTITIONING AND GENETIC SEARCH METHODS FOR

PDPE IN DIGITAL CIRCUITS 32

3.1 Prelude . 32

3.1.1 Early estimation techniques 32

3.2 Handling the PDPE problem . 34

3.3 Previous Work . 35

3.3.1 Contribution . 36

3.4 Algorithms for Power Virus Generation 37

3.4.1 Vector Partitioning . 38

3.4.2 Genetic Pattern Matching . 40

3.5 Experimental Results . 43

3.6 Summary . 46

4 HARDWARE BASED GENETIC EVOLUTION OF FIR FILTERS 47

4.1 Introduction . 47

4.1.1 Adaptive Filters . 47

4.1.2 Some Approaches to FIR Filter Design 48

4.1.3 Genetic Operators from a new perspective 51

4.2 FIR Architectures and Design . 52

4.2.1 FIR filter architectures . 52

4.2.2 Spatial and frequency domain design 53

4.3 Evolutionary System Design . 54

v

4.4 Intrinsic Design . 61

4.4.1 The Evolutionary System on Chip (ESoC): 63

4.5 Experimental results . 65

4.6 Summary . 72

5 A SEU TOLERANT DISTRIBUTED CLB RAM FOR IN-CIRCUIT RE-

CONFIGURATION 75

5.1 SEUs and FPGAs . 75

5.2 Distributed CLB RAMs . 77

5.3 Fault Tolerant DRAM . 78

5.4 Application: In-Circuit Reconfiguration 81

5.4.1 Design Specifics . 84

5.5 Experimental Results . 87

5.6 Future Work . 88

5.7 Summary . 89

6 EPILOGUE 91

6.1 Wrap Up . 91

6.2 Conclusions . 92

6.3 Future Work . 92

A CMOS LOGIC DESIGN AND THE IRSIM SIMULATOR 94

A.1 Digital CMOS Logic Design . 94

A.1.1 Static CMOS Logic Design 94

A.1.2 Dynamic CMOS Logic Design 96

A.2 The IRSIM Switch Level Simulator 98

A.3 Modeling details . 98

B PDPE ESTIMATES USING THE GENETIC SEARCH AND PARTITION-

ING METHODS 100

B.1 Modified Genetic Search Method . 100

B.1.1 Results for the Zero Delay Model 100

B.1.2 Results for the Unit Delay Model 103

vi

B.2 Vector Partitioning Method, Zero Delay 107

C HAMMING CODE AND ECC 111

C.1 Error Correcting Codes(ECC) . 111

C.2 Hamming Codes . 111

C.3 Block sizes for the Hamming Code . 114

LIST OF TABLES

2.1 Gene structure in a chromosome using .sim encoding 19

2.2 A model .sim file for the circuit example in Fig.2.3 20

2.3 Exemplary Circuit results for test truth table inputs with the mutation and

elitism rate over multiple generations 31

3.1 ISCAS’85 Benchmark suite specifications 45

3.2 Comparison of PDPE for ISCAS’85 Combinational Benchmark Circuits

- Zero Delay Model . 45

4.1 Coefficient sets for filter test cases . 73

4.2 Coefficient evolution results over mac/mic generation. 73

5.1 Test cases with variable data word lengths for 1KB ftDRAM on Xilinx

Virtex II XC2VP2-7FG256 Device . 87

5.2 Test cases for variable memory sizes with and without error checks . . . 87

A.1 An example of a .sim file for the IRSIM simulator 99

B.1 Power virus vectors and genetic search progression - zero delay model for

the ISCAS’85 benchmark circuits . 100

B.1 Power virus vectors and genetic search progression - zero delay model for

the ISCAS’85 benchmark circuits . 101

B.1 Power virus vectors and genetic search progression - zero delay model for

the ISCAS’85 benchmark circuits . 102

B.1 Power virus vectors and genetic search progression - zero delay model for

the ISCAS’85 benchmark circuits . 103

B.2 Power virus vectors and genetic search progression - unit delay model for

the ISCAS’85 benchmark circuits . 104

B.2 Power virus vectors and genetic search progression - unit delay model for

the ISCAS’85 benchmark circuits . 105

B.2 Power virus vectors and genetic search progression - unit delay model for

the ISCAS’85 benchmark circuits . 106

viii

B.2 Power virus vectors and genetic search progression - unit delay model for

the ISCAS’85 benchmark circuits . 107

B.3 Power virus vectors and partitioning iteration - zero delay model for the

ISCAS’85 benchmark circuits . 107

B.3 Power virus vectors and partitioning iteration - zero delay model for the

ISCAS’85 benchmark circuits . 108

B.3 Power virus vectors and partitioning iteration - zero delay model for the

ISCAS’85 benchmark circuits . 109

B.3 Power virus vectors and partitioning iteration - zero delay model for the

ISCAS’85 benchmark circuits . 110

C.1 Parity Checks for the first 17 bits of the Hamming code 112

C.2 Parity Check Example for a 7 bit data word 113

C.3 Single Error detection using the Hamming ECC 113

C.4 Hamming ECC block sizes . 114

ix

LIST OF FIGURES

1.1 Evolutionary hardware synthesis - Intrinsic and Extrinsic 4

1.2 A basic GA cycle . 5

1.3 IP representation using directed and undirected graphs 7

1.4 A typical FPGA Logic Cell . 11

1.5 The thesis framework - optimization abstractions 14

2.1 Custom design flow simplification using the proposed genetic method -

Elimination of the boolean optimization step. 18

2.2 Initial population generation with the corresponding transistor topology

and SFG for the netlist. 20

2.3 Dynamic CMOS simulation circuit example. 21

2.4 Circuit to chromosome translation. 21

2.5 The fitness evolution samples over intermediate generations, plotted for

cases in Fig.2.6 and Fig.2.7 with four and five inputs respectively. . . . 24

2.6 Evolved SPICE netlist for the test case 1 25

2.7 Evolved SPICE netlist for the test case 2 25

2.8 Evolving transistor netlist: function AC+BD 26

2.9 Evolving transistor netlist: function AD+BC 27

2.10 Evolving transistor netlist for example function ABC+D 28

2.11 Final evolved transistor netlist - ABC+D 29

3.1 PDPE Techniques in digital VLSI design 33

3.2 Vector partitioning the PV . 38

3.3 Modified Genetic Method zero delay toggle progression 40

3.4 Modified Genetic Method unit delay toggle progression 40

3.5 Genetic Search methodology for PDPE in digital circuits. 43

3.6 Genetic Search algorithm for the PDPE problem. 44

x

4.1 A general adaptive FIR filter topology using the output error formulation

as a feed. 48

4.2 A Generic GA Cycle - Involves four major steps Initial Population Gen-

eration, Variation, Evaluation and Selection 51

4.3 Direct form implementation of digital FIR filters 53

4.4 Transposed direct form implementation of digital FIR filters 53

4.5 Sinc function expressed as f(x)=sin(x)/x and its transform, a window func-

tion. 54

4.6 Reduced GA search space with the Gaussian switch 56

4.7 Sample case with a lower cut-off frequency 57

4.8 The evolutionary adaptive filter design including the UI 58

4.9 Decreasing σ with increasing coefficient numbers j in the normal random

mutation. 60

4.10 The fitness evaluator for the system under evolution. 61

4.11 Macro-Evolutionary System on Chip 62

4.12 Parallel and Scalable Micro-Evolution Stage 64

4.13 Macro and micro fitness evolution progress - case 1. 66

4.14 Macro and micro fitness evolution progress - coarser case. 66

4.15 Frequency response evolution progress - HPF case 67

4.16 Macro fitness evolution progress - HPF case 68

4.17 Frequency response evolution progress - BPF case 68

4.18 Macro fitness evolution progress - BPF case 69

4.19 Frequency response evolution progress - LPF case 69

4.20 Macro fitness evolution progress - LPF case 70

4.21 Macro fitness evolution progress - case 1 71

4.22 Macro fitness evolution progress - case 2 71

5.1 The Proposed Hamming ECC Fault Tolerant DRAM Memory Model . . 78

5.2 The Virtex Tri-State Buffers: Equivalent to Wired AND-OR Logic. . . . 80

5.3 The DRAM ECC Cycle Clock Timing Diagram. 81

5.4 The In-Circuit reconfiguration methodology using the ftDRAM. 83

5.5 The In-circuit Reconfiguration Timing Diagram. 89

xi

A.1 Static inverter using different n and p transistor representations 94

A.2 Pull up-down networks in the static inverter 94

A.3 Static CMOS NAND . 95

A.4 Truth table for NAND . 95

A.5 Static CMOS NOR circuit . 96

A.6 Truth table for NOR . 96

A.7 Dynamic CMOS PDN . 97

A.8 Dynamic CMOS Clock . 97

xii

ABBREVIATIONS

ANN Artificial Neural Network

ATG Automatic Test Generation

ASIC Application Specific Integrated Circuit

BiET Built-in Error Tolerance

BUFT Tristate Buffer

CHE Complete Hardware Evolution

CLB Configurable Logic Block

CRF Coeffficient Register File

CROOT Cone Root

DRAM Distributed Random Access Memory

DSP Digital Signal Processing

DWC Doubling With Comparison

ECC Error Correction Control

ECC Error Correcting Codes

ER Elitism Rate

ESoC Evolutionary System-on-Chip

FD Frequency Domain

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

ftDRAM fault tolerant Distributed Random Access Memory

FWL Finite Word Length

GA Genetic Algorithm

GO Genetic Operator

HD Hamming Distance

IC Integrated Circuit

IR Incircuit Reconfiguration

xiii

IIR Infinite Impulse Response

IP Initial Population

JTAG Joint Test Action Group

LL Label List

LUT Look-Up-Table

MBU Multiple Bit Upset

MEU Multiple Event Upset

MOS Metal Oxide Semiconductor

MR Mutation Rate

MTTR Mean Time To Repair

NDS Non-Dominated Set

NoC Network on Chip

PDPE Peak Dynamic Power Estimation

PI Primary Inputs

PO Primary Outputs

PODG Primitive Operator Directed Graph

PoS Product of Sum

RAM Random Access Memory

SA Simulated Annealing

SD Spatial Domain

SEB Single Event Burnout

SEE Single Event Effect

SEGR Single Event Gate Rupture

SET Single Event Transient

SEU Single Event Upset

SHE Single Hard Error

SoP Sum of Product

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

TTM Time-to-Market

WE Write Enable

xiv

NOTATION

Sj Input signal and gate node of the jth transistor

n1
j Source node of the jth transistor

n2
j Drain node of the jth transistor

Tij Transistor type (CMOS/NMOS) between nodes i and j
L(W)ij Transistor channel length (width) in µm

Rij Uniform Random Selector

δij Select Scalar for the GA

ξ Genetic copy operator

ε Genetic fitness evaluator

l Length of truth table input

fi ith chromosome fitness in genotype matrix

⊕ Logical XOR operator

Λ Fitness sorting operator

Cg Output capacitance of gate g

Vdd Rail supply voltage

PR Energy per clock cycle (peak power)

O Complexity order of an algorithm⋃
Set union operator

(vi, vj) Random input vector pair to circuit

≍ Asymptotically equal to

hi ith filter coefficient (tap weight)

δp Filter passband ripple

δs Filter stopband ripple

∆F Filter transition bandwidth

Gid(ev) Filter ideal (evaluated) response

fn Filter normalized frequency - f
fs

fs Filter sampling frequency

fc/fcutoff Filter cutoff frequencies

fNyq Filter nyquist frequency

∆mean Mean inverse coefficient space value

δstep Inverse coefficient space step for interpolation

N(µ, σ) Std normal distribution - mean µ & SD σ
ξcurr Current evaluated fitness operator

: Matrix concatenation operator

• Vector dot product

φ Circuit clock signal

TWCLK(H) Clock write (hold) period

xv

CHAPTER 1

MOTIVATION AND BACKGROUND

Typical engineering systems are described by a very large number of variables, and it is

the designer’s task to specify appropriate values for these variables. Skilled designers uti-

lize their knowledge, experience, and judgment to specify these and design effective engi-

neering systems. Because of the size and complexity of the typical design task, however,

even the most skilled designers are unable to take into account all of the variables simulta-

neously. Design optimization is the application of numerical algorithms and techniques to

engineering systems to assist in improving the system’s performance, reliability, and cost

[Adoptech (2008)]. Optimization methodologies can be applied during the development

stage to ensure that the finished designs will have high performance, reliability and low

cost. Alternatively, optimization methods can be applied to existing designs to identify

potential improvements. This thesis is dedicated to providing the tools and knowledge

required to generate practical designs that are useful in the real world. It demonstrates

the use of a probabilistic algorithm called the Genetic Algorithm (GA) for the same. The

thesis also presents insights into reliability concepts on a reconfigurable platform.

1.1 Design Optimization Paradigms

Optimization refers to the study of problems in which one seeks to minimize or maximize

a real function by systematically choosing the values of real or integer variables from

within an allowed set. An optimization problem can be represented as follows

Given : A function f : A → R from some set A to the real numbers (1.1)

Find : An element x0 in A such that (1.2)

f(x0) ≤ f(x) ∀ x ∈ A (”minimization”) (1.3)

f(x0) ≥ f(x) ∀ x ∈ A (”maximization”) (1.4)

In Eq.(1.2) through Eq.(1.4), typically, A is some subset of the Euclidean space Rn, often

specified by a set of constraints, equalities or inequalities that the members of A have to

satisfy. The domain A of f is called the search space, while the elements of A are called

candidate solutions or feasible solutions. The function f is called an objective function,

or cost function. A feasible solution that minimizes (or maximizes, if that is the goal) the

objective function is called an optimal solution.

Many real-world and theoretical problems may be modeled in this general framework.

Sometimes this technique is referred to as energy minimization wherein the concept is the

association of the function f with the energy of a system. Generally, when the feasible

region or the objective function of the problem does not present convexity, there may be

several local minima and maxima, where a local minimum x∗ is defined as a point for

which there exists some δ > 0 so that for all x such that ||x − x∗|| ≤ δ, the expression

f(x∗) ≤ f(x) holds; that is to say, on some region around x∗ all of the function values

are greater than or equal to the value at that point. Local maxima are defined similarly.

A large number of algorithms proposed for solving non-convex problems including

the majority of commercially available solvers are not capable of making a distinction

between local optimal solutions and rigorous optimal solutions, and will treat the former

as actual solutions to the original problem [Optimization (2008)]. The branch of applied

mathematics and numerical analysis that is concerned with the development of determin-

istic algorithms that are capable of guaranteeing convergence in finite time to the actual

optimal solution of a non-convex problem is called global optimization. The local and

global optimization concepts are critical in problem validation. The evolutionary heuris-

tics using GAs proposed in this thesis provide insights into both of these using three

different problems.

1.2 Evolutionary Optimization

Why use evolution as an inspiration for solving computational problems?

The mechanisms of evolution seem well suited for some of the most pressing computa-

tional problems in many fields. Many computational problems require searching through

2

a huge number of possibilities for solutions. On an alternative note, search problems can

often benefit from an effective use of parallelism, in which many different possibilities

are explored simultaneously in an efficient way. But what is needed is both computa-

tional parallelism (i.e., many processors evaluating sequences at the same time) and an

intelligent strategy for choosing the next set of sequences to evaluate.

Many computational problems require a computer program to be adaptive - to con-

tinue to perform well in a changing environment. Others require computer programs to

be innovative - to construct something truly new and original. Finally, many computa-

tional problems require complex solutions that are difficult to program by hand. In the

current context, the best route to intelligence is through a bottom-up paradigm in which

humans write only very simple rules, and complex behaviors emerge from the massively

parallel application and interaction of these simple rules.

In evolutionary computation the rules are based on natural selection with variation

due to crossover and/or mutation; the hoped-for emergent behavior is the design of high-

quality solutions to difficult problems and the ability to adapt these solutions in the face

of a changing environment. Biological evolution is an appealing source of inspiration for

addressing these problems. Evolution is, in effect, a method of searching among an enor-

mous number of possibilities for solutions. In biology the enormous set of possibilities is

the set of possible genetic sequences, and the desired solutions are highly fit organisms -

organisms well able to survive and reproduce in their environments. Evolution can also

be seen as a method for designing innovative solutions to complex problems. Seen in

this light, the mechanisms of evolution can inspire computational search methods. Of

course the fitness of a biological organism depends on many factors - for example, how

well it can weather the physical characteristics of its environment and how well it can

compete with or cooperate with the other organisms around it. The fitness criteria con-

tinually change as creatures evolve as typified by the FIR filter problem in Chap.4. So

evolution is searching a constantly changing set of possibilities. Searching for solutions

in the face of changing conditions is precisely what is required for adaptive computer pro-

grams. Furthermore, evolution is a massively parallel search method: rather than work

on one species at a time, evolution tests and changes millions of species in parallel. Fi-

nally, viewed from a high level the rules of evolution are remarkably simple: species

3

evolve by means of random variation (via mutation, recombination, and other operators),

followed by natural selection in which the fittest tend to survive and reproduce thus prop-

agating their genetic material to future generations. Yet, these simple rules are thought

to be responsible, in large part, for the extraordinary variety and complexity as we see in

the biosphere [Mitchell (1998)]. The following sections briefly outline common methods

used in the artifical evolution process. More details on these can be found in the excellent

book by Greenwood and Tyrrel [Greenwood and Tyrrel (2007)].

1.2.1 Genetic Algorithms: Principles of Natural Selection

Evolution in hardware is very similar to that in nature. However, the one major difference

between what happens in nature and what happens in electronics is that the hardware

evolution is completely artificial with tunable operation models and heuristics. Hardware

evolution is categorized into two major categories based on the evolution style.

• Extrinsic or software evolution.

• Intrinsic or hardware evolution.

 Response and

Fitness Evaluation
Reconfigurable

 Hardware

 Simulator

Eg: SPICE

The Evolutionary/

Genetic Algorithm

 Conversion to a

Circuit Description

 Circuit

Responses

 Target

Response

 Intrinsic

Evolution

Extrinsic

Evolution
Circuit

Models

 Control

Bitstrings

Chromosomes

0101110011

0101011101

Fig. 1.1: Evolutionary hardware synthesis - Intrinsic and Extrinsic

The two evolutionary synthesis mechanisms are shown in Fig.1.1. The figure shows how

a Genetic Algorithm (GA) is used for artificial evolution. After a population generation,

the population is varied using mutation/crossover followed by a simulation and evaluation

4

either in software (extrinsic) or on a reconfigurable platform (extrinsic). The evaluated

value of the current solution determines the termination or cycling criterion for the GA.

1.2.2 A Basic GA Cycle

Genetic Algorithms are stochastic algorithms with simple operations like Random number

generation, string copy and exchange. They are used for hardware evolution and mimic

the process of natural selection to solve difficult problems. GAs fare well with problems

having a large search space and their solutions tend to “mature with time”. A basic Ge-

netic Algorithm (GA) cycle is demonstrated as a flow algorithm in Fig.1.2. The gene

Evaluation / Fitness

Computation

(Eg:Travel time, Cost etc)

Best Fit?

Mutation

Crossover

Reproduction

(n+1) generation
th

 Initialization (n)

generation

th

BEGIN

END

YES

NO

Fig. 1.2: A basic GA cycle

structure in a GA models the hardware parameters, the on field performance is evaluated

as fitness, the structure is varied by crossover and mutation and the fitter chromosomes

are chosen for future iterations much like an intelligent biological system. A GA cycle

can be summarized using Eq.(1.5).

ϕ (n + 1) = ζ (ε (υ (ϕ (n)))) (1.5)

5

where the variables stand for the initial population generation, population variation, eval-

uation and selection. The following paragraphs discuss details about each of these opera-

tors in a GA cycle.

1. Initial Population (IP) Generation (ϕ)

2. Population Variation - Crossover and Mutation (υ)

3. Population Evaluation - Fitness (ε)

4. Selective Progression (ζ)

1.2.3 Representation (ϕ)

The first major hurdle in modeling a physical problem to be compatible with a genetic

algorithm is its representation using a data structure that encodes all the problem pa-

rameters. A cue from the biological hierarchy of genetics can be obtained. The genetic

hierarchy has a gene as its most basic block which has a locus defined in the system.

A collection of genes form a phenotype which form a part of a genotype. The genome

is a selection of genotypes and constitutes the highest level of hierarchy in the genetic

abstraction. There are five common encodings which could be used for population repre-

sentation.

Integers Consider an RC circuit with the values of R and C to be encoded. The val-

ues could be represented using integers - R[470, 220] for [470Ω, 220Ω] and C[10, 47] for

[10µF, 47µF]

Binary Strings The values of the capacitance and resistance above could also be rep-

resented using unique binary strings - R[000, 100] for [470Ω, 220Ω] and C[00, 01] for

[10µF, 47µF]

Real Numbers Given a l bit binary string, the real number representation can form a com-

pact representation for the same. To translate from a binary representation, in this scheme,

a real number x is assigned to a current population model such that x ∈ [xmin, xmax] The

encoding scheme is shown in Eq.(1.6). The decoding can be done by substituting x̃ into

Eq.(1.7). This kind of a modeling is often used in assigning tap weights on digital filters

6

and the popular IEEE 754 standard.

x̃ =
l−1∑

i=0

bi.2
i ; bi ∈ {0, 1} (1.6)

x = xmin + x̃.

[
xmax − xmin

2l − 1

]
(1.7)

Graphs Graphs are another way of IP representation. This scheme is particularly useful

in modeling circuit topologies and neural networks. The graphs could be directed or

undirected as shown in Fig.1.3 Hybrids For the IP representation, hybrid representation

V1

V2

V3

V4

V5

V1
V2

V3

V4

V5

Fig. 1.3: IP representation using directed and undirected graphs

schemes using graphs, real numbers, integers and so on could be used. An example

when this is particularly useful is a problem which involves both circuit topologies and

component values. Typical design challenges are to identify a proper encoding and IP

representation scheme for the problem at hand. A choice of IP modeling can be aptly

suited for a specific problem type.

1.2.4 Variation (υ)

Variation is the variety inducing process in a given population. This is often a random

process which changes the encoded parameters of an IP. The result of a variation operation

is the creation of newer offspring which are hopefully better ones. There are two major

types of variation operations in the genetic cycle viz. mutation and recombination.

7

Recombination: Exemplified below are two types of recombination operations. There

could be variations of these or newer ones.

n-Point Crossover The n-point crossover mechanism involves the selection of one or

more random points (may be heuristic based) in a chromosome representation followed

by an interchanging of genetic material among two or more chromosomes Fig.1.2.4.

1 -Point Crossover 2 -Point Crossover

0 0 1 1 0 00 0 1 1 1 1

1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 01

0 1 1 1 10 0 0 1 1 10

0 1 1 0 01

Uniform Crossover This is another popular type of the crossover operation. This the

generation of a random selection probability with its cardinality equal to the number of

genes in evolving chromosome. A recombination strategy in this involve choosing a gene

from the first IP vector if the random selection vector has a probability value ≥ 0.5 else

from the second IP vector. A new recombination vector is hence produced using the two

IP vectors after variation using the selection probability vector as shown exemplified in

Fig.1.2.4

R.V = {0.6, 0.1, 0.3, 0.7, 0.4, 0.2}

11 0 1 1 1
0 0 11 0 0

0 1 10 1 1

1.2.5 Evaluation (ε)

Evaluation is the third major step in the genetic process. In the evaluation step, an ob-

jective function (Φ) is modeled such that, Φ : X → ℜ. Where X is the chromosome

under iteration for the given problem. This mapping needs to be a very intelligent one as

the final outcome of the GA is strongly dependant on the fitness function. This usually

involves the inclusion of all the optimization parameters in the problem. Oftentimes, they

are conflicting but some other times they are independent. The objective function (Φ) is

either maximized or minimized. Depending on this, a given chromosome is selected if

Φ(X(n+1)) ≥ Φ(X(n)) or if Φ(X(n+1)) ≤ Φ(X(n)). An example objective function

8

is shown in Eq.(1.8)

Φ(s) =
1

∑M
i=1[G

′(i)−G(i)]2 + ǫ
, ǫ << 1 (1.8)

where ǫ is used to keep the fraction finite and the denominator of the fitness is the square

of the difference of objectives between the current and the past iteration.

1.2.6 Selection (ζ)

Selection of a given chromosome from an IP pool to move on to future generations in-

volves problem heuristics and results in maturing solutions and competitive species. Five

typical selection schemes are outlined in below.

Uniform Selection is a scheme where the chromosomes from a population pool are se-

lected randomly with an equal probability. Of course the convergence rates of this scheme

are slow but this provides the highest variety of populace to move on to future generations.

Fitness Proportional Selection involves the selection of a chromosome from a pool with

a probability proportional to its fitness value as shown in Eq.(1.9)

prob(i) =
Φi∑N

j=1 Φj

(1.9)

Fitness Ranking Selection is similar to fitness proportional selection but the difference

being that the selection probability is this case is proportional to the exponential transform

of the ranks assigned to chromosomes based on their fitness values, Eq.(1.10)

prob(i) =
1− exp(−r)

C
r : rank, C : norm const (1.10)

q-Tournament Selection is a biased selection scheme which involves the selection of a

chromosome from a random set of q individuals chosen from the pool of chromosomes

under the current iteration Eq.(1.11).

Φmax from Random q individuals. (1.11)

9

Truncation Selection is one of the most popular selection schemes which involves the

choice of promoting µ offspring with high fitness values among a set of (λ+µ) individuals

as shown in Eq.(1.12)

{Φ1
high, Φ

2
high . . . Φµ

high} among (λ + µ) offspring. (1.12)

The methods of IP Generation, Variation, Evaluation and Selection proposed in this sec-

tion are just an example of the methods currently popular in literature. There are numerous

other variations of these. The most important aspect of a GA is the adjustment of these

methods based on problem heuristics. In Chap.3 and Chap.4 we exemplify the importance

of these heuristic adaptations using two important problems in circuit and systems design.

After a genetic approach to optimization, the thesis proposes a reliable system design on

a reconfigurable platform in Chap.5. Hence, in the following sections, the thesis presents

some basics about reconfigurable hardware, reliability and soft errors.

1.3 Reconfigurable Hardware and Reliability

Field Programmable Gate Arrays (FPGAs) are programmable digital logic chips which

can be programmed to do almost any digital function.

1.3.1 Logic Cell

FPGAs are built from one basic logic-cell, duplicated hundreds or thousands of times.

A logic-cell is basically a small lookup table (LUT), a D-flipflop and a 2-to-1 MUX (to

bypass the flipflop if desired). Fig.1.4 outlines a typical logic cell showing the multiplexer,

the flip flop and the LUT. The LUT is like a small RAM and has typically 4 inputs and can

implement any logic gate with up to 4-inputs. For example, an AND gate with 3 inputs,

whose result is then ORed with another input would fit in one 4-input LUT.

10

LOGIC CELL

LUT

DFF

M

U

X

Fig. 1.4: A typical FPGA Logic Cell

1.3.2 Interconnect and Routing

Each logic-cell can be connected to other logic-cells through interconnect resources (wires/muxes

placed around the logic-cells). Each cell can do little, but with lots of them connected to-

gether, complex logic functions can be created. FPGAs also have fast dedicated lines in

between neighboring logic cells. The most common lines are called carry chains. Carry

chains allow the creation of arithmetic functions like counters and adders efficiently. Also,

within the FPGA fabric, there are interconnect buffers which are tri-stated AND-OR logic

elements and can be used to realize hardwired logic functions in special scenarios.

1.3.3 Internal RAM

In addition to logic, all new FPGAs have dedicated blocks of static RAM distributed

among and controlled by the logic elements. There are many parameters affecting the

RAM operation. The main parameter is the number of agents that can access the RAM

simultaneously. Based on the access patterns, they can be classified as

• Single-port RAMs: only one agent can read/write the RAM.

• Dual-port or quad-port RAMs: 2 or 4 agents can read/write.

Dual port RAMs are efficient in getting data across clock domains where each agent can

use a different clock.

Blockram vs. Distributed RAM

There are two types of internal RAMs in an FPGA: blockrams and distributed RAMs.

The size of the RAM needed in an application usually determines which type is used.

11

1. The big RAM blocks are blockrams, which are dedicated areas in the FPGA. Each

FPGA has a limited number of these and if unused, they are lost (they cannot be

used for anything but RAM).

2. The small RAM blocks are either in smaller blockrams or in distributed RAM.

Distributed RAM allows using the FPGA logic-cells as tiny RAMs.

Distributed RAM brings a lot of flexibility in the RAM distribution in an FPGA, but isn’t

efficient in term of area as a logic-cell can actually hold very little RAM. There are a large

number of block RAMs within the Xilinx family of FPGAs [fpga4fun (2008)]

1.3.4 Errors in High Performance Memories

In the field of high-performance communication memory devices, it is critical for designs

to be immune to soft errors or single-event upsets. As device technology scales, the

area efficiency of memory devices decreases, and a device’s natural resistances against

SEUs (single-event upsets) decreases. A reconfigurable platform like an FPGA makes

the hardware even more susceptible as device configurations in the FPGA are stored in

SRAM cells.

SEUs are random and rarely catastrophic, and they do not normally destroy a device.

Many systems can tolerate some level of soft errors. An occasional bad bit may be un-

noticeable and unimportant in many applications. However the use of memory elements

in mission-critical applications to control system functions makes soft errors more im-

pactive and lead to not only corrupt data, but also a loss of function and system-critical

failures. Getting worse, not better. Poor system design is a common source of SEUs.

High performance memory devices normally comprise SRAM cells, combinational logic,

and latches. In high-performance memories, the area efficiency is usually low. Past re-

search [Lima et al. (2003)], [C Carmichael and Caffrey (1999)] shows that combinational

logic is less susceptible to soft errors than memory cells because of natural resistances set

up by masking. However, these natural resistances could diminish as devices scale and

technologies advance[C Carmichael and Caffrey (1999)].

Check information for memories could be used to serve as a correction mechanism

for SEUs. They serves two purposes; First, when a check word is read from memory, the

12

check information can help determine whether any of the data bits have changed. In ECC

detection, the check information can help determine whether a single bit or more than one

bit has changed. Second, if only a single bit has changed, ECC correction helps determine

which bit changed and facilitate correcting the data by flipping the bit back to its comple-

mentary value. An ECC-detection circuit detecting a change in one or more bits in a word

of data is broadly categorized as an ECC error. These errors can further be categorized

as functions of the number of bits in the error. ECC circuits described in literature can

correct single bits and report multi-bit errors [Mastipuram and Wee (2004)]. These can be

implemented for correction in hardware or software. However, the ECC logic designed in

hardware is itself SEU prone as the logic for the ECC in a reconfigurable platform would

again have to reside in LUTs. The concluding parts of this thesis present insights into the

design of a reliable high performance on chip memory using redundant logic elements in

FPGAs. This provides a robust and reliable memory for high performance applications

with a built in hardwired ECC.

1.4 Context and Objective

The general framework of this thesis is the design of optimal and reliable systems. For

this we use heuristic genetic algorithms and reconfigurable hardware. We look at three

problems at three abstraction levels in the first three chapters as shown in Fig.1.5. The

problems in the figure are summarized with short code names - cmosGAsim for the sec-

ond chapter, pVirus for the third, firGA for the fourth and ftDRAM for the fifth. The first

problem (cmosGAsim) addresses the issue of obtaining optimal transistor netlists with no

redundancy for arbitrary truth table specifications. This leads to what is known as the

gateless custom VLSI design flow which may help in designing custom library cells on

the fly with digital CMOS logic styles. The second problem (pVirus) is the power virus

problem which is an early peak dynamic power estimation problem. This is a critical

problem from the perspective of system reliability and design guard-banding. We use a

heuristic GA and vector partitioning methods for the PDPE problem. The third optimiza-

tion problem (firGA) works at the system level describing the design of optimal filters

automatically which are reliable and robust using a novel, heuristic GA. The final prob-

13

lem addressed by the thesis is that of the reliability and efficient design of high speed

memories (ftDRAM). We use a reconfigurable platform (FPGAs) for demonstrating the

same. Hence, in the context of reliability and optimality of system designs, this thesis

contributes significantly by providing new insights into important issues. The major ob-

Transistors Gates Systems

2). pVirus

Chapter 3

1). cmosGAsim

Chapter 2

3). firGA

4). ftDRAM

Chapter 4

Chapter 5

Fig. 1.5: The thesis framework - optimization abstractions

jectives of the thesis are to show new methods for optimization and design of reliable

systems. This is effected using a reconfigurable platform as well as other grounds. Be-

sides this the thesis also intends to point out the importance of the various steps in genetic

optimization for a given problem. The thesis also aims to bring out the effective use of

design abstraction, layout tools, simulation software and the genetic methods in heuristic

scenarios. It aims to show that the performance of systems can be enhanced by intelli-

gent design choices and systems can be made reliable using redundant logic elements in

a hardware platform.

14

1.5 Organization of Thesis

To address the optimization problems, the thesis follows an abstraction organization, i.e

it work on optimization problems at the transistor level and move upto the system level.

Reliable and adaptive systems being at the core of all this. The thesis is organized as

follows

Ch.2 Genetic transistor level optimization: A genetic approach to gateless custom

VLSI design flow - Problem showing the usage of GAs to obtain optimal transistor

netlists directly from truth table descriptions.

Ch.3 Genetic gate level optimization: Vector parts and genetic search methods for

PDPE in digital circuits - Problem of reliable early power estimates for effective

guard-banding and optimal system synthesis.

Ch.4 Genetic system level optimization: Hardware based genetic evolution of FIR fil-

ters - Problem of designing Self-adaptive and reliably responsive filters for arbitrary

frequency responses.

Ch.5 System level Reconfigurable Design: A SEU tolerant distributed CLB RAM for

in-circuit reconfiguration - Problem of designing reliable memories on reconfig-

urable platforms.

App. CMOS Concepts, PDPE Results and ECC: The three appendices at the end of the

thesis describe basics of CMOS logic design, Hamming ECC and the PDPE results

on ISCAS’85 benchmark circuits using the proposed techniques.

15

CHAPTER 2

A GENETIC APPROACH TO GATELESS CUSTOM

VLSI DESIGN FLOW

2.1 Introduction and Background

Automation in modern microelectronics has resulted in multiple methods for the design

and optimization of digital circuits. These automated methods incorporate gate level opti-

mizations followed by the use of standard library cells to map the designs to hardware. In

several custom designed Integrated Circuits (ICs), the use of standard libraries translates

to hardware redundancy. This is because, standard library cells, due to their limitations

in size and number, often result in having several unused transistors for the custom logic.

Consequently, the use of tailored cells for specific applications become necessary. Ap-

plication specific generation of such cells utilizes on-chip hardware effectively besides

providing fast and flexible designs operating with lesser redundancy and better perfor-

mance.

Realization of custom circuits - cells or blocks, involve three implementation phases

as described in [Lefebvre and Marple (1997)]:

• Creation of transistor circuit topologies which provide a specific digital function.

• Sizing and ordering of the transistors in the circuit topology.

• Placing, routing and compacting the transistors in layout.

Each of the above stages involve trade-offs which must be optimized across all stages.

This chapter proposes to address the first phase of transistor circuit topology creation,

automatically.

In literature, much attention has been given to the sizing [Rogenmoser et al. (1996)],

[Heusler and Fichtner (1991)] and placing of transistors [Lefebvre and Marple (1997)],

[Ho et al. (1997)] and [Bahuman et al. (2002)] in custom and semi-custom circuits. Using

Genetic Algorithms (GAs) in [Ho et al. (1997)], Murphy, et. al, describe the placement

optimization of a cell followed by the extraction of the netlist. They employ sigmoidal

transistor characteristics for an Artifical Neural Network (ANN) model unlike the switch

characteristics in our case. Their major aim is the use of primitive components and re-

duction of the parasitic capacitance rather than a topological optimization. In [Bahuman

et al. (2002)] is described a GADO model for a custom cell. But their starting point is the

placement optimization unlike configuration optimization as in our case.

This chapter focuses on the direct transistor netlist generation using Genetic Algo-

rithms for optimization. Genetic methods have been applied in the past for gate level

synthesis [Hounsell and Arslan (2000)] besides specific optimization methods for Pass

Transistor Logic (PTL) [Cho and Lee], Complementary PTL (CPL) [Yano et al. (1990)],

Differential PTL (DPTL) [Pasternak (1993)], Double PTL (DPL) [Suzuki et al. (1993)]

and other non-complementary MOS logic styles. Mazumder and Rudnick, in [Mazumder

and Rudnick (1999)] provide a good insight into the problems in VLSI design and syn-

thesis techniques.

The methods we use in this chapter involve the use of Genetic Operators to evolve

transistor netlists for a certain functional requirement described by an input truth table.

The netlist generation, because of the characteristics of the genetic operators, inherits di-

rect optimization at the transistor level. This gives an optimized transistor netlist which

would otherwise be derived after converting the truth table to its min-terms and then ap-

plying the Boolean simplification operations. In the latter case, the netlist obtained would

still not be optimized to exploit internal topological optimizations of the transistors. The

main contribution of this work is to propose the genetic methodology of direct evolution

for the transistor netlist from functional descriptions of circuits. The chapter also provides

a methodology for incorporating a gateless optimization algorithm in the custom circuit

design flow to provide the creation of custom library cells in-situ as shown in Fig. 2.1.

This favorably enhances the performance of custom circuit syntheses and provides bet-

ter utilization of transistor resources besides automation and simplification of the design

flow, by eliminating the boolean optimization step.

17

Logic Translation

 - Gate (RTL) list

 ABSTRACT

FUNC DESCRIPTION

 Transistor size,

 layout optimization

Technology Mapping

 and Fabrication

Technology Mapping

 and Fabrication

 Translation

 - Transistor Netlist

 Transistor size,

 layout optimization

 Boolean

 Optimization

 Truth Table

 Specification

 ABSTRACT

FUNC DESCRIPTION

 Truth Table

Specification

Eliminated Gate Level

Boolean Optimization

 GA Optimized

Transistor Netlist

Fig. 2.1: Custom design flow simplification using the proposed genetic method : The

genetic flow eliminates the intermediate Boolean simplification step from the

normal gate optimized flow by providing a direct transistor optimized netlist,

ready for size/layout tuning in custom circuits.

Although described in an earlier chapter, we reiterate the basic concepts of Genetic

Algorithms [Godlberg (1989)] necessary to understand the rest of the chapter.

Genetic algorithms work on a set of chromosomes/genotypes called the population.

Each chromosome represents a solution to the problem which is associated with a fitness

value that reflects how good it is compared to the other solutions in the population. The

variation process comprises of crossover and mutation, which concoct material by partial

exchange among genotypes and by random alterations of data strings. The frequency

of these operations is controlled by certain pre-set probabilities which require heuristics

appropriate for the particular problem at hand. The representation, variation, evaluation

and selection operations constitute the basic GA cycle or generation.

18

Table 2.1: Gene structure in a chromosome using .sim encoding a

Tij Sij n1
ij n2

ij Wij Lij fi δij

p CLK Vdd 1 4 2

n Rij(A1..AN) 1 Rij(2..N + 1) 4 2

n Rij+1(A1..AN) Rij+1(Sik..Sij−1) Rij(2..N + 1) 4 2
.

.

n CLK max[n1,2
ij . . . n

1,2
ij+N] gnd 4 2 fi δij

a
Tij : Transistor type, Sij : Transistor gate node, Wij : Transistor width in µm, Lij : Length in µm, N : Number of Inputs, Rij : Uniform Random Selector

2.2 Genetic Topological Synthesis

2.2.1 Representation and initial population

Gene representation in the Allele: Representation of the genes for evolution is a critical

choice to keep the circuit topology valid and provide faster convergence. Eq. (2.1) shows

the chosen representation. The representation follows in line with the genetic ideology

and the IRSIM simulator codes as described in Appendix.A. A thorough understanding

of the material Appendix.A is highly recommended before proceeding. Each transistor

is represented as a triplet 〈Sj , n
1
j , n

2
j〉, where Sj stands for the node to which the input

signal and the gate of the jth transistor are connected. n1
j and n2

j are the nodes to which

the source and drain of the jth transistor are connected Section.A.2 in Appendix.A. A

chromosome is a sequence of such triplets which are equal in number to the input signals

determined from the truth table. These form netlist inputs to the IRSIM simulator for

fitness evaluation and selection. A subsequence of these signal triplets can be used for

mapping the inputs (or transistor gates) to one of the variables A1, A2 . . . AN . In other

words, the Sj values of the triplets in the subsequence shall be a one-one mapping from

among Ai’s, 0 ≤ i ≤ N .

Gene Structure: The internal gene structure of a chromosome is shown in Table. 2.1.

The representation using a Perl parser is designed to conform to the spice netlist. This

can be directly used for evaluation, using the IRSIM switch level simulator.

h

Sj n1
j n2

j Sj+1 n1
j+1 n2

j+1 Sj+N−1 n1
j+N−1 n2

j+N−1

i

(2.1)

19

The methodology for the generation of the initial population is shown in Fig. 2.2 and

CLK p

CLK n

Gnd

Vddn
1
1

n
1
2

n
2
1

n
2
2

n
3
1

n
3
2

n
4
1

n
4
2

Sj+1

Sj+3
Sj+2

n
1
1

n
1
2

n
3
2

n
4
2

n
2
2

Sj Sj+1
Sj+2

Sj+3

Sj

Fig. 2.2: Initial population generation with the corresponding transistor topology and SFG

for the netlist. The dotted lines contribute to the random node choice for the next

chromosome. The final obtained netlist is functionally valid.

Table 2.2: A model .sim file for the circuit example in Fig.2.3

line text

1 units: 100 tech: cmos

2 type gate source drain length width

3 p φ 5 1 L51 W51

4 n φ 4 0 L40 W40

5

6 n VA 1 2 L12 W12

7 n VB 2 3 L23 W23

8 n VC 3 4 L34 W34

9 n VD 1 4 L14 W14

in Table. 2.1. The first node, n1
0, for the ith chromosome in the population is chosen to

be 1 to which the pMOS, CLK signal is connected. The second node is randomly chosen

between (N+1) and 2. These form the source and the drain for the first nMOS transistor.

For the second and subsequent jth device, the first node is chosen randomly from among

the previously chosen nodes, 〈n1
ik, n

2
ik〉, where 0 ≤ k ≤ j and the second node is cho-

sen randomly between (N+1) and 2. This ensures circuit connectivity and appropriate

intermixing of the nodes to provide a broad outreach in the search space. A matrix of P

chromosomes is chosen this way to form the valid initial population. The circuit inter-

connection and topological configuration needs to remain in tact. We summarize the rules

followed for such a limit by the Example circuit shown in Fig.2.3. The figure shows an

example of a dynamic CMOS circuit under simulation. The circuit stands represents the

20

function ABC +D. The genetic algorithm described in this chapter evolves a random ini-

tial interconnection towards this topology. Consider the IRSIM model file for the circuit

shown in Table.2.2. The gate, source and drain of each transistor is written as explained in

Appendix.A. The length and the widths of the transistors are decided based on follow up

performance characterization. The interconnectivity is what is modeled in the .sim file.

The drain and the source are interchangeable terminals in the irsim switch level simulator.

From Table.2.2, we model the initial population assuming each transistor as an ele-

ment in the chromosome. The modeling of the circuit into a genotype is shown in Fig.2.4.

The circuit connectivity is captured in this compact genetic representation. Simple obser-

A

DB

C

V
OUT

V
DD

1

2

3

4

0

OI

OI

5

O

Fig. 2.3: Dynamic CMOS simulation circuit example.

nV 12, nV 23, nV 34, nV 14, nO40, pO51
A B C D

/ /

Type
Gate Source

Drain

Element 1 (N+2) Elements in List

Fig. 2.4: Circuit to chromosome translation.

vations from the chromosome model yield that for the given circuit with N = 4 inputs, the

total circuit nodes Tn is 12, the total intermediate circuit nodes In is 4. Another premise

of generalization would mean that for a circuit with N inputs, Tn can assume a maxi-

mum value of (2N + 5) and In can go upto (N + 1). After modeling the chromosome as

described above, we proceed with the variation operation.

21

2.2.2 Variation: Crossover and Mutation

Algorithm 1 CROSSOVER(n)

Require: An integer 0 ≤ n1,2
ij ≤ N + 1

Ensure: Network connectivity and n1
0j = 0.

1: for all i such that 0 ≤ i < P do

2: for all j such that 0 ≤ j < δj do

3: S
′

ij = R(Sij . . . Sij+N−1)

4: n1,2
ij = ξ(n1,2

ij)
5: if j = 0 then

6: return n1
ij = 1

7: end if

8: end for

9: for all k such that δj ≤ k < N do

10: S
′

ij = R(Sij+1 . . . Sij+1+N−1)

11: n1,2
ij = R(n1,2

ij . . . n1,2
ij+δj

)

12: n2
ij = ξ(n2

ij+1)
13: end for

14: end for

The initial population generated as described in Sec. 2.2.1 is used to proceed with the

evolutionary variation. The crossover operator algorithm is shown in Algorithm. 1.

For the jth chromosome in a population size of P , δj transistor selections from the jth

chromosome and (N-δj) selections from the (j+1)th chromosome are used. The copy

operator, ξ is used to copy the corresponding nodes for the δj devices. The first node is

then set to 1 as in Sec. 2.2.1 to ensure circuit connectivity in the phenotype. For the rest

of the N-δj transistors, the first node is chosen randomly from among the previous 2δj

nodes. The second node for all the genes in the chromosome other than the first one is

copied (ξ) from the (j+1)th chromosome. The select-scalar, δij is calculated as shown in

Eq. (2.2).

δij = log2l −
⌈

fi

log2l

⌉
(2.2)

where, l is the length of the truth table input by the user and fi is the fitness value for

the ith chromosome set in the genotype matrix. The mutation operator works similar

to the initial population generation described in Sec. 2.2.1. These randomly mutated

and the varied chromosomes (Pco/m) total to P -1. These are appended at the end of the

chromosome matrix with P elements to obtain a total of 2P -1 chromosomes in the next

generation. The operations described in this section follow certain intrinsic rules which

22

can be summarized as follows:

• Output consistency

– The first In for the first element is always a 1

– The Tn list contains at least two nodes numbered 1

• Network interconnection

– In’s for an element i contain at least one of the In’s from elements 1 to (i-1)

– The highest In is limited to (N + 1) and Tn to (N + 2)

• Stimulus clock

– Element (N + 1) is connected between nodes Imax
n and 0

– Element (N + 2) is connected between nodes (Imax
n + 1) and 1

2.2.3 Selection and termination:

Algorithm 2 SELECTION(n)

Require: An integer 0 ≤ n1,2
ij ≤ N + 1.

Ensure: P: Population; G: Generation

1: for all g such that 1 ≤ g < G do

2: Pg = Pi + Pco/m

3: fg = ε(Pg) {irsim ∗.proc gj.sim gj.cmd}

4: Png = Λ[Pg(1 . . . P)] {sort and select P}

5: if g = 0.1G then

6: P
′

g = Pi + Pm {variation mutation}

7: P
′

g = Λ[Pg(1 . . . P)] {sort select}

8: end if

9: end for

With the variation generated Pco/m=P -1 chromosomes appended at the end of the initial

population, Pi=P , a new genotype matrix is created. For all of these, the fitness (ε) is

evaluated. This is an ⊕ (XOR) operator with the input truth table supplied by the user.

This compares the deviation of the current chromosome from the required truth table.

The ε is evaluated using the IRSIM simulator. From the resulting 2P -1 chromosomes

generated, the sorting operator Λ, sorts the chromosomes according to their fitness values

and the top P of them are selected to move on to the next generation. This way, only the

best characteristics of a generation are passed on to the next generation. After about 10%

of the total generation size G, mutation is introduced to increase the generation gap and

introduce diversity in the current population. When the best fit chromosome is found from

23

the sorted matrix, the algorithm is terminated. The selection operation is algorithmically

described in Algorithm. 2. An elitist model is also used in the design.

2.3 Experimental Results

Test case simulations for the proposed design flow were run using an embedded switch

level IRSIM simulator [Appendix.A]. Fig. 2.5 shows the evolved fitness values over the it-

erations numbers for a test input truth table whose boolean functions are shown in Fig. 2.6

and Fig. 2.7. The netlist obtained from the genetic evolution using the operations de-

scribed in Sec. 2.2 provides a quick way of custom generating library cells. The fitness

value is evaluated by summing up the exclusive-OR vector derived using the input (re-

quired) truth table from the user and the evolved truth table response for the stimulus

vector obtained from IRSIM. When the fitness value reaches 0, the two responses match

and the netlist obtained from the genetic method is valid. Fig. 2.6 and Fig. 2.7 show

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

F
itn

e
ss

Iter. Sample

Fitness Evolution

Fig. 4
Fig. 5

Fig. 2.5: The fitness evolution samples over intermediate generations, plotted for cases in

Fig.2.6 and Fig.2.7 with four and five inputs respectively.

evolved netlist translations to dynamic CMOS circuit schematics. Our genetic methodol-

ogy guarantees a convergence to a point which gives the simplified netlist incorporating

all the boolean simplification rules. This means that the final netlist obtained after evo-

lution has the minimum transistor count. The netlist could be used directly as a library

cell instead of simplifying the logic at the gate level and then translating it to the transis-

tor netlist which may still miss out a few optimizations in the transistor topologies. This

transistor level simplification can be carried ahead into layout level optimization. Better

transistor sizing can also be obtained by using the stochastic methods described in [Ro-

24

genmoser et al. (1996)]. This would be the next step in optimization to obtain the best

layout and size forcharacterizing a cell. Table. 2.3 shows the convergence rates and pa-

Vdd

CLK

CLK

w

x

w

y

z

Out

GND

z13w35x33y15

1

2

3

4

Vdd

CLK

CLK

z

w

y

Out

GND

1

3

5

EVOLVED NETLIST CODE

N = 4

Mut. rate = 0.5

Elitism = 0.05

Iter = 6300

y = wx+zs

P = 100i

y = (w+y)wx+z

EVOLVED NETLISTEXPECTED NETLIST

Fig. 2.6: Evolved SPICE netlist for the test case with N=4, P=100 and G=23

Out

GND

N = 5

Mut. rate = 0.25

Elitism = 0.1

Iter = 15300

v14w14x14y14z14

P = 100i

CLK

Vdd

CLK

v w x zy

Out

GND

CLK

Vdd

CLK

v w x zyy = v+w+x+y+zs

y = v+w+x+y+z

EVOLVED NETLIST CODE

EVOLVED NETLISTEXPECTED NETLIST

Fig. 2.7: Evolved SPICE netlist for the test case with N=5, P=100 and G=153

rameters used for the experiments conducted on a few test cases for the proposed genetic

methodology. It is evident that the convergence is practical, albeit stochastic. Our genetic

methodology could easily be incorporated into any digital circuit design flow to enable

the creation of dynamic library cells on the fly. Fig. 2.1 shows one such methodology

where the genetic netlist creation forms the fundamental step in the process of custom

and semi-custom circuit design.

25

A neat example of the technique described in this chapter is shown in Fig.2.8, Fig.2.9,

Fig.2.10 and the final netlist is rewritten in Fig.2.11 The boolean function represented by

X X

0 5 3 7

Required Response

Evolved Response

A

V
OUT

V
DD

1

2

3

4

0

OI

OI

6

5

B

o

C

D

Fig. 2.8: Evolving transistor netlist: function AC+BD

the initial random vector is AC + BD This random vector is generated at random and

is represented as 〈nVA13, nVB12, nVC35, nVD25, nφ50, nφ61〉. A crossover is effected

between nodes 3 and 2 of signals VC and VD to keep the circuit topologies intact pertaining

to the rules explained in Sec.2.2.2. The hexadecimal truth table equivalent of the function

represented by Fig.2.8 is h′0357. After the heuristic crossover, we obtain a new vector

〈nVA13, nVB12, nVC25, nVD35, nφ50, nφ61〉. The function represented by this topology

is h′0357. Both of these functions have a fitness value of 12. These are chosen among a

set of initial random populations. A crossover among these would result in the final netlist

shown in Fig.2.10. This is the final netlist which has a fitness value of 16 - meaning that

the exact truth table requirement has been achieved. The final netlist has the hex function

26

X X

0 53 7

Required Response

Evolved Response

A

V
OUT

V
DD

1

2

3

4

0

OI

OI

6

5

B

o

D

C

Fig. 2.9: Evolving transistor netlist: function AD+BC

27

0 55 7

Required Response

Evolved Response

A

V
OUT

V
DD

1

2

3

4

0

OI

OI

6

5

B

o

C

D

Fig. 2.10: Evolving transistor netlist for example function ABC+D

28

h′0557 and the boolean equation ABC + D. The netlist in Fig.2.10 is written simplified

in Fig.2.11 which aptly reflects the required netlist. This is modeled as the chromosome -

〈nVA13, nVB32, nVC25, nVD15, nφ50, nφ61〉.

0 55 7

Required Response

Evolved Response

C

A

DB

C

V
OUT

V
DD

1

3

2

5

0

OI

OI

6

o

Fig. 2.11: Final evolved transistor netlist - ABC+D

2.4 Future Work

From the design methodology and the results described in Sec. 2.2 and 2.3, it is evident

that our methods are scalable to incorporate four and five input truth tables with extremely

practical speeds of convergence. It is important to note that the search space complexity

in the problem is of the order 22n

, which is enormous even for a four or five input truth

table. For higher order functions, convergence rates become a serious issue. However,

the shannon’s decomposition, laid out in [Woods and Casinovi (1996)] and the equation

29

below, could be effectively used to exploit some parallelism.

f(xn, xn−1, . . . , x0) = f(xn, xn−1, . . . , 1)x0

+ f(xn, xn−1, . . . , 0)x0

The decomposed functional topology with fewer inputs can easily be evolved in parallel

using our genetic methods and the whole truth table can be realized by combining the

decomposed parts using the dynamic CMOS logic. Scalable functionality can hence be

incorporated into the proposed method at various levels. Experiments with the scalable

models could be the future direction for the current design methodology. This would

make it feasible to work with arbitrary truth table inputs. This automatic transistor level

optimization of the topology starting from truth tables, completely avoiding the Boolean

simplification approach is the first known methodology to the best of our knowledge. The

transistor sizing [Rogenmoser et al. (1996)] and placement optimization [Lefebvre and

Marple (1997)], [Ho et al. (1997)] and [Bahuman et al. (2002)] can easily be incorporated

in the current model for the complete genetic custom design flow. The sizing of the

netlist obtained using our methods can be done as described in any of these works in the

literature.

2.5 Summary

The results and designs set out in this chapter describe the implementation techniques for

the genetic evolution of optimized transistor netlists starting from truth table descriptions.

This low level optimization methodology can be effectively used to generate custom li-

brary cells on the fly. Although demonstrated for the dynamic CMOS and the domino

logic case, the design methodology can generically be extended to include static CMOS

and other logic styles using the principle of duality. Appropriate heuristics in the evolu-

tion of the transistor netlist starting from truth table descriptions are shown to perform

practically. These include Boolean simplifications and other optimizations using genetic

operators of crossover and mutation. The methodology bypasses the normal way of Sum

of Product (SoP) or Product of Sum (PoS) formulation of a function description followed

30

by gate level optimization and transistor netlist generation. The netlist obtained directly

from the functional specification can be used for layout preceded by optimizations for

sizing and placement.

Table 2.3: Exemplary Circuit results for test truth table inputs with the mutation and

elitism rate over multiple generations - ER: Elitism Rate, MR: Mutation Rate.

BOOLEAN EXPR ER MR N ITER FINAL NET

Y = (x + y)(yz + x) + xy 0.1 0.1 3 1300 x12, y22, z234
Ys = xz

Y = xyz + xyz + xyz
+xyz + xyz + xyz 0.1 0.1 3 2300 x14, y14, z14

Ys = x + y + z

Y = wxyz + wxyz + wxyz
+wxyz + wxyz

+wxyz + wxyz 0.1 0.1 4 6600 w14, x14, y12, z25
Ys = wx + yz

Y = (w + y)wx + z 0.05 0.5 4 6300 d13, a35, b33, c15
Ys = wx + z

Y = v + w + x + y + z 0.1 0.25 5 15300 v14, w14, x14, y14, z14
Ys = v + w + x + y + z

Researchers in the literature have looked at using genetic algorithms for placement

driven/ routing driven transistor netlist generation. These are however slower methods for

convergence. We provide an intermediate layer of configurational evolution which is rapid

and highly scalable. in this chapter, we also provide insights into a new methodology for

a typical VLSI CAD flow which could be altered to include our genetic methods and we

name it the gateless VLSI custom design flow.

31

CHAPTER 3

VECTOR PARTITIONING AND GENETIC SEARCH

METHODS FOR PDPE IN DIGITAL CIRCUITS

3.1 Prelude

Performance efficiency and operative reliability of hardware designs relies heavily on its

power profiling and guard-banding for heat dissipation. An early power estimate for the

circuit would mean a reduction in costly back annotations during a typical VLSI CAD

design cycle. The power estimation problem has alternative apellations - Peak Dynamic

Power Estimation (PDPE) and the power virus. PDPE techniques at the various stages

of the design flow can be broadly classified into simulation based techniques and non-

simulation based techniques. Another way to look at things is based on the methodology

of power estimation - the PDPE can be a static or dynamic power estimate. Static estima-

tion techniques exploit probabilistic analyses and circuit properties using graph models

whereas simulations are run in the dynamic estimation methodology. Fig.3.1 [Najeeb

et al. (2007)].

3.1.1 Early estimation techniques

Non-simulation based estimation techniques are often quite rapid in producing PDPE

estimates. However the error margin in these estimations are high as internal signal cor-

relations cannot be accurately modeled using a theoretical modeling tool. Simulation

based techniques are accurate estimation methods as they involve the entire input signal

states. Signal value assignments to circuit nodes can be evaluated using external simu-

lators. These can handle glitches, signal correlations and delays more accurately. The

downside to this however is that the estimation latencies are high which is often quite

high. But given the accurate estimations we get, this might be considered a worthy one

 PDPE Techniques

Static Dynamic
Analytical

Models

SAT Based

Probabilistic

Constraint

Based

Functional
Vector

Generation

ATPG Based GA Based

Statistical

Based

Macro

Modeling

Constraint

Based

Fig. 3.1: PDPE Techniques in digital VLSI design

time investment. The power estimates strongly depend on various other circuit parameters

and technology based factors too. Many of these are however not readily available nor

are precisely characterized at the time of power estimation. Some of these factors are the

actual input sequences that would be applied to the circuit on field - delay of the circuit

elements, logic function, logic style, spatio-temporal correlations and circuit structure

[Pedram (1996)].

Delay models for the circuit under test is another vital criterion in PDPE techniques.

There are three popular models - the unit delay model, the zero delay model and the

variable delay model. As the names signify, the delay models assign delays to individual

gates in the circuit and run the simulations. The sensitivity of PDPE to gate delays has

been extensively studied and it has been shown that the delay models have a strong bearing

on the final PDPE [Hsiao et al. (1997a)]. Variable delay models are the most accurate ones

in estimation as they are based on a realistic characterization of gates in the circuit from

fabrication data. These can account for circuit glitches and other variations. In this work

we focus on two dynamic estimation methodologies using a variable delay model. The

techniques exploit an external simulator to yield accurate results for PDPE and are based

on a genetic search and partitioning methodology. These fall under the category of vector

generation dynamic techniques for PDPE.

33

3.2 Handling the PDPE problem

With the advent of portable and high-density microelectronic devices excessive power

dissipation is a problem of extreme propensity. The continuing decrease in feature size,

increase in chip density and clock frequency in recent years have invigorated concerns

about excessive power dissipation in modern VLSI chips. High power dissipation may

lead to drops in performance or in extreme cases cause burnout and damage to circuits.

Peak power dissipation of a circuit determines the thermal and electrical limits of com-

ponents and system packaging requirements [Pedram (1996)]. Faster Times-To-Market

(TTM) and expensive redesign cycles necessitate accurate and efficient power estimation

at an early design phase. The peak power consumption corresponds to the highest switch-

ing activity generated in the circuit during one clock cycle. This was also explained in

Chap.1 and presented as the Peak Dynamic Power Estimation (PDPE) problem in digital

circuits. The energy per clock cycle (peak power) in the combinational portion of a circuit

can be computed as:

PR =
V 2

dd

2× frequency
×
∑

∀ g

[toggles(g)× C(g)] (3.1)

where the summation is performed over all gates g. toggles(g) is the number of times

gate g has switched from 0 to 1 or vice versa within a given clock cycle, Cg is the output

capacitance of gate g and Vdd is the supply voltage. This work assumes that the output

capacitance for each gate is equal to the number of fanouts. Therefore, the total switching

activity (toggles) is the parameter that needs to be maximized for maximum PR among

all possible input vector pairs. Given that the circuit has n primary inputs, there are 4n

possible input vector pairs to be considered for an exhaustive search. Thus the search

space for the vector pairs is huge even for reasonably large values of n.

As described in Sec.3.1, searching in this huge multi modal search space poses prob-

lems in avoiding local maxima and in getting out of frozen extrema, where fixed search al-

gorithms tend to get indefinitely stuck [Wenzel and Hamacher (1999)]. Stochastic search

models such as those based on Genetic Algorithm (GA)s [Hsiao et al. (1997a)], [Hsiao

et al. (1997b)], [Hsiao et al. (2000)] provide very tight lower bounds on peak power. This

34

clearly outperforms random search methods. In [Hsiao (1999)], Hsiao presents four ge-

netic search methods based on node, path, cone and distance heuristics. These methods

use GA in an underterministic way. The initial population uses random vectors and no

heuristics are used to generate quick approximate solutions to act as preludes to future

evolution. Uniform crossover (which is equivalent to large scale mutation) and tourna-

ment selection employed in [Hsiao (1999)] adds more randomness to the search process.

Also the Genetic Spot Optimization used in [Hsiao (1999)] has an abstract definition of

expansion with no construed relationship in circuit models.

3.3 Previous Work

Besides the genetic methods described in Sec.3.2 several non-stochastic approaches have

also been proposed in the literature to estimate the maximum power consumption in

CMOS circuits [Hsiao et al. (2000)], [Devadas et al. (1992)], [Wang and Roy (2000)] and

[Chou et al. (1994)]. In [Devadas et al. (1992)], the problem of worst-case power com-

putation was transformed to a weighted max-satisfiability problem. Its limitations were

constrained scalability and no provision for delay incorporation. In [Kriplani (1994)] and

[Kriplani et al. (1993)], switching time windows were used with partial input enumer-

ations for correlation resolution. Symbolic transition counts was introduced in [Manne

et al. (1995)]. Automatic Test Generation (ATG) based techniques have also been pro-

posed in the literature [Wang et al. (1996)]. Inherently, they are limited by their lack of

adaptation to handle delay parameters. In [Devadas et al. (1992)] and [Wang and Roy

(2000)] a test generation strategy was devised for finding test patterns that would produce

the maximum power. [Devadas et al. (1992)], takes exponential times with respect to

the number of levels in the circuit and hence lacks scalability. Static timing analysis was

used in [Wang and Roy (2000)] to find the time instants at which the gates can switch and

this information was used to maximize energy dissipation in a clock cycle. However, this

approach requires complete and specific information about the circuit and has complexity

proportional to the number of gates and fan-in. Hence, it would take a large computation

time to create or valid sequence.

35

3.3.1 Contribution

This chapter proposes two methodologies for power virus generation for combinational

circuits which could be easily extended for sequential circuits. The first method is named

the vector partitioning method and is based on dividing the power virus search space into

subsets enabling a fast parallelized search. The second method incorporates the use of

favorable pattern matching among sample power virus vector pairs leading to newer chro-

mosomes for future iterations in a GA with controlled crossover. Both of these methods

incorporate a variable delay model which is a distinguishing feature from previous works.

The Vector Partitioning Method This is based on the divide and conquer algorithm

[T H Cormen and Stein (2005)]. It solves a closely related subproblem of finding the

Power Virus sub-vector (PV i
sv, i = 0 . . .m) by partitioning the input vector into sub-

vectors. Combining the PV i
sv’s after a quicker search leads us to the required Power

Virus Vector (PV). A commonly argued disadvantage of this divide-and-conquer method

is its slow recursion. However, a demonstrated tight lower bound on power estimates

on ISCAS’85 benchmark circuits offsets this latency disadvantage to make this method

considerably accurate. The convergence rate of this method can be enhanced by a smart

choice of the partitions. This involves the exploitation of the cone-based partitioning

method proposed by [Saucier et al. (1993)]. Independent/ fanout free regions can be

explored and the inputs to those can be optimized using the vector partitioning method.

The resulting vectors can be ported forward to the inputs to ultimately lead to the Power

Virus vector.

The Genetic Search Method This works with an Initial Population vector quadruple

(IP_vq). A pair each among the IP_vq is considered as a PV for the given circuit. The

PV pairs in the IP_vq are chosen so as to maximize the Hamming distance among the

two vector pairs. This forms the initial choice of the genetic population. The Hamming

distance is the number of differing bit values between the two vectors. This provides a

deterministic IP base. From the two PV pairs, correlating bit patterns are chosen to move

over to future generations providing a heuristic variation mechanism. The PV and hence

the peak power estimation using this method is demonstrated to perform much better than

36

the best reported techniques in the literature.

Delay Models Switching activity of a given node in a circuit is not only dependent

on the output capacitance of the node, but also heavily on the gate delays in the circuit,

since multiple switching events can result due to uneven circuit delay paths. Glitches

and hazards are not taken into account in a zero-delay framework [Najeeb et al. (2007)]

and the power dissipation measures are off greatly from the actual powers [Hsiao et al.

(1997a)]. The unit delay model offsets these inaccuracies to an extent by uniform delay

modeling of the gate levels. This provides a better inclusion of power fluctuations [Hsiao

(1999)]. A variable delay model is incorporable in our simulator design to account for

more accurate estimation of the peak power.

3.4 Algorithms for Power Virus Generation

Problem Formulation: As described in Sec.3.2, given a circuit, consider two input vec-

tors V1 :< x1, x2, . . . xn > and V2 :< y1, y2, . . . yn > such that there is a maximum power

dissipation when the circuit undergoes a transition from the initial state which is got by

applying V1 as the input to the circuit, to the final state, which is got by applying V2 in se-

quence. The two vector pairs V1 and V2 form a Power Virus Pair. The problem of finding

this pair is called the power virus problem. This is also known as Peak Power Estimation

in VLSI circuits. In this work we propose to find V1 and V2 which give maximum power

dissipation in the circuit.

Each gate in a digital circuit is modeled as a node. The type of the gate determines

the node characteristic and the i/o connections of the gate are translated to edges. Hence,

wires contribute to edge weights and gates to node weights. The number of toggles on

every edge determines the switching activity in the circuit and the number of fanins and

fanouts weight PR according to Eq.(3.1).

37

1 0 0 1 1 0 1 1 0 1 1 0 1 1 1

PARTITION A PARTITION B PARTITION C

POWER VIRUS VECTOR: V i

Fig. 3.2: Vector partitioning the PV

3.4.1 Vector Partitioning

The first method we demonstrate for approaching the power virus problem is that of vec-

tor partitioning. Fig.3.2 shows an exemplary partitioned input vector. The primary input

power virus vector pV is partitioned into m = 3 sub-vectors named as partitions A, B and

C respectively. The optimization algorithm is then run on the individual sub-vectors and

finally combined to give the power virus vector PV . Algorithm. 3 describes a pseudo-

code for vector partitioning. The power virus vector pair consists of a pair of input se-

quences to be applied to a given circuit successively. We model, each of the the input

sequence as a bit vector. Consider such a sequence of word length n corresponding to the

n primary inputs of the circuit. As explained earlier, this input vector is partitioned into

m subsequences, each of length n
m

. The choice of m is a separate issue which would be

discussed in the following paragraphs. Recursive search through the entire initial search

space of order n would have a search complexity of order O(2n). Due to the partitioning,

inherent parallelism in modern computation machines can be exploited aptly to search

recursively in a reduced search space of order O(m × 2n/m). This leads to a faster con-

vergence to the PV and is also demonstrated in Table.3.2 in Sec.3.5 to be better in peak

power determination compared to random search methods. This method has a quicker

convergence than the complete random search.

The choice of m, the number of partitions of the virus vector is an important problem.

We propose to use the cone based partitioning method demonstrated in [Saucier et al.

(1993)]. The method is outlined in Algorithm. 3. The cone based partitioning algorithm is

described in Appendix C. As shown in Algorithm. 3, the cone based partitioning method

is used to determine the clusters (Clusteri). Each of the clusters determined form the

sub-sequence (PVsv) for which the optimization algorithm needs to be run locally.

Two random input vector pairs of length equal to that of Clusteri are chosen ((v1,v2)

38

Algorithm 3 VECTORPARTITIONING

Require: CROOT ← I/P ∀ nodespri−o/p

// # Nodes⇔ # Cones

1: repeat

2: scan: Nd = CROOT[i] 7−→ P(Nd)

3: LL(Nd) =
⋃#P (Nd)

i=0 LL(P(Nd)i) //Label List

4: i + +
5: until CROOT 6= φ
6: j = m //Number of Clusters (m)

7: ————————LOCAL SEARCH————————

8: while (j > 0) do

9: → choose PVi
sv = Clusteri

10: INIT :: choose rand_vec_pair :: (v1,v2),(v3,v4)

11: → simulate: inp : (v1,v2): Toggl1
12: → simulate: inp : (v3,v4)/PV j

sv: Toggl2

13: HD1 = HD2 = 0 //Vector Hamming Distance = 0

14: for all (k, 1 ≤ k < size(v1)) do

15: if (v1[k] 6= v2[k]) then

16: HD1 ++

17: end if

18: if (v3[l] 6= v4[l]) then

19: HD2 ++

20: end if

21: end for

22: if (HD1 ∼ HD2 > HDThresh) AND (Toggl1) > (Toggl2) then

23: PVj
sv = (v3,v4)

24: else

25: PVj
sv = (v1,v2)

26: end if

27: j–

28: end while

29: PV ≍
⋃m

i=0 PVsv

39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000

Z
e

ro
 D

e
la

y
 T

o
g

g
le

 P
ro

g
re

s
s
io

n

Genetic Iterations In Select Loop

C432
C499
C880

C1908
C2670
C3540
C5315
C7552

Fig. 3.3: Modified Genetic Method zero de-

lay toggle progression

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000

U
n

it
 D

e
la

y
 T

o
g

g
le

 P
ro

g
re

s
s
io

n

Genetic Iterations In Select Loop

C432
C499
C880

C1908
C2670
C3540
C5315
C7552

Fig. 3.4: Modified Genetic Method unit de-

lay toggle progression

and (v3,v4)) in the first iteration. The circuit is simulated using these signals. The values

of other signals are held constant at 0 during the local optimization process. This may

not have an issue of dependance on the other inputs as the clusters determined using the

cone based method are rather independant. The resulting toggles based on the application

of the above two vector pairs are recorded as Toggl1 and Toggl2 respectively. An ham-

ming distance between the two vector pairs is determined. We intend to choose a pair

with larger hamming distance among the vectors. This is expected to result in maximum

toggles at the primary inputs. This is chosen in combination with the maximum toggles in

the circuit determined earlier as Toggl1 and Toggl2. A threshold crossing would mean that

the current vector pair is the one causing the maximum local toggles in the cone cluster

and is chosen as the PVsv for the ith cluster. This estimation is iterated over a few times

and the vector pair causing the maximum local toggles is chosen. In iteration numbers

greater than or equal to two, only one random vector pair is generated and the PVsv is

used as the first vector pair. Finally, the sub-vector components for the clusters (PVi
sv)’s

are clubbed to give the required power virus vector (PV) for the entire circuit.

3.4.2 Genetic Pattern Matching

Furthering the exploration of the Peak Dynamic Power Estimation (PDPE) space, an in-

telligent search mechanism was found necessary. Genetic Algorithms were explored and

the details of a modified GA are presented below. The heuristics are problem optimized.

A good Initial Population (IP) generation process is the first step in a GA. We use a sim-

ple hamming distance based selection of genotypes. Genes pairs, which are simply bit

40

strings corresponding to the probable PV vector, are chosen based on larger hamming

distances among them. For this purpose, a random initial vector V1 is chosen and its bits

are subjected to an inversion operation. Then with an adjustable probability of about 0.1,

its bits are randomly flipped to obtain V2, the second PV vector, so that the hamming dis-

tance, H = V1 ⊕ V2, is still large. Here ⊕ is the XOR operator. We do not use a simple

inversion of V1 to obtain V2 because this heuristic may lead to biased IP isolation and may

take large times times to converge. This is because the PV vectors do not always have the

maximum hamming distance [Hsiao (1999)]. Two other < V
′

1 , V
′

2 > pairs are then chosen

in a similar way to produce a PV quadruple. These four vectors form the IP for the GA.

The genetic search methodology proposed in this chapter uses a pattern matching

heuristic for selection. Following a deterministic IP generation, the circuit is simulated

for successive applications of < V1, V2 > and < V
′

1 , V
′

2 >. If the peak power estimate

from these vector pairs improves the best recorded one from the past iterations of the GA,

the best PV is updated with the current one. At this point, there is a crossover among

the PV pairs. A pattern matching is made among the two vector pairs < V1, V2 > and

< V
′

1 , V
′

2 >. Common bit patterns among the two vector pairs are heuristically understood

to contribute to the peak power dissipation. Hence, these bit patterns are carried over to

the next generation genes. The rest of the gene bits in the next generation are generated at

random. This kind of variation is heuristically justified and can be supposed to produce

a better PV vector pair rather quickly. The genes in future generations are again sub-

ject to the same variation operation leading to better and better chromosomes in which

the best characteristics of previous iterations are carried forward. Algorithm. 4 shows

a pseudo-code for the genetic matching algorithm proposed above. In the crossover

operation, a slice of the previous best input vector (the one resulting in the maximum)

toggles is passed on to continue the GA. This is based on the heuristic that the better

characteristics (which result in a large toggle count in the circuit) of the vector are present

in parts of the vector, the passing on of which results in finding the ultimate power virus

(PV) vector. Fig. 3.3 shows the progression of zero delay toggle count over the genera-

tions using our genetic search method. The algorithm was implemented on the ISCAS’85

benchmark suite. Fig.3.4 shows the results for a unit delay model. Appendix.B shows

detailed results for both the methods above and also provides the obtained power virus

41

Algorithm 4 GENETICMATCHING

Require: best_vec = (rand_vec_1,rand_vec_2)⇔ (rv1,rv2)

Ensure: [CORRESP]besttoggle ⇐ simulate (rv1,rv2)

1: loop

2: → choose rand_vec_pair: (v1,v2)(v3,v4)

3: → simulate ckt: input⇐ (v1,v2)

4: → simulate ckt: input⇐ (v3,v4)

5: diff1[size(v1)] = diff2[size(v3)] = 0

6: for all i such that 1 ≤ i < size(v1) do

7: if v1[i] 6= v2[i] then

8: diff1[i] = 1

9: end if

10: end for

11: for all j such that 1 ≤ j < size(v3) do

12: if v3[i] 6= v4[i] then

13: diff2[j] = 1

14: end if

15: end for

16: ————————CROSSOVER————————

17: v = rand(v1,v2) // Choose Either

18: for all k such that 1 ≤ k < size(v) do

19: if diff1[k] 6= diff2[k] then

20: Flip v[k]

21: end if

22: end for

23: new_toggles⇐ simulate (new_v1,new_v2)

24: DISCARD: v3,v4

25: if new_toggles > best_toggles then

26: SWAP: (new_v1,new_v2)⇔ (best_v1,best_v2)

27: end if

28: end loop

42

.......
V1 - Random

1010000001

01011111101111000101

0000111010
V2 - Max

Hamming Distance

0101110010

1010000000

....... 0101010011

10101011001110001000

0001110111010111 1111

1010001101

Common Patterns

in the best vectors

V11 - common pattern

V12 - random

1010001101

010111 0010 0101111110

101000 0001

V1 - Carried over

Pattern

Fill Random

Fig. 3.5: Genetic Search methodology for PDPE in digital circuits.

vectors. Fig.3.5 shows a flow diagram for the genetic search methodology. The initial

vector V1 is generated at random. The second vector V2 is generated based on a maximum

hamming distance w.r.t the first vector V1. Following this a circuit simulation is run and

the vectors with the best fitness are selected based on a truncation selection scheme. Bit

patterns among the fitter chromosomes are identified for commonality. These patters are

chosen based on a n-point heuristic crossover variation scheme. The variation scheme is

a little different that the conventional n-point crossover mechanism wherein parts of other

vectors are joined to give a new vector. Here, we choose common bit patterns among the

vectors with high fitness values followed by a random filling of the rest of the bits in the

virus vector. These form elite phenotypes for succeeding generations. The genetic search

algorithm is continued on this new pattern. The algorithm summary is also captured in

Fig.3.6.

3.5 Experimental Results

The proposed algorithms in Sec.3.4 were implemented in C++ and tested on the IS-

CAS’85 benchmark suite. The algorithms were run on a Linux workstation with a 3.0

GHz Pentium IV processor and 2GB of physical memory. The convergence times of the

43

Heuristic Binary

 IP Generation

Evaluation

 w.r.t P
R

Matched Pattern

 Variation

Truncation

 Selection

Terminate

Fig. 3.6: Genetic Search algorithm for the PDPE problem.

algorithms (esp. the vector partitioning method) were practical - of the order of tens of

minutes. This time frame is reasonable for a one time pre-design circuit characterization

of PDPEs. Note that we use unit and zero delay models in our simulator. Table.3.1 shows

the specifications for the ISCAS’85 combinational benchmark suite and the results are

presented in Table. 3.2. The results shown are for weighted toggles which take care of the

fanout of the switching gates as explained in Sec.3.4. The results are presented in com-

parison with random and a few other PDPE estimation methods found in the literature. xb

The results presented in Table.3.2 shows comparable PDPE estimates of the proposed

method to the best known in literature. In the controllability based method [Najeeb et al.

(2007)], Najeeb. et.al have used a modified D-Algortihm with a pre-defined backtrack

threshold. The initialization of their algorithm is based on a random search for a vector

at the primary inputs. The wires in the circuit are then optimized starting from the pri-

mary outputs and moving towards the primary inputs. An assignment conflict is resolved

using a backtracking mechanism (much like in the D-Algorithm). The convergence time

and rate of this algorithm is highly dependant on the preset backtrack threshold and on

the initial random simulation to determine the primary inputs resulting in the maximum

primary output toggle.

44

Table 3.1: ISCAS’85 Benchmark suite specifications

Circuit #PIs #POs #Gates #FFR Clusters # Group2 Nets #Levels

C432 36 7 204 76 343 13

C499 41 32 276 58 440 5

C880 60 26 470 105 755 10

C1355 41 32 620 258 1096 15

C1908 33 25 939 377 1523 20

C2670 233 140 1567 539 2216 21

C3540 50 22 1742 619 2961 24

C5315 178 123 2609 806 4509 18

C6288e 32 32 2481 1456 4832 93

C7552 207 108 3228 1446 6252 18

Table 3.2: Comparison of PDPE for ISCAS’85 Combinational Benchmark Circuits - Zero

Delay Model

Number of Weighted Toggles

Circuit Imax/ Imax/ Control Vector Genetic

Fanout Gain MAXP Random Driven Partition Match

C432 214 223 183 201 270 242 224

C499 228 210 196 272 303 249 306

C880 524 517 388 437 582 498 479

C1355 650 688 368 530 610 509 596

C1908 872 882 898 858 973 886 964

C2670 1292 1366 1161 1332 1516 1266 1330

C3540 1527 1545 1347 1531 1727 1395 1633

C5315 2644 2668 2556 2570 3007 2673 2815

C6288 2207 1799 2991 2558 2684 2266 2515

C7552 3406 3524 3556 3591 3670 3431 3541

45

This dependancy doesn’t exist in the proposed genetic method as well as in the vec-

tor partitioning method. The PDPE estimate is fairly independant of the starting vec-

tors (primary input assignments) and the convergence rate and time of the algorithms are

of the order of a few tens of minutes running on modern machines. The results show

a significant improvement in the toggle estimates compared to Imax/Fanout, Imax/Gain,

MAXP and The Random methods proposed in the literature. The PDPE estimates from

the two methods are also comparable to the Controllability based estimate in [Najeeb et al.

(2007)]. The toggle estimates for one case - C499 (306) better the controllability based

estimate (303). Appendix.B shows the toggle progression in the genetic/vector partition

methods and also gives the power virus vector pairs which when applied in sequence to

the bechmark circuits give the estimated toggles.

3.6 Summary

In this chapter, we have presented two novel methods for a dynamic PDPE estimate of

digital VLSI circuits. The first method uses a vector partitioning approach wherein the pri-

mary inputs are clustered using the cone based partitioning method presented in [Saucier

et al. (1993)]. The clustered inputs lead to sub-vectors which are optimized to yeild the

maximum number of toggles in the circuit. This local optimization leads to a search

complexity reduction to the order of O(m × 2
n
m from O(2n). The second method uses a

modified genetic algorithm which passes on better characteristics of input vectors (parts

of the vector which causes the maximum toggles) to future generations of the GA. The al-

gorithm is run with a tournament selection scheme over multiple generations. Both these

algorithms were tested on the ISCAS’85 combinational benchmark suite and the results

obtained show a quicker convergence to comparable PDPE estimates to the ones reported

in the literature.

46

CHAPTER 4

HARDWARE BASED GENETIC EVOLUTION OF FIR

FILTERS

4.1 Introduction

In this chapter we look at the problem of a system design and try to approach it using a

heuristic based genetic methodology. The problem we tackle is the design of FIR filters

with an arbitrary response. Filters are electronic circuits which perform processing func-

tions, specifically intended to remove or enhance signal components. They are used in

many cutting edge electronic applications within which they form critical elements. Fil-

ters could be analog or digital and may posses an Infinite Impulse Response (IIR type) or

a Finite Impulse Response (FIR type). Finite Impulse Response (FIR) digital filters have

many applications in a wide range of Digital Signal Processing (DSP) algorithms. The

lack of feedback in the design makes them more reliable and robust than their IIR coun-

terparts. In practice, Digital Finite Impulse Response (FIR) Filters implement Eq.(4.1)

where, p is the order of the filter, hi are the filter coefficients, x[n] and y[n] are the nth

input and output signal samples respectively.

y[n] =

p∑

i=1

hix[n− i] (4.1)

4.1.1 Adaptive Filters

Adaptive filters are those which self-adjust their filter coefficients according to an opti-

mizing algorithm. This could be due to changing requirements on field as well as due

to application specific demands. By way of contrast, non-adaptive filters have static fil-

ter coefficients. Because of the complexity of the optimizing algorithms most adaptive

filters are digital. They are routinely used in a wide range of DSP applications. Equaliza-

tion of data transmission channels in high-speed MODEMS, noise cancellation in speaker

Fig. 4.1: A general adaptive FIR filter topology using the output error formulation as a

feed. The prediction error (e(n)) could be different from a simple difference

between the output and the desired signal stream.

phones, interface removal in medical imaging, canceling narrow-band interference in di-

rect sequence spread spectrum systems and beam reforming in radio astronomy are some

practical applications of adaptive systems. Conventional first generation systems typically

embody basic FIR Linear Filter structures along with simple gradient descent or least

squares algorithms for coefficient adaptation. As such, they have certain performance

limitations as explained in [Sundaralingam and Sharman (1997)]. A more accurate adap-

tive structure is needed to realize a robust filter that adapts to the changing requirements

on filed, quickly and correctly. Fig.4.1 shows a general Adaptive Digital FIR Filter topol-

ogy. It shows an input sample stream (x[n]) filtered into an output stream (y[n]) which is

compared with the desired sample stream (d(n)). The resulting deviation in the output is

used as the prediction error (e(n)) to guide the adaptive algorithm which reconfigures the

filter coefficients (h[n]) dynamically.

4.1.2 Some Approaches to FIR Filter Design

Signal processing architectures find adaptive filter fabrics indispensable and often need

them to be capable of responding to various malfunctions caused by endogenous and

exogenous factors. Consequently, error tolerance in adaptive systems demands a need

for resilient designs. We can realize this using hardware fault tolerance which can be

achieved by means of redundancy and other supplementary hardware modulation tech-

niques [Miron Abromovici (2001)]. However the most critical component of the design

- the filter coefficient values, need to be corrected in alternate, quicker ways for reduced

48

circuit off-times. Also, for error tolerance to be practical and effective, reduced overall

on-chip adaptation latency is also essential. In reconfigurable systems, minimization of

adaptive complexity is another critical objective.

In [Adams and Willson (1984)], Adams and Wilson sought adaptation efficiency by

dividing the filter design into two stages - a computationally efficient pre-filter followed

by an amplitude equalizer. For the same objective, Nevo, et.al in [Saramaki et al. (1988)]

described FIR cascaded structures with an interpolated filter; In [Wade et al. (1990)],

Wade, Van-Eetvelt and Darwen have described a non-interactive filter design method;

And Suckley [Suckley (1991)] has furthered on it to propose band-fit filter designs us-

ing cascaded filter primitives. However, these complex filters exhibit little or no error

resilience besides having a limited adaptation range. Their hardware implementation is

plainly impractical. Realistic hardware platforms impose restrictions based on fixed reg-

ister widths leading to a loss of precision in the storage of filter coefficients. The resulting

filters known as Finite Word Length (FWL) filters would however accept this trade-off to

benefit from faster computations. Several simple configuration methods have been pro-

posed for effective FWL design of FIR filters or for filters with Canonical Signed Digit

(CSD) coefficients [Cho and Lee][Kodel (1980)][Lim et al. (1982)]. Rounding-off the

coefficients to the nearest integers has been another common practice. Coefficients were

also sought to be represented as the sum of a few Signed Power-of-Two (SPT) terms.

Further improvements were proposed using Primitive Operator Directed Graph (PODG)

representations in [Bull and Horrocks (1991)]. However, these methods have issues of

poor response fidelity and high latency.

Conventional filter designs hence involve multiple, often conflicting design criteria

and finding an optimal solution is therefore not a simple task. Analytic or simple itera-

tive methods usually lead to sub-optimal designs. This necessitates optimization based

methods for filter design [Antoniou (2005)][Parks and Burrus (1987)][Lu and Antoniou

(1992)]. However, the such methods formulated for digital filters are often complex,

highly non-linear and multi-modal in nature. However, in recent years, a variety of op-

timization algorithms have been proposed based on the mechanics of natural selection

and genetics, which have come to be known collectively as genetic algorithms (GAs)

[Godlberg (1989)]. GAs are stochastic search methods that can be used to search for

49

an optimal solution to the evolution function of an optimization problem [Pittman and

Murthy (2000)]. Holland proposed GAs in the early seventies [Holland (1975)]. De Jong

extended GAs to functional optimization [Jong (1975)] based on the detailed mathemati-

cal model for the GA presented by Goldberg in [Godlberg (1989)]. In the past, GAs have

been applied to a number of optimization designs including digital and analog filters [Hor-

rocks and Khalifa (1994)]. Genetic filter designs have also been of considerable interest

in recent years. Genetic evolution (application of several instances of a given GA) of

FIR Filters has been of considerable interest in the recent past [Sundaralingam and Shar-

man (1997)][Suckley (1991)][Sabbir and Antoniou (2006)][Tufte and Haddow (2000)]

and [Redmill and Bull (1998)]. However, the focus in each of these has been discrete

and diverse. In [Tufte and Haddow (2000)], Tufte and Haddow demonstrate a model for

GA operations on FIR filters. But their focus is not on design practicality (hardware im-

plementation). They consider non-integer (floating point) coefficients which makes their

design process all the more complex. In addition, the fitness function of the GA they use

does not scan the entire frequency spectrum but considers only specific frequencies for

evaluation. This limits the accuracy coefficient estimates. The trade-off not considered

here is that between integer coefficients (avoiding floating point operations) and excess

spectrum samples (accuracy).

Genetic algorithm operations were described in Sec.2.1. Here we present another

quick synopsis to keep things in perspective. Genetic Algorithms use simple operations

over a large number of iterations to optimize system goals making their implementation

easy and effective. Errors in filter coefficients lead to an egress in the prediction error

which could be used to correct the faulty coefficients on-field. GAs also have the flex-

ibility to determine coefficient values for quite an arbitrary set of frequency response

characteristics. Such nasty responses are a common premise of many real life applica-

tions. However the major challenge in the genetic design for FIR filters is the adaptation

latency which can up shoot quite significantly owing to a poor search methodology. A

GA involves a large number of heuristics based on the problem dynamics which when

exploited appropriately alleviates the latency issue to a significant extent.

50

New Population

Genetic Operations

 (Heuristics used)

Crossover / Mutation

Old Population

- Binary strings, Integers,

 Real Numbers, Graphs,

 Hybrids

Genetoype Selection

Fitness Evaluation

 (Heuristics used)

Fig. 4.2: A Generic GA Cycle - Involves four major steps Initial Population Generation,

Variation, Evaluation and Selection

4.1.3 Genetic Operators from a new perspective

Genetic Algorithms (GAs) manipulate a population of individuals in each generation (it-

eration), where each individual, termed as a chromosome or genotype, represents one

candidate solution to the problem. Within the population, individuals with better fitness

survive to reproduce. Their genetic material is varied to produce new individuals as off-

springs which form the seeds for the following generations. The genetic material is mod-

eled using some data structure with finite attributes. As in nature, selection provides the

necessary driving mechanism for better solutions to survive. Each solution is associated

with a fitness value that reflects how good it is compared to the other solutions in the

population. The variation process comprises of crossover and mutation, which concoct

material by partial exchange among genotypes and by random alterations of data strings

respectively. The frequency of these operations is controlled by certain pre-set proba-

bilities which require heuristics appropriate for the particular problem at hand. The rep-

resentation, variation, evaluation and selection operations constitute the basic GA cycle

or generation, Fig.4.2, which is repeated until some pre-determined criteria are satisfied

which also require a comprehension of the problem heuristics. With increased comput-

ing power and hardware, simulation of evolutionary systems is becoming more and more

tractable and GAs are being applied to many real world problems including the design

of digital filters. The crucial need in such designs is the use of appropriate heuristics

for probabilistic variation and selection. This chapter presents analytical insights into

the selection of the Initial Population (IP) and the Genetic Operators (GO) used by the

GA. This exploits the problem heuristics to the maximum and unlike several instances

51

of GA reported in the literature, the IP for the GA proposed in this work is not derived

at random but is derived using a deterministic procedure based on the properties of the

impulse response of FIR filters. This makes the entire adaptation process fast and robust.

As a byproduct, the chapter also proposes a comprehensive methodology for the design

of what is termed as the Evolutionary System on Chip (ESoC).

The rest of this chapter is organized as follows. In Sec.4.2, we explore existing filter

architectures and their advantages. Specifically, we dwell on the comparison between the

spatial design and the frequency domain design of FIR Filters. In Sec. 4.3, we present

the functions used by the evolutionary algorithm with analytical justifications for choos-

ing them. In Sec.4.4, we propose and describe the complete Evolutionary System-on-

Chip (ESoC) hardware design and its parallelism, scalability and Built in Error Tolerance

(BiET), . Sec.4.5 provides experimental results for the proposed design and hardware ar-

chitecture where we present simulation cases for exemplary linear phase FWL test cases.

Finally we conclude in Sec.4.6.

4.2 FIR Architectures and Design

4.2.1 FIR filter architectures

Digital FIR filter outputs are related to their inputs by the following difference equation

(Expanded from Eq.(4.1))

y[n] = h0x[n] + h1x[n− 1] + . . . + hpx[n− p] (4.2)

where p is the filter order, x[n] is the input signal, y[n] is the output signal and hi are

the filter coefficients. Hardware implementation of the filters in the time domain can

have the canonical form translating equation (4.2) directly or the broadcast(transposed

direct) architecture obtained using the inversion property of the resulting Signal Flow

Graph (SFG) - Fig.4.3 and Fig.4.4. We use the broadcast architecture in our hardware de-

sign. FWL constraints require truncation of coefficient lengths besides their magnitudes.

The minimum length of linear phase low-pass FIR filters to meet the frequency domain

52

Z
-1

Z
-1

Z
-1

+ + + +

x x x x
h0 h1

h2

Z
-1

+

x

(n)X

(n)Y

hn-1
hn-2

Fig. 4.3: Direct Form Implementation of Digital FIR Filters

Z
-1

Z
-1

Z
-1 + ++ +

x x x x
h0 h1

h2

Z
-1 +

x

(n)Y

hn-1
hn-2

Fig. 4.4: Transposed Direct Form Implementation, h′

is are the filter tap weights and Z−1

are the delay elements.

specifications is approximately

N =
−20log10

√
δpδs − 13

14.6∆F
+ 1 (4.3)

where δp and δs are the passband and stop band ripples and ∆F is the transition bandwidth

[Saramaki et al. (1988)]. Eq.(4.3) forms the initial coefficient length constraint on our

filter specification which is done offline.

4.2.2 Spatial and frequency domain design

The filter coefficients used in the FIR architecture form a sinc function, the Fourier trans-

form of which is a window, Fig. 4.5. Frequency selective filters could be designed in

the Frequency Domain (FD) for which a multitude of complex algorithms exist. They

focus on the process of cumulatively windowing the uniform frequency span to approxi-

mately reach the desired frequency response. This is then inverse transformed to translate

to a sinc in the time domain. Some popular FD domain design algorithms are outlined

in [A. V Oppenheim and Buck]. Spatial Design (SD) is an alternative to the Frequency

53

Domain Design (FDD) of FIR filters. It is advantageous over the FDD as it eliminates

the need for the complex operations of transformation and inverse transformation of the

response to determine its fitness in an iterative design. This has tremendous implications

in hardware implementability simplifying the design flow to basic operations and hence

speeds up the computational steps substantially. However a large number of samples

may still be needed for an accurate determination of the fitness function for the GA. This

trade-off is a design choice and we stick to simpler operations in the spatial domain for

the filter operation. In the next few sections, we propose the genetic evolution of filter co-

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

Time Domain

Sample Number

A
m

p
lit

u
d

e

0 10 20 30 40 50

0

2

4

6

8

10

12
Frequency Domain

Frequency

A
m

p
lit

u
d

e

Rectangular Pulse

Fig. 4.5: A Sinc Function expressed as f(x)=sin(x)/x and its transform, a window function.

The FIR filter coefficients form a sinc function.

efficients in the time domain including appropriate heuristics with analytical justifications

and describe its complete implementation in hardware.

4.3 Evolutionary System Design

The objective of spatial design of FIR filters is to accurately estimate the coefficients hi,

1 ≤ i ≤ p, in Eq.(4.1) at any point of time. This section explains how a GA can be

employed for the same. The proposed algorithm has the following steps.

Step 1 Limiting the search space for the coefficients

(A) Determination of the largest coefficient hmax

Given the order of a filter p, the first step in the FIR design process is to estimate the

largest value, hmax, that could be assigned to the coefficients hi, 1 ≤ i ≤ p in Eq.(4.2).

54

This is done as shown in Eq.(4.4) [A. V Oppenheim and Buck].

hmax =

∫ 1

0

(Gid)dfn (4.4)

where Gid is the expected frequency response normalized w.r.t fn, fn = f
fs

, fs is the

sampling frequency and f is the range of frequencies considered in the spectrum. The

summation shown in Eq.(4.5) is a trapezoidal approximation to the integral in Eq.(4.4).

This is easily implementable in hardware as an alternative evaluation of hmax.

hmax =

Nj∑

j=0

9∑

i=1

10j+1

2fNyq

×Gid(10j + i) (4.5)

The limits in Eq.(4.5) for i and j are chosen so as to span the frequency spectrum con-

taining the frequency components of the input signal. fNyq in the equation is the Nyquist

Frequency obtained as an input parameter and Nj is the highest decade order of the ex-

pected response. This is a tunable factor which dictates the accuracy of initial evaluation.

(B) Determination of coefficient search range hmax
i

The odd number (p) of filter coefficients, hi in Eq.(4.1), are symmetric about the mean

value hq, where q = (p+1)
2

. The FIR filter coefficients lie on a sinc function. In general,

a sinc function is given by sinc(x) = sin(x)
x

as explained in Sec.4.2.2. From Eq.(4.5) the

mean value hq of the filter coefficients is determined which is the largest value among the

coefficient set of cardinality p. To estimate an upper bound (hlim
i) for coefficients other

than hq, we use a 1
x

functional model. The upper bound is used to limit the search space

for the forthcoming genetic algorithm. This model starts with hq as the highest value of

the function with a gradient modulated by the lowest cut-off frequency, fcutoff , of the

filter which is obtained as an input parameter. This is shown in the computation of the

interpolating step in Eq.(4.7). The modulation is justified by the fact that the gradient

fall for the 1
x

model close to the mean coefficient for steeper cut-off filters is lesser than

that for filters with wider transition bands. Fig.4.6 and Fig.4.7 show comparative effects

of incorporating fcutoff in the range estimation. In Fig.4.7, the normalized cut-off fre-

quency is lower and hence the gradient fall from the mean value is slower compared to

that in Fig.4.6. This model captures the fact that a large number of coefficients are close

to the mean value for filters with lower cut-offs. Hence, based on the maximum coeffi-

55

0 10 20 30 40 50 60
−100

−50

0

50

100

150

hc (coefficient number)

h
c
 (

c
o
e
ff
ic

ie
n
t
v
a
lu

e
s
)

Reduced Search Space

Actual Values

Fig. 4.6: Reduced GA search space with the Gaussian Switch. fc=0.25 and p = 60

cient value, hmax, determined in Step 1(A) we can compute the maximum range for each

of hi in Eq.(4.1) by modeling a 1
x

behavior. This can be done by linear interpolation in

the inverse coefficient space, Eq.(4.8). As a starting point for this, we compute ∆mean

and δstep as shown in Eq.(4.6) and Eq.(4.7). hlim
i , the coefficient search range for each of

the ith coefficient is hence computed using δstep linear increments from the mean value

∆mean.

∆mean =
1

hmax
(4.6)

δstep =
fcutoff

hmax
(4.7)

∆lim
i = ∆mean + i.δstep (4.8)

hlim
i =

⌈(
1

∆lim
n−i

)⌉
(4.9)

Based on the description of functional model in this section, we can determine the coeffi-

cient limit envelope hlim
i , Eq.(4.9), which determines the range within which each of the

filter coefficients, hi, 1 ≤ hi ≤ q, in Eq.(4.1) lie. This methodology helps narrow down

the search domain from infinity to hlim
i within which the possible coefficients may lie. To

translate the ∆lim
i values into the coefficient limits, we take the upper integer ceil of the

reciprocals of Eq.(4.8) and flip their order to get the coefficient limits.

Step 2 User Configuration

The filter hardware is designed to accommodate a maximum of IPmax Initial Populations

56

0 10 20 30 40 50 60
−100

−50

0

50

100

150

hc (coefficient number)

h
c
 (

c
o
e
ff
ic

ie
n
t
v
a
lu

e
s
)

Reduced Search Space

Actual Values

Fig. 4.7: Sample case with fc=0.1 and p = 60. A lower fc would mean a slower 1
x

fall

(IP) in the parallel process such that a given population set can hold upto pmax coeffi-

cients. The user can configure the number of coefficients and the size of the IP such that

they lie within the above limits. The user also inputs the ideal filter response Gid, the filter

cut-off frequencies and the sampling rate fs. The evolutionary hardware estimates hmax

and hlim
i , 1 ≤ i ≤ p, as described in Step 1.

Step 3 IP Generation

As mentioned earlier, the GA generates a user defined number of chromosomes. Each

chromosome is a vector (h1, h2 . . . hp) of p integers such that hi = ±hlim
i (based on the

binary switch) in the first iteration and are restrained within−hlim
i ≤ hi ≤ hlim

i in subse-

quent iterations. The hi’s start with hlim
i as initial estimates and slowly evolve towards the

required coefficients. It is easy to see that, each chromosome describes a filter albeit with

a different frequency response. The following steps describe the GA used in the design.

Step 4 Genetic Evolution

There are two evolution stages in the design. At the parallel macro-evolution stage, a ran-

dom normal binary switch toggles the sign of the coefficient limit hlim
i randomly for each

of the ith coefficients in the GA search. This introduces more variation in the population.

The GA search range is [0,±hlim
i] at this stage. At the second micro-evolution stage, we

follow a similar methodology but the GA search space in this case is [−hlim
i , hlim

i]. A

matrix of switched hmax
i coefficient sets is formed again. The number of elements of the

matrix are user defined to be IP. Each of the randomly switched initial population vectors

57

Monofrequency Test

 Input Samples

Gain ComputationFiltering Operation Expected

Response

G (i)
id

Genetic Coefficient Variation

(0,)
h

id
()mod G ,ifh = h + N

i

’
i

G (i)
ev

i = 1

G (i) - G (i)

M

ev
||

id
e(n) =

Evaluated

Response

Prediction

 Error

 Fitness

Evaluation

Heuristic Filter Coefficient

 Search Space Limit

1

x
functional model

Number of filter Coeffs, p

Input stream

 x(n)

Output stream: y(n)

Initial Population, IP Max

Expected Response, G (i)
id

Filter Sampling Rate, f
s

User Configuration

Terminate Evolution

best

e(n) < e (n) ?

YES

NO

h[n] z
-n

n = -

+ OO

OO

Adaptive

Algorithm

Fig. 4.8: The evolutionary adaptive filter design including the UI

58

are used to independently and parallely evolve towards the best fit solution. The following

section explains the evolution strategy for each independent vector in the matrix.

(A) Mutation

The variation strategy of the filter involves random normal perturbation of the object pa-

rameter, hi, between the preset limits decided by hlim
i . The mutation incorporates progres-

sive reduction and occasional bursts in standard deviations of the perturbation, Eq.(4.10).

This can be seen as analogous to the temperature surges in simulated annealing (SA) and

has shown empirically better results than other variation methodologies.

h
′

i = hi + N

(
0,

hi

mod(Gf
id, i)

)
(4.10)

where Gf
id is the Gid gain at frequency f , h

′

i is the mutated coefficient value of hi and

N(µ, σ) represents a normal distribution function with mean µ and variance σ as shown

in Eq.(4.11).

N (µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(4.11)

Fig.4.9 shows the standard deviations for the mutation of the coefficients for a symmetric

test filter. The test case is of length p = 21. Note that the values decrease with the

coefficient number. The heuristic for this being that the upper bound of hj
lim forms a

closer estimate of the ideal filter coefficients for near mean coefficient numbers than the

farther ones the deviation between which can be modeled close to (4.11).

(B) Evaluation

The evaluation of the coefficient set is based on the fitness value computed by summing

up the absolute deviations of the evolved gain Gev from the expected gain, Gf
id over the

entire frequency spectrum using the isolated filter hardware.

ξcurr(s) =
M∑

i=1

[Gev(i)−Gid(i)] (4.12)

This evaluation shown in Eq.(4.12) is unlike in [Tufte and Haddow (2000)] where rather

than evaluating the entire frequency spectrum, specific sinusoids are used for fitness eval-

uation.

(C) Selection and Termination

59

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 4.9: Decreasing σ with increasing coefficient numbers j in the normal random muta-

tion. The tallest peak stands for the mean coefficient whose deviation is the least

and the deviation increases with reducing coefficient index

The selection of the chromosome set for every, parallel macro-evolution stage is based

on the overall fitness criterion which is terminated after a pre-determined best fitness has

been reached or when the fitness improvements over the previous generations are not

substantial. Eq.(4.13) is used to estimate δstep for the GA termination.

δstep =






0 if ξcurr < ξbest

0 if (ξcurr − ξpast) < δmin

δnorm
step Otherwise

(4.13)

If the difference between the current fitness estimate, ξcurr, and the best estimate over a

pre-determined set of iterations, ξpast, does not exceed δmin, a minimal distinction crite-

rion, the genetic algorithm is terminated. Hence obtaining the required filter coefficients.

The filter architecture is presented as a flow diagram in Fig.4.8. The user inputs the

parameters as described in Step 2. The initial coefficient estimation occurs as explained in

Step 1. This limits the search space. Step 3 is the IP generation which is controlled by the

UI as shown. The genetic evolution step is shown as a separate block. Mono frequency

sinusoidal samples spanning the spectrum are input to the filter with the initial estimate

of the coeffients (tap weights). The FIR filter operation yields an output sample stream

60

y[n] which is used to estimate the gain as shown in Eq.4.10. The gain is evaluated based

on the maximum average output of the stream y[n] when the input stream, x[n] has unit

amplitude, mono-frequency, spectrum spanning sinusoids. This evaluated gain is used to

estimate the fitness and finally decide the termination as shown in Eq.(4.13) above.

y[n]

x[n]

Monofrequency

 Samples

Unit Amplitude

To GA Evaluation

Approximate

Evaluated Gain

G (i)
ev

 System Under

Evolution (SUE)

Fitness Evaluator

 = peak Avg (y[n])G (i)
ev

Fig. 4.10: The fitness evaluator for the system under evolution.

4.4 Intrinsic Design

Intrinsic (or hardware) design of evolvable systems has been an issue of great interest in

recent times. However the implementation complexity of traditional GAs make it very

difficult to translate the algorithmic design into hardware. Insights into approximations

and simplified heuristics are essential for effective hardware translation. In [Redmill and

Bull (1998)], Redmill and Bull use the Primitive Operator Directed Graph (PODG) rep-

resentation to simplify the design. The GA is used to provide a Non Dominated Set

(NDS) of solutions. However the entire FIR structure is evolved from scratch. In [Miller

(1999)], Miller follows a similar approach using gate arrays. He points out the difficul-

ties in hardware implementation and falls back to extrinsic evolution. Tufte and Haddow

[Tufte and Haddow (2000)], propose the Complete Hardware Evolution (CHE) imple-

mentation of the GA pipeline. But their implementation description is only a traditional

GA. The Evolutionary System on Chip (ESoC) serves to address this lacking balance be-

tween convergence speeds and implementation practicality. In the following sections, we

highlight the implementation mechanism at module level hardware logic for the previ-

61

G(i)

G’ (i)

Digital Integrator

Normal Random Generator

WE

Reg. File

Memory

Stack

 Uniform Random Switch

+ ++

h 0

h n-1

h n

h
n + + ++ h

1
h

0
h

n-1

n-1

2
O n

2
O

<

past
(s)

<

-

G’ (i) =
max(y(n))

 x(n)

[G’ (i) - G(i)]
2

+
Error

(s)best
(s)

h : Found Bestj

O’

G == 1
 Mic

O’

N
j

0,
h j

G
min

1-j

G ++
 Mic

h
j

Lim
0 -

+

G Ideal

f norm

1

max
h

h
j

Lim

maxh

fcutoff
+

Setup
S

max
h

(N+1)/2

+

abs
j+1

Lim

abs
j+1

Lim

1

1

0

SW = N(0,1)

O’

Fig. 4.11: Macro-Evolutionary System on Chip

62

ously described two stage heuristic evolution of the FIR filter. We demonstrate that the

filter is self sustaining and independently evolving. The reconfiguration and adaptation

times for the filter are quite practical and the hardware architecture described can form a

backbone for evolution of FIR filters in many real life applications. The degree of scala-

bility and the level of parallelism in the design are customizable and provide a flexibility

for fast convergence of results keeping the evolutionary genetics practical.

4.4.1 The Evolutionary System on Chip (ESoC):

In the following sections, the chapter proceeds to present details of the hardware imple-

mentation of the two stage evolution mechanism described in the previous section. In a

practical Evolutionary System on Chip (ESoC), we have a macro-evolution stage for a

faster but coarser convergence and a micro-evolution stage for more accurate coefficient

estimates with slower convergence rates.

Macro-Evolution Stage Fig.4.11 shows the Evolutionary System on Chip (ESoC) ar-

chitecture that implements the GA. In other words, all the heuristics proposed in the pre-

vious sections are translated into hardware and shown implementable on a structured

FPGA/ASIC platform.

The population generation block The population generator integrates the ideal gain

contour specified by the user w.r.t the normalized frequency to determine the maximum

coefficient value. This is then randomly switched using the Normal Random, N(0, 1),

switch. This is multiplexed through to the filter in the first macro-generation.

The evolution and filtering block The isolated filter, which comes offline temporarily,

filters out a stream of spectrum spanning sinusoidal inputs to determine the correspond-

ing outputs. The filter coefficients are the coefficient limits during the first iteration and

the best fit coefficients, hbest
i , progressively. The mutation of the coefficients occur as in

Eq.(4.10). The normal random generator is again modulated with an intrinsically self-

adaptive strategy parameter. The deviation space is [0, |hlim
i |] in every macro-iteration.

The filtering block used in the design is the broadcast architecture which provides a

pipelined and fast filter implementation to evaluate the fitness span over the entire spec-

63

trum of frequencies in realistic time frames.

Evaluation and Selection block The fitness evaluation for multiple frequencies is done

using the multiplier and accumulator. This evaluated fitness ξcurr(s) is compared against

the best available fitness value ξbest(s) or with the previous fitness value ξpast(s) to ei-

ther terminate the macro-evolution or to update the coefficient sets hpast
i with the current

(more) fit coefficients, hcurr
i , respectively, Eq.(4.13). This comparison records the best

coefficient set by write enabling (WE) the Coefficient Register File (CRF) from which

the coefficients are read out to be used in successive generations.

Micro-Evolution Stage The Micro-evolution stage of the adaptive filter is shown in

Parallel Macro Evolution

(i+1)

(i+n-1)

j: Index

X(n)

G(i)

WE

Variation

(i)

(i+1)

(i+n-1)

(i+n)

Mac Evo

Mac Evo

 Initial

Population

(Heuristic)
Error

(s)

(i)

Error

(s)

(i+n)

best
(s)

h
(i)

min

h min

h min

h
(i+n)

min

i

i+1

Mux

i+n-1

i+n

1

0

Error

(s)
Min

G ++
 MicG == 1

 Mic

h
j

Lim
- h -

j

Lim

h : Found Bestj

<

past
(s)

<O’

Error

(s)

h 0

h n-1

h n
O’

+
h

n

+ ++

+ + ++ h
1

h
0

h
n-1

n-1

2
O n

2
O

N
j

0,
h j

G
min

1-j

[G’ (i) - G(i)]
2

-

+

G’ (i) =
max(y(n))

 x(n)

Fig. 4.12: Parallel and Scalable Micro-Evolution Stage

Fig.4.12. The parallel ESoC design is a set of Macro-Evolution stages running in paral-

lel over a customized number of parallel processes. These arrive at their own respective

fitness values. The minimum fitness, ξj
min, among them is chosen to be the best fitness

and the micro-stage runs another GA very similar to the one in the macro-stage using the

64

hbest,mac
i as the initial coefficient estimate. The sole difference between the macro and the

micro stages is that the search space for the micro stage is [−hlim
i , hlim

i]. This makes this

stage a little diverse in search albeit very precise. The convergence of the micro stage of

evolution is a little slow compared to the macro stage. However this is faster when run in

unison with the macro stage than when run alone.

Parallelism and Scalability in the design The proposed design has a high degree of

customizable parallelism and scalability. This is reflected in the number of macro-stages

which could be used for the GA. The trade-offs in this choice are speed and accuracy.

This customizable similarity among the macro and micro stages is advantageous to the

effect that the same filter and hence the GA can be run over multiple cycles providing

good hardware re-usability.

Built in Error Tolerance (BiET) Isolated self repair is a built in feature of the design.

The advantage of the design is that any error occurring in the system coefficients after

it has evolved and is running on field can be easily corrected by re-evolving the filter

. This provides a robust architecture immune to externalities. This BiET has important

applications in noise cancellation and adaptive channel equalization.

4.5 Experimental results

The results presented here are from the design experiments done using the architecture

in Sec.4.4. The entire ESoC architecture shown in Fig.4.11 and Fig.4.12 was emu-

lated on MathWorks Inc. Matlab Version 7.0.0.19901(R14) and was run on a RHEL

Linux workstation with a 3.0 GHz Pentium IV processor. Fig.4.13 and Fig.4.14 show

the macro and micro fitness progress of some sample filter cases. An initial choice for

a test filter was with cut-off frequencies fcutoff = 0.22, 0.33,0.44, 0.66 and band gains

Av = 10.0193, 106.667,203.314, 300 respectively, length p = 21 and sampling frequency

fs = 18 × 103Hz. Fig.4.15 1 and Table.4.1 and Table.4.2 show the response charac-

1scaled/fs normalized samples. The fitness is scaled w.r.t the best fit value based on the selection criterion

in Eq.(4.13)

65

Fig. 4.13: Macro and Micro fitness evolution progress. Test case with p : 21, δs/p :
[15, 250, 15] and fs/p : [0.11, 0.2]

Fig. 4.14: coarser case with p : 21, δs/p : [320, 90, 100, 320] and fs/p : [0.1, 0.25, 0.43, 0.5]

66

teristics. The algorithm converged within less than 100 generations (compare with 1171

generations in [Tufte and Haddow (2000)]). Fig.4.15 shows the expected frequency re-

sponse of the actual filter, the response obtained from the Parks-McClellan algorithm

(remez exchange in Matlab) and the evolved filter response using our genetic methodol-

ogy. The response characteristics are within reasonable practical specifications and with

an acceptable adaptation latency. Fig.4.16 shows the macro-fitness evolution where the

fitness values evaluated using the algorithm progress w.r.t time.

Fig.4.17 shows the frequency response characteristics and Fig.4.18 shows the macro-

fitness evolution of a band-pass filter case with cut-off frequencies and band gains as

fcutoff = 0.1, 0.11, 0.22, 0.33, and Av = 10, 300, 300, 10 respectively, length p = 21

and sampling frequency fs = 18 × 103Hz. Fig.4.21 shows the micro-fitness evolu-

tion of the filter. The micro-evolution stage fine tunes the convergence of the

Fig. 4.15: Frequency response evolution progress. Test case with coarse spec p : 21,

δs/p:[10.0193, 106.667, 203.314, 300] and fs/p : [0.22,0.33, 0.44, 0.66]

macro stage. The refinement is systematic and typically stops in fewer iterations than

the macro-evolution stage. Fig.4.19 shows a low pass filter characteristic, Fig.4.18 shows

the Macro fitness evolution and Fig.4.22 shows the Micro fitness evolution progress.

The filter was designed using cut-off frequencies fcutoff = 0.22, 0.33, 0.44, 0.67, band

gains Av = 199.9873, 136.6667, 73.3460, 10, length p = 21 and sampling frequency

fs = 18 × 103Hz. Implementation of the adaptable genetic filter on a dedicated ASIC

67

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Macro generation number

S
c
a

le
d

 m
a

c
ro

 f
it
n

e
s
s
 e

v
o

lu
ti
o

n
parallel stream 1
parallel stream 2
parallel stream 3
parallel stream 4
parallel stream 5

parallel stream 6
parallel stream 7
parallel stream 8
parallel stream 9
parallel stream 10

Fig. 4.16: Macro fitness evolution progress. Test case with coarse spec p : 21,

δs/p:[10.0193, 106.667, 203.314, 300] and fs/p : [0.1, 0.11, 0.22, 0.33]

Fig. 4.17: Frequency response evolution progress. Test case with p : 21,

δs/p:[10, 300, 300, 10] and fs/p:[0.1, 0.11, 0.22, 0.33]

68

5 10 15 20 25
0

0.5

1

1.5

Macro generation number

S
c
a

le
d

 m
a

c
ro

 f
it
n

e
s
s
 e

v
o

lu
ti
o

n
parallel stream 1
parallel stream 2
parallel stream 3
parallel stream 4
parallel stream 5

parallel stream 6
parallel stream 7
parallel stream 8
parallel stream 9
parallel stream 10

Fig. 4.18: Macro fitness evolution progress. Test case with p : 21, δs/p : [10, 300, 300, 10]
and fs/p:[0.1, 0.11,0.22, 0.33]

Fig. 4.19: Frequency response evolution progress. Test case with p : 21,

δs/p:[199.9873,136.6667, 73.3460, 10] and fs/p : [0.22, 0.33, 0.44, 0.67]

69

Fig. 4.20: Macro fitness evolution progress. Test case with p : 21,

δs/p:[199.9873, 136.6667,73.3460, 10] and fs/p :[0.22, 0.33,0.44, 0.67]

would require very short reconfiguration times with an acceptable convergence precision.

Table.4.1 presents the coefficient sets for varying filter lengths and specifications before

and after evolution. The table also gives comparisons with the software evaluated coeffi-

cients using the approximate remez-exchange algorithm in Matlab. The Parks-McClellan

algorithm uses the Remez exchange algorithm and Chebyshev approximation theory to

design filters with an optimal fit between the desired and actual frequency responses [Ra-

biner et al. (1975)]. The algorithm maximizes the error between the desired frequency re-

sponse and the actual frequency response characteristic. Filters designed this way exhibit

an equiripple behavior in their frequency responses and are sometimes called equiripple

filters [Rabiner et al. (1975)].

Fig.4.13 and Fig.4.14 show the evolution of the filter fitness over the genetic itera-

tions for some sample filters. They demonstrate the evolution speed of the filter coef-

ficients. From the results obtained, we conclude that the filter evolution performs best

for sharp cut-off filters. Arbitrary response landscapes are evolved to a far better preci-

sion than other approximate algorithmic designs. The major strength in the entire ESoC

heuristic however lies in the practicality and robustness of the design which can provide

on-line self adaptation within the hardware with reduced iterative effort. The implemen-

70

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Micro generation number

N
o

rm
a

liz
e

d
 m

ic
ro

 f
it
n

e
s
s
 e

v
o

lu
ti
o

n Micro Evolution Progress

Fig. 4.21: Macro fitness evolution progress. Test case with p : 21, δs/p : [10, 300, 300, 10]
and fs/p : [0.1, 0.11, 0.22, 0.33]

Fig. 4.22: Micro fitness evolution progress. Test case with p : 21, δs/p :
[199.9873, 136.6667, 73.3460, 10] and fs/p : [0.22, 0.33, 0.44, 0.67]

71

tation of the genetic method described in this work is practically feasible since it has

simpler operations. This is easily implementable when compared to complex transfor-

mations and trigonometric function evaluations in other approximate algorithms like the

Parks-McClellan. The complex operations pose a major challenge to the implementation

feasibility of these other approximate algorithms.

An extension of this work may involve an evident method of reducing the hardware

costs by restricting the filter coefficients to integers. This simplifies the filter design with-

out mitigating its performance. This design approach has been explored in many recent

research works [Sundaralingam and Sharman (1997)][Suckley (1991)][Redmill and Bull

(1998)]. This has also involved exploration of the design using evolutionary algorithms.

The current work has furthered this design simplification and approach. The ingenuity

of this work lies in the deterministic methods presented for generation of the genomic

population and mutative variations while keeping faster convergence speeds for filter co-

efficients making them practical design choices with low implementation complexities and

reduced latencies. Also the hardware architecture (ESoC) presented in Sec.4.4 has a high

degree of parallelism and scalability. In [Torresen and Vinger (2002)], a reconfigurable

switching architecture for filters is presented which could be effectively used in tandem

with the ESoC design of Sec.4.4 to make the evolutionary switching more effective. In

[Haseyama and Matsuura (2006)], Haseyama and Matsuura present a novel method for

tuning the filter coefficients to greater floating point precision. The method incorporates

Simulated Annealing (SA) with the GA for coefficient quantization. The results demon-

strated in Sec.4.5 from the ESoC design could be bettered by cascading a second stage

of the GA-SA tuning routine presented in [Haseyama and Matsuura (2006)] if the ESoC

filter needs to be extended to floating point precision. This may be seen as a design en-

hancement to the ESoC methodlogy.

4.6 Summary

The designs and results set out in this chapter clearly describe the implementation tech-

niques for self-adaptive FIR filters with an arbitrary response. It proposes the use a mod-

ified genetic algorithm for the same. Deterministic heuristics in filter evolution at various

72

Table 4.1: Coefficient sets for filter test cases

filt
(1−5)
testcase hj , halfset p

hj
evo [26,28,31,0,-1,25,38,-16,-59,-11,84] 21

hj
rem [-1,2,2,0,0,0,-6,-7,16,55,84] 21

hj
evo [14,-1,17,18,20,22,25,0,-1,85,105] 21

hj
rem [-126,62,57,58,62,68,74,79,84,87,108] 21

hj
evo [61,-41,-1,-36,-76,47,84,26,-130,-20,187] 21

hj
rem [1,-2,-2,1,0,1,10,11,-24,-84,186] 21

hj
evo [0,22,33,21,-24,-39,0,-10,-26,0,39] 21

hj
rem [55,-11,-25,-39,-43,-35,-18,1,17,26,38] 21

hj
evo [140,-50,157,-77,-33,-90,200,-92,0,-134,282] 21

hj
rem [-19,4,9,13,15,12,6,0,-6,-9,290] 21

Table 4.2: Coefficient evolution results over mac/mic generations for test filter cases -

fs/p = stop/pass band cutoffs and δs/p = stop/pass band gains

filt
(1−5)
testcase f

(norm)
s/p δs/p NMac/Mic

hj
lim 0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 -

hj
evo 0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 65/26

hj
rem 0,0.22,0.33,0.44,0.67,1.0 200,199.99,136.67,73.4,10,10 -

hj
lim 0,0.1,0.1111,1.0 400,400,10,10 -

hj
evo 0,0.1,0.1111,1.0 400,400,10,10 46/7

hj
rem 0,0.1,0.1111,1.0 400,400,10,10 -

hj
lim 0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 -

hj
evo 0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 84/5

hj
rem 0,0.22,0.33,0.44,0.66,1.0 10,10,106.67,203.3,300,300 -

hj
lim 0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 -

hj
evo 0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 70/13

hj
rem 0,0.1,0.11,0.22,0.33,1.0 10,10,300,300,10,10 -

hj
lim 0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 -

hj
evo 0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 126/98

hj
rem 0,0.1,0.11,0.22,0.33,1 300,300,200,200,300,300 -

73

stages show a praticality of implementation with fast convergence rates. A heuristic based

limitation of the initial search space for the filter coefficients(tap weights) reduces the con-

vergence latency. The maximum (mean) coefficient value, the filter cut-off and sampling

frequencies and a 1
x

functional model is used to restrict this search domain. The Genetic

Algorithm (GA) used, incorporates a mutation of the strategy parameter based on a ran-

dom normal perturbation which is modulated based on the coeffficient number with a sign

selecting switch. The Evolutionary System on Chip (ESoC) design presented in Sec.4.4

provides a clear, detailed and structural architecture for the implementation of the evolu-

tionary architecture on a standalone hardware platform. The ESoC architecture provides a

high level of parallelism and scalability which typically lack in the design of evolutionary

systems. The need for practical fault-tolerant adaptive filters is also addressed. The solu-

tion presented here is a complete hardware evolution model which is robust and speedily

self-adaptive. With the advent of modern safety critical systems, ESoC might be the right

direction to take. In this context, the proposed technique has significantly large practical

relevance in many real life applications.

74

CHAPTER 5

A SEU TOLERANT DISTRIBUTED CLB RAM FOR

IN-CIRCUIT RECONFIGURATION

5.1 SEUs and FPGAs

Reconfigurable computing and adaptive hardware is an emerging technology for many

performance critical applications such as in defense and aerospace. After a discussion of

the application of genetic algorithms to VLSI design in the previous chapters, we pro-

vide insights into the design optimizations using redundant logic elements within a spe-

cific reconfigurable hardware platform with a lot of promise to provide fast and reliable

on chip-memories for many critical applications. Increasing use of Field Programmable

Gate Arrays (FPGAs) in these has necessitated an enhanced degree of fault tolerance

due to harsh operation environments. Many high reliability systems today entail error

detection and correction as an integral component. A Single Event Upset (SEU) [Actel

(December 2002)] is a common fault in SRAM-based FPGAs that operate in the presence

of external radiation. These errors are particularly troublesome for memory elements as

they store and propagate bits throughout the circuit [Mocanu and Oliver (1999)]. Be-

sides error resilience, high performance memories demand faster operation speeds. Use

of on-chip Configurable Logic Block (CLB) buffers for high speed single-port and dual-

port RAMs is one popular solution for reduced latencies in memory design [XAPP464

(March 2005)][Reddy et al. (2005)]. CLBs are functional elements in FPGAs for con-

structing logic circuits [XAPP151 (October 2004)]. A Xilinx Virtex CLB is made up of

Slices which contain logic cells, the interconnection and configuration of which provides

a specific functionality. Blocks of RAM within CLBs can be used to implement on-chip

synchronous memories [XAPP464 (March 2005)] for high operation speeds and reduced

routing overheads. Fault tolerance of these Distributed RAMs (DRAMs) is a vital require-

ment in mission critical systems [Miron Abromovici (2001)]. Hardware redundancy for

fault tolerance is a resource intensive solution. This involves duplication of logic known

as Doubling with Comparison (DWC) which has a redundant area investment, power con-

sumption and pin count. Time redundancy, which involves repetition of a computation on

the same circuit, is effective only in the detection of highly transient errors (with a perfor-

mance penalty) and hence cannot be used to detect errors in storage elements[Reddy et al.

(2005)]. Error detection codes such as Hamming codes are used in Xilinx Virtex Devices

[XAPP645 (February 2004)] to detect SEUs in SRAM configuration memory. However in

[XAPP645 (February 2004)] there is no consideration of the fact that SEUs affecting the

Hamming logic itself may make the entire system unreliable. In this chapter we evaluate

a technology dependent optimization that exploits the presence of unused blocks of RAM

(BlockRAM) and Tri-State Buffers (BUFTs) in the Xilinx Virtex architecture. The aim

is to provide a high speed, SEU-tolerant, on-chip memory using redundant elements on

the Virtex FPGA. Single Event Transients (SETs) are short duration metastable glitches

which tend to corrupt logic states. SETs have an effect on combinational outputs based

on load capacitances. Transient pulses higher than half Vdc (the rail voltage) tend to prop-

agate in buffers. However the probability of their occurance and propagation in limited

by the critical charge induction of 0.02pC or a radiation intensity of 2Mev − cm2mg for

the worst case [Course (2002)]. BUFTs in the Virtex architecture, although impervious

to SEUs are susceptible to SETs but with a very low probability. These are a topic of

transient analysis and short duration stability and are not considered in our discussion of

buffer (BUFT) radiation stability in this chapter. SEUs or soft errors have a ground level

upset rate of 2 × 10−12 upsets/bit-hr [Normand (December 1998)] and probabilities of

Multiple Event Upsets (MEUs) tend to down shoot from this low value to sub-atto rates.

BUFT configuration is hardwired with no stored configuration bits. Hamming is a tech-

nique for detecting and correcting single bit soft errors in transmitted data [Ou (2004)].

Hamming Error Correction Control (ECC) requires that j parity (p) bits (or check bits)

be transmitted with every i data (d) bits. The algorithm is called a (i + j, i) hamming

code, because it requires (i + j) bits to encode i bits of data. The goal of the Hamming

code is to create a set of parity bits that overlap such that a single-bit error (the bit that

is logically flipped in value) in a data bit or a parity bit can be detected and corrected.

Appendix. C describes the hamming code and ECC in detail. In the following sections

we describe a fault tolerant memory design incorporating the Hamming ECC followed by

76

its applications in Reconfigurable hardware.

5.2 Distributed CLB RAMs

BlockRAM in a Xilinx Virtex FPGA is a 18Kb dual-port RAM which can be configured

with various data/address aspect ratios such as 16K × 1 bit, 4K × 4bits, 2K × 9bits

or 512 × 36bits. Xilinx Virtex-II Pro FPGAs incorporate 444 blocks of such RAM

[XAPP151 (October 2004)] that can be used as lookup tables to store data and serve as on-

chip memory. With two BlockRAMs occupying as much area as 24 CLBs or 192 LUTs

[XAPP151 (October 2004)], the BlockRAM cells may not seem to be a silicon-area effi-

cient solution for on-chip memories at first. However, since 444 of these BlockRAMs are

anyhow integrated on the chip die but not used in typical designs, they can be considered

free [XAPP258 (Januray 2005)]. FPGA Tri-State Buffers (BUFTs) in the Virtex archi-

tecture are hard wired AND-OR logic elements which are often unused in logic designs,

Fig.5.2. In this chapter, we demonstrate a cross connection of these BUFTs to produce

SEU proof Hamming functions for Error Correction Control of DRAM memories. The

advantage of using BUFTs for designing the ECC logic is that their functionality is not

based on the contents of any SRAM cells (no configuration bits), which may get upset.

The only aspects of the BUFTs which are controlled by configuration memory cells are

the routing pips which connect them together [C Carmichael and Caffrey (1999)]. Upset-

ting one of these cells would only result in temporarily disconnecting one of the inputs

or outputs of the BUFTs. Such an upset would not affect the output of the ECC logic.

In fact, this ECC design is completely impervious to single upset (SEU) failure. Use of

these BlockRAMS for on-chip buffers and BUFTs for ECC is the key contribution of this

chapter. These do not reduce the logic or RAM in the circuit as the entire methodology is

based on unused BlockRAMs and BUFTs. As a byproduct of this fault tolerant memory

design, we also propose a novel in-circuit reconfiguration methodology for Fast Dynamic

Reconfiguration of FPGA Devices made feasible by the re-programmability and read-

back capabilities of the Xilinx Virtex architecture. This run-time reconfiguration makes

FPGA designs fault tolerant and bestows them with functional evolution. An application

of this methodology could be in Network on Chips (NoCs) which require a large number

77

of high speed on chip buffers.

5.3 Fault Tolerant DRAM

The Error Correction Control (ECC) functions described in our DRAM model use ham-

ming codes. This involves transmitting data with multiple check bits and decoding the

Bit addressable Memory

User Interface

Parity Generator Parity Checker

Data Control Ack Address

Correct

Mul

Err
i+j i Data

Control Clock
Address

FPGA

Hamming Code

+

Data

Data bits

Check bits

j Hamming Code

Data

Data + Parity

Correct

output

Correct mul_error

i i+j

i+j

i+j

i+j

i

i

i+j

Fig. 5.1: The Proposed Hamming ECC Fault Tolerant DRAM Memory Model

associated check bits when receiving data to detect errors. The check bits are parity bits

generated in parallel by XORing certain bits in the original data word. If bit error(s) are

introduced in the codeword, several check bits show parity errors after decoding the re-

trieved codeword. The combination of these check bit errors display the nature of the

error. In addition, the position of any single bit error is identified from the check bits.

Fig.5.1 shows the system architecture of the proposed memory design. The bit address-

able memory can read/write a single bit data from the given address. This incorporates

the use of CLB RAMs. The parity generator takes as input i bits of data and gives back

a (i + j) bits of a data+parity word. The parity checker takes a (i + j) bit word and

checks it for errors. If no errors are detected, the correct pin is set. In case of a single bit

78

error, the pin is reset and the corrected data is sent to the user as well as to the memory

for correction. For multiple errors, the correct pin is reset, mul_error is set and the data

output is set to high impedance.

Modeling with Buffers: In any self correcting mechanism, the error correcting com-

ponent should not be susceptible to errors. As described in Sec.5.2, buffer gates in the

FPGA (BUFTs) are not susceptible to soft errors. We have used buffer gates entirely to

model the parity generator and the hamming parity checker. Buffer gate notif1 was used

to construct all the other required gates. The buffer gate notif1 and the wor construct

in verilog were used to implement the nor gate, which is universal. Using this, all other

gates were constructed.

Two input NOR gate construction: Let the inputs be a,b. To obtain (a + b)
′

, we pass

a + b to notif1, with the control being 1. The verilog code is as follows.

module my$_$nor(a,b,c)

input a,b;

output c;

wor temp;

assign temp = a;

assign temp = b;

notif1 n1(c,temp,1);

end module

The If-Else construct: The if-else construct is needed to perform toggling of bits if

found to be erroneous. notif1 gates are used and a wor verilog construct is required. The

verilog code is as follows.

module my$_$if(a,b,c) // if (~b)

input a,b; // then return

output c; // a else

wor c; // return (~a)

wire na,nb;

notif1 n1(na,a,1);

79

notif1 n1(nb,b,1);

notif1 n1(c,a,nb);

notif1 n1(c,na,nb);

end module

A

A

A

A

A

A

Fig. 5.2: The Virtex Tri-State Buffers: Equivalent to Wired AND-OR Logic.

Operation: The model proposes a fault tolerant memory system that can detect and cor-

rect single bit errors and detect multiple errors. The user interface provides an abstraction

of the bit addressable memory as a byte addressable memory and takes care of error de-

tection and correction. The whole process is transparent to the user. The basic operations

are read, write and correct. The order of priority is write > correction > read.

Whenever the user wants to write to memory, the address and data are supplied and the

write_enable pin is set. The parity generator supplies the (i + j) bit word (data + parity)

to be written into memory. For a read operation, the user provides the address and sets

the read_enable pin. Now if the memory is not busy. i.e no write/correction is being

performed. A (i + j) bit-word is read. The parity checker finds out the validity of the

word. In case of no error, the correct pin is set, the i bit data is extracted and given to the

user. If a single error has been detected, the correct pin is reset, the correction process is

triggered and then the user is supplied with the corrected value. For multiple errors, the

correct pin is reset, mul_error pin is set. As the user should not be provided with the

wrong value, the output is set to high impedance. The read-write timing diagram for the

fault tolerant memory model is shown in Fig.5.3.

80

Configure dev with encoded bit stream. Copy it into Mem: i [D]

Compute Hamming ECC and Syndrome Matrix for Correction.

WCLK

WE

DATA IN

ADDRESS

DATA OUT

T

T

T

T

T

T T

T TT

WPS

WSS

DSS

ASS

ILO WOS ILO

DHS

AHS

WHS

Fig. 5.3: The DRAM ECC Cycle Clock Timing Diagram.

5.4 Application: In-Circuit Reconfiguration

A key application of the proposed fault tolerant memory design is an in-circuit recon-

figuration methodology for LUT based FPGA designs. Applications which abundantly

employ reconfigurable systems, for example space applications, demand a severe neces-

sity for fault tolerant architectures. Once in space, FPGAs are susceptible to several kinds

of errors like: Single Even Upset (SEU), Single Hard Error (SHE), Single Event Burnout

(SEB), Single Event Gate Rupture (SEGR), Single Event Effect (SEE) and Multiple Bit

Upset (MBU). Except SEUs and MBUs, all the others cause permanent damage to the

hardware. As the probability of multiple errors occurring in the same system is infinites-

imal[Normand (December 1998)], the objective of our in-circuit reconfiguration model

is to correct a single bit error (SEUs) and to detect multiple errors using the memory

model described in Sec.5.3. For mitigating SEUs in FPGAs, numerous models have been

proposed in the literature, one of the most popular among them is the Triple Modular

Redundancy (TMR) [Kastensmidt et al. (2005)] which creates two extra copies of every

data element. To verify the correctness, a voter circuit is used which outputs the value

that is stored by at least two of the three copies. In case two of the copies are wrong,

the result of the voter circuit is erroneous. Thus, this model is unable to detect multiple

81

errors in two different modules. Moreover, having two extra copies is costly. Another

model (Cluster-based Detection of SEU-caused Errors in LUTs of SRAM based FPGAs)

uses simple parity to detect errors. Though this is the cheapest method to detect errors, it

can detect odd-errors only [Reddy et al. (2005)]. Yet another model [XAPP645 (Febru-

ary 2004)] performs single error correction and double error detection using Hamming

Codes. In this model, the errors detected are not corrected back into the memory. If an-

other error occurs in the same word, the model will detect it as a case of multiple error

though this condition can be prevented. A major problem with all these designs, as men-

tioned in Sec.5.2, is that the ECC logic itself may not be tolerant to radiation upsets. This

necessitates a robust ECC design impervious to SEUs. Our In-circuit Reconfiguration de-

sign (Fig.5.4) which uses the BUFT and BlockRAM memory model described in Sec.5.3

achieves this error resilience. The Hamming Error Correcting Code (ECC) [Appendix.C]

is capable of correcting single bit errors and detecting multiple errors. The above pro-

cess of handling error(s) is done by using additional check-bits that are clubbed together

with data-bits. An 8 bit data word, for example, requires 4 parity bits to handle single

bit errors and an extra bit to detect multiple errors. An example of the basic algorithm

is as follows - All bit positions that are powers of two are used as parity bits (positions

1, 2, 4, 8, 16, 32, 64 etc). All other bit positions are for the data to be encoded (positions

3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 17 etc). The parity bit at position 2k check bits in positions

having bit k set in their binary representation [Hamming (2008)]. For example, 1011 is

encoded into 01100110. Even parity is followed in the system description to follow. The

ftDRAM with the BUFT ECC which is resilient to SEU errors is used to store FPGA de-

vice configuration data. The stored ftDRAM configuration is error tolerant as the memory

is protected with a hamming ECC built using hardwire BUFTs in the FPGA. This stored

configuration bit stream is compared with the read back data from the FPGA device at

regular intervals. In case of an SEU in the FPGA device logic, the Hamming ECC routes

corrected configuration data to be written back to the device. The time utilized for the

reading of the device configuration, its correction and writing back is called the Mean

Time To Repair (MTTR). This In-Circuit Reconfiguration methodology is simple as well

as error tolerant.

82

 I

N

T

E

R

F

A

C

E

 Parity Generator

i [D]

i+j [P]

 Notif1 Hamming

i+j [P]

j [G]i [D]

Compare

i+j [P]

 Program Data

0

1

Readback Data

FPGA DEVICE

i [D]

j [G]

 XOR Bank

Comparator

 Notif1 Buffer

 Data + Parity Parity bits from DRAM

Data

0

1

i [D]

j [G]

j [G]

 DRAM Datai [D]

XOR Bank Compare

i [D] : DRAM Data

j [G]

i+j [P]

DRAM

0

1

 Sel Source

Syndrome: S j

 CLB

0

1

 Addr

 Readback

i [D’]

Hamming ECC

A

B

C

D

E

A: Programming Interface B: Parity Generation, Jbits Readback C: Data Comparator Block D: Error Correction Hamming ECC

E: Parity Generation at the Output and Comparison Block

 err_flag

 dev_write_data

Dev

dev_writeback_data

Fig. 5.4: The In-Circuit reconfiguration methodology using the ftDRAM.

83

5.4.1 Design Specifics

Fig.5.4 shows the system design of the in-circuit reconfiguration of FPGAs for fault toler-

ance. FPGA configuration bits are read back for SEU correction using In-Circuit Recon-

figuration (IR) as described in [Hoflich (2005)][Bolchini et al. (2007)] and [Lima et al.

(2003)]. Block A in the design distinguishes fresh FPGA configuration from IR for SEU

mitigation. The hamming ECC uses a codeword that is an (un)ordered union of the parity

and the data bit vectors. It is described by the ordered set (i + j, i). As an example,

let us consider a hamming codeword with i data bits and j parity bits concatenated as

(di, di−1 . . . d1, pj, pj−1 . . . p1).

Parity bits Given the data set D = (di, di−1 . . . d1) of i elements, we can define a j

element parity set P = (pi, pi−1 . . . p1) with a minimum number of check bits for single

bit error-correction constrained by Eq.(5.1).[XAPP645 (February 2004)]

i + j + 1 ≤ 2j (5.1)

The parity set may be defined as a modulo-2 sum of a preemptive subset of randomly

chosen k elements (dx, dy, dz . . . k elements) from D where
(

i
k

)
≥ j. This parity bit

generation and regeneration is done in Blocks B and E respectively in Fig.5.4.

Encoding The parity matrix, [P], which encodes a given data of i bits into a codeword, is

expressed in Eq.(5.2)

[P] = [D] • [G] (5.2)

where, [D] is the i bit data matrix and [G] is the generator matrix. The [G] matrix consists

of an identity matrix [I] and a creation matrix [C] of order i × (i + j) and is given by

[G] = [I : C]. The creation matrix is a concatenation of column vectors containing a 1 in

the row corresponding to each of the k data bits included in its computation and a 0 is all

other rows. The encoded data is stored in the CLB RAM designed in Sec.5.3 without the

ECC logic.

84

Decoding Upon receiving a dynamic reconfiguration request by the FPGA after a given

number of operation cycles, the Hamming codeword stored in the DRAM is compared

with the read back configuration data in Block C. Decoding of the Hamming ECC in a

situation without errors is straight forward. Disregarding the parity bits leaves us with

the data. For example, if an an encoding produces 1011010 as the hamming vector [P]

in a (7, 4) encoding scheme we have after pruning out the first 3 parity bits, 1010 as

the 4 bit data. In case of an error, which is detected by recomputing the parity bits, we

construct a j× (i+ j) parity check matrix [H] such that the jth row contains a 1 in the jth

column corresponding to the jth parity bit and all of the k data bits included in its parity

calculation. The parity check matrix is ordered as [H] = [C : I]. Multiplying the matrix

[H] of order j × (i + j) with the data code matrix of order (i + j)× 1 produces a matrix

[S] of order j × 1 called the syndrome. In other words, the data code vector multiplies

with the transpose of the generator matrix to produce the syndrome vector. This is shown

in Eq.(5.3)

[S] = [D, P] • [G
′

] (5.3)

If all the elements of the syndrome vector are zeros, no error is reported. Any other non-

zero result reflects the column in which the error has occurred in [H]. If the syndrome

vector elements correspond to the elements of the qth column of [H], it indicates an error

in the (q − j)th data bit which is corrected by inverting the vector corresponding to the

syndrome as shown in Block D in Fig.5.4. This corrected vector is passed on to the

XOR comparator to compare with the read back device bit stream. In case of an SEU

error, the DRAM configuration data is written back to the FPGA in the following device

configuration cycle else the existing FPGA configuration data is retained.

The Reconfiguration algorithm using the fault tolerant DRAM is shown illustrated in

5.4 and described in Algorithm. 5. The algorithm requires a FPGA read back capability

and a configuration map scan using an SelectMAP/ JTAG interface. A Mean-Time-to-

Repair (MTTR) requirement of at least m + n + p should also be ensured where, n is the

number of clock cycles to read back data from the FPGA device, m to read BlockRAM

data and p to write back device configuration data. A capture_enable flag is raised to

initiate correction and the config_data pointer holds the address of the last memory

location containing the device configuration data.

85

Algorithm 5 DYNAMICPARTIALRECONFIGURATION(n)

Require: In-circuit FPGA Configuration Read back.

Ensure: SelectMAP/ JTAG Boundary Scan/ µController.

Ensure: MTTR ≥ m + n + p

1: for all x such that 0 ≤ x < capture_enable do

2: for all y such that y ≤ config_data do

3: [D]y = [di, di−1 . . . d1]

4: [G]y = [pj , pj−1 . . . p1]

5: [P]y = [Dy : Gy]

6: mem_datay = [P]y //write memory

7: end for

8: for all z such that z ≤ mem_data do

9: if [G]z = Gmem
z then

10: return err_flag = 0

11: return Break;

12: end if

13: err_flag = 1

14: Sz = Pz •GT
z

15: for all y such that y ≤ i do

16: if [S]z == Dz then

17: return Break;

18: end if

19: dev_write_data = Dz

20: end for

21: end for // ECC Cycle

22: if err_flag = 1 then

23: return dev_write_back = dev_write_data

24: return Break;

25: end if

26: end for

86

mem_datay holds the parity matrix. z is also iterated upto the config_data pointer and

raises an error flag if there is a mismatch in the generator matrix calculated by the BUFT

ECC (Gz) and that stored in the memory (Gmem
z). In case of an error, if the syndrome

matrix, Sz, generated from the read back data matches the stored device configuration

data, there is no need for correcting that memory location. In case there is a mismatch,

dev_write_data is updated to Dz the original configuration data. This forms the correc-

tion part of the algorithm (ECC cycle). After error correction, if the err_flag is set to 1

at the end of the ECC Cycle (i.e at the end of m+n clock cycles), new data devwriteback

to be written back to the device is updated to the corrected write data dev_write_data.

5.5 Experimental Results

Table 5.1: Test cases with variable data word lengths for 1KB ftDRAM on Xilinx Virtex

II XC2VP2-7FG256 Device

D-Width # Slices # Slice FF 4-LUTs BUFTs TWCLK−min TCLKH−min

8 Bits 588 351 1022 30 6.237 nS 3.522 nS

16 Bits 645 365 1193 46 6.485 nS 3.370 nS

32 Bits 708 389 1307 78 6.876 nS 3.407 nS

48 Bits 756 414 1349 106 7.203 nS 3.422 nS

64 Bits 780 431 1382 118 7.082 nS 3.432 nS

Table 5.2: Test cases for variable memory sizes with and without error checks

Mem Size ERR CHK Slices Slice FF 4 i/p LUTs Min Period Max Thold

8×1KB no 458 286 831 5.206 nS 3.290 nS

8×1KB yes 588 351 1022 6.237 nS 3.522 nS

8×2KB no 766 484 1384 5.727 nS 3.290 nS

8×2KB yes 911 547 1663 7.370 nS 3.508 nS

8×4KB no 1462 768 2132 5.854 nS 3.290 nS

8×4KB yes 1543 940 2793 7.376 nS 3.522 nS

The fault-tolerant memory model using BlockRAMs and BUFTs was simulated on a

Xilinx Virtex II Pro platform FPGA Device XC2VP2-7FG256. The Hamming ECC was

87

implemented on the device using BUFTs and Table.5.1 shows the BUFT usage and clock

speeds for different data word sizes used by the ECC to generate parity information. For

word lengths beyond 64 bits, the BUFTs on the Virtex device were insufficient. However,

a 64 bit data word which constitutes about 16 BlockRAM addresses for a 4K × 4bits,

can be used to generate parity information for clustered memory addresses. This provides

error tolerance for data clusters in about 16 memory locations. Assuming this kind of

operation speed we have a typical clock period, TWCLK , of 7.082ns. Fig.5.5 shows the

operation cycles (device read, memory write, memory read and device write cycles) of a

typical In-circuit Reconfiguration (IR) model. Assuming an asynchronous memory read,

based on this operation cycle delays, we can estimate a Mean Time To Repair (MTTR)

of about p + 2 clock cycles, where p is the time taken to write back the data into the

device. Not including the programming time p in the MTTR computation, we arrive at

an approximate MTTR order of about 14.164ns. This repair time is quite less compared

to a configuration power cycle of about 20ms [C Carmichael and Caffrey (1999)] for

typical FPGA configurations. Also, typical off-times in FPGA space circuits can have a

tolerance of a few nano-seconds[Normand (December 1998)]. This quick MTTR cycle

would mean SEU tolerant FPGA logic which can be repaired at regular intervals to ensure

correct operation. This is built with the help of unused device elements (BlockRAMs and

BUFTs) along with lower off-times. Table.5.2 shows FPGA area occupancy and device

operation speeds for varying memory sizes on the FPGA. It shows a memory operation

with a clock period of about 7.376ns for a 4kb× 8bit DRAM.

5.6 Future Work

The technique proposed in this chapter is limited to the hugely popular Xilinx Virtex fam-

ilies of FPGAs which has flexible read back capabilities, large amount of unused Block-

RAM and radiation immune buffers (BUFTs)[C Carmichael and Caffrey (1999)][Xilinx

(2005)][XAPP258 (Januray 2005)]. The technique seeks to address SEU mitigation in

radiation intensive environments. Multiple upset (or MEU) probabilities in practical en-

vironments are infinitesimal [Normand (December 1998)]. However, they have a finite

probability of occurrence. The in-circuit reconfiguration technique proposed in this work

88

RE DEV

READ DEV DATA

RDATA MEM

RE MEM

WDATA DEV

WE DEV

(i+j) BITS: [P]

i BITS: [D’]

i BITS: [D]

Mean Time to Repair (MTTR)

nxT WPS

mxT WPS

pxT WPS

Fig. 5.5: The In-circuit Reconfiguration Timing Diagram.

helps in the detection of these using the ECC to raise an error flag which may be further

used to do offline correction. The choice of Hamming codes for an ECC procedure is

owing to the fact that this provides MEU detection and a simpler XOR implementation

using the BUFT gates. Comparison of different ECC implementations, online MEU cor-

rection and porting of the technique to various FPGA platforms is the future direction of

this work.

5.7 Summary

This chapter describes the top-down design of a robust, SEU tolerant Distributed RAM

(ftDRAM). The key benefit of the proposed memory design is that the it is built using

BUFTs and BlockRAMs which are resources left unused in typical FPGA designs. We

make use of the BUFTs to construct the Hamming corrector used an ECC the ftDRAM

design. This makes the ECC logic SEU proof unlike other designs in the literature which

make use of radiation prone CLBs to construct the ECC logic. Moreover, the use of

BlockRAMs within Configurable Logic Blocks (CLBs) for storing the FPGA configura-

tion data provides a very fast on-chip memory. As an application of the ftDRAM model,

an In-Circuit Reconfiguration methodology for SEU mitigation in systems exposed to

high intensity radiations is demonstrated. The stored configuration data in the ftDRAM is

89

compared with device bit streams read back from the FPGA at regular intervals of time.

An error in the device configuration is detected based on this comparison. This recon-

figuration model also enables us to perform online error correction by writing back the

correct configuration data from the ftDRAM. It is also demonstrated that the In-Circuit

methodology to has an estimated Mean Time to Repair (MTTR) of about 14.164ns for a

4kb× 8bit DRAM.

90

CHAPTER 6

EPILOGUE

6.1 Wrap Up

The chapters in this thesis have looked at a popular optimization technique called the

Genetic Algorithm (GA). After an introduction about the basic methods in GAs viz. IP

Generation, Variation (mutation and crossover), Evaluation and Selection, an emphasis

on the problem identification and modeling was placed in Chap.1. The importance of

reliable and accurate designs was outlined and the application of the genetic methods

to optimization at various levels of abstraction was demonstrated using the first three

problems:

1. Genetic transistor level optimization: A genetic approach to gateless custom

VLSI design flow.

2. Genetic gate level optimization: Vector parts and genetic search methods for

PDPE in digital circuits.

3. Genetic system level optimization: Hardware based genetic evolution of FIR fil-

ters.

4. System level Reconfigurable Design: A SEU tolerant distributed CLB RAM for

in-circuit reconfiguration.

Each of the these problems were modeled appropriately for a heuristic GA and circum-

stantial approximations were imbibed. Having given different design schemes for the GA,

the thesis wrapped up with a fourth optimization aside using reconfigurable hardware. In

the fourth problem, novel insights into exploitation of FPGA hardware was demonstrated.

The intent was to provide a reliable and robust on-chip memory system for many criti-

cal hardware applications. The upside to this design was the usage of redundant logic

elements in the FPGA platform for the memory design as well as the error correction

control.

6.2 Conclusions

Individual conclusions from the project parts are analyzed in their respective chapters.

An overall value addition of this work is in providing new methodologies for design at

different abstraction levels. The various concepts and examples presented in this thesis

demonstrate two major facts

1. Genetic Algorithms (GA) can provide reliable and optimal solutions to various

problems in VLSI design using problem specific heuristics.

2. Exploitation of redundant hardware resources on reconfigurable platforms can pro-

vide useful logic functionalities which may often be robust and fast.

Problem abstraction and modeling appropriately for a GA can be a major challenge in

evolutionary design optimization. Also, a choice of an appropriate fitness function is

quintessential for an optimal convergence of the GA. These two facts were exemplarily

shown using genetic cmos designs and the fir filter in Chap.2 and Chap.4 respectively.

These and the power virus problem in Chap.3 show that a heuristic variation aptly suited

for the problem at hand can speed up the GA. It can also lead to the exploration of a

larger search space eventually leading to the avoidance of getting stuck at local optima.

Besides the problem demographics and hardware dynamics exploited by the GA, designs

on reconfigurable platforms (like FPGAs) can be made more reliable and robust using

redundant on-chip logic elements which are unused in typical designs. The SEU tolerant

distributed CLB RAM described in Chap.5 has shown such a potential.

6.3 Future Work

Design exploration of the GA at the transistor, circuit and the system levels could be

leveraged more beneficially if the problem heuristics, models and evaluations are directed

by manufacturing and fabrication parameters. A hardware application of a GA is strictly

dependant on these factors for accurate modeling. Future work on this may account for

realistic inputs from foundries and fields. The genetic cmos design and fir filters could be

enhanced by inputs from these. The firGA problem in Chap.4 relies heavily on a random

normal simulator which has been designed on hardware. As an extension of this work

92

other probability distribution functions could be used in the variation step. Also the eval-

uation methodology used in the firGA design relies on peak detection and approximate

IO peak value averaging for gain computation. This was to avoid the fourier transforming

and inverse transforming of the filters response for gain computation. A new accurate, yet

a simple methodology could be developed for the gain computation in the genetic design.

The power virus problem in Chap.3 can be extended by the application of the proposed

techniques at different abstraction levels viz the RTL and high level designs. Early and late

power estimates may benefit hugely from the proposed partitioning and genetic methods.

In Chap.5, the proposed ftDRAM design uses a simple hamming code to keep hardware

usage under control. The hamming ECC takes up a larger number of bits for encoding

compared to a few other existing ECC techniques. As an extension of this work, the

fault tolerant RAM design could be extended by using better error correction control

mechanisms.

93

APPENDIX A

CMOS LOGIC DESIGN AND THE IRSIM

SIMULATOR

A.1 Digital CMOS Logic Design

CMOS refers to both a particular style of digital logic design and a set of manufacturing

processes used to implement the circuitry on an integrated circuit (IC). CMOS circuitry

dissipates less power and is denser than other implementations having the same function-

ality. As its advantages grow over other process technologies, CMOS has seen more and

more of industrial focus and adaptation [CMOS (2008)].

V i V0

VDD

V i V0

VDD

O

Fig. A.1: Static inverter using different n and

p transistor representations

+V
DD

VOUT

PUN

PDN

(Pull Up Network)

(Pull Down Network)

Fig. A.2: Pull up-down networks in the static

inverter

A.1.1 Static CMOS Logic Design

CMOS gates are all based on the fundamental inverter circuit shown in Fig.A.1. Note

that both transistors are enhancement-mode MOSFETs; one N-channel with its source

grounded, and one P-channel with its source connected to +V dd. Their gates are con-

nected together to form the input, and their drains are connected together to form the

output. The two MOSFETs are designed to have matching characteristics. Thus, they are

complementary to each other. When off, their resistance is effectively infinite; when on,

their channel resistance is about 200 Ω. Since the gate is essentially an open circuit it

draws no current, and the output voltage will be equal to either ground or to the power

supply voltage, depending on which transistor is conducting [Bigelow (1996)].

When input A is grounded (logic 0), the N-channel MOSFET is unbiased, and there-

fore has no channel enhanced within itself. It is an open circuit, and therefore leaves

the output line disconnected from ground. At the same time, the P-channel MOSFET is

forward biased, so it has a channel enhanced within itself. This channel has a resistance

of about 200 Ω, connecting the output line to the +V dd supply. This pulls the output

up to +V dd (logic 1). When input A is at +V dd (logic 1), the P-channel MOSFET is

off and the N-channel MOSFET is on, thus pulling the output down to ground (logic 0).

Thus, this circuit correctly performs logic inversion, and at the same time provides active

pull-up and pull-down, according to the output state. This is as shown in Fig.A.2. The

VA VB

+VDD

VA

VB

Fig. A.3: Static CMOS NAND

A B A B A+B A.B

0 0 1 1 1 1

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

A + B = BA .

Fig. A.4: Truth table for NAND

CMOS concept can be expanded into NOR and NAND structures by combining invert-

ers in a partially series, partially parallel structure. The circuit in Fig.A.3 is a practical

example of a CMOS 2-input NAND gate and that in Fig.A.5 is a 2-input NOR gate. In

Fig.A.3, if both inputs are low, both P-channel MOSFETs will be turned on, thus pro-

viding a connection to +V dd. Both N-channel MOSFETs will be off, so there will be

no ground connection. However, if either input goes high, that P-channel MOSFET will

turn off and disconnect the output from +V dd, while that N-channel MOSFET will turn

95

on, thus grounding the output. The truth table for the NAND and NOR gates are shown

in Fig.A.4 and Fig.A.6 respectively [Bigelow (1996)]. This type of logic design is what

VOUT

VA

+VDD

VB

VA VB

V
C

Fig. A.5: Static CMOS NOR circuit

A B A B A.B A+B

0 0 1 1 1 1

0 1 1 0 1 1

1 0 0 1 1 1

1 1 0 0 0 0

A . B = A + B

Fig. A.6: Truth table for NOR

constitutes the static CMOS logic design. A variation of this is the dynamic or clocked

CMOS logic design. This style of logic design relies on a clock for its operation and is

explained in the following section.

A.1.2 Dynamic CMOS Logic Design

Dynamic CMOS logic is a clocked logic design style based on the CMOS logic family.

Although static CMOS logic is widely used for its high noise margins and relative ease of

design, it is limited at running extremely high clock speeds. For applications requiring the

fasted circuit speeds possible, dynamic CMOS logic has numerous advantages over static

CMOS including not only higher speeds but also significantly reduced surface area. The

advantages do not come without a cost however. Due to the nature of dynamic CMOS

logic, undesired effects can occur within the circuit unless extra effort is put into the

engineering design[Knoth (1997)]. The basic idea of dynamic logic is depicted in Fig.A.7

the output node (VOUT is pre-charged by a PMOS transistor during the LOW-phase of the

clocking signal clk. When the clock (φ) goes LOW the output is discharged by the n-block

or not, depending on its logic function. Due to the parasitic and interconnect capacitances

the output remains stable for some time also in the HIGH state. During the evaluations

cycle of the logic, the output is evaluated based on the transistor interconnection, very

similar to the static CMOS case. Unfortunately, cascading such dynamic gates would

96

V
OUT

PDN

(Pull Down Network)

V
DD

C
L

OI

OI

V
OUT

PDN

(Pull Down Network)

V
DD

C
L

OI

OI

O

V
A

V
B

Fig. A.7: Dynamic CMOS PDN

not work because, due to the pre-charging of the preceding stage, the inputs may be still

HIGH at the rising edge of the clock, which results in an erroneous discharge of the

following stage. Ways to circumvent exist [Jan M. Rabaey and Nikolic (2003)], [Schrom

(1998)] but are not discussed as a part of this appendix. However, the big advantages

OI
+ V DD

Time

Precharge Evaluate

Fig. A.8: Dynamic CMOS Clock

of this type of logic is that the inputs are connected only to NMOS transistors so that

the input load capacitance is much smaller. Therefore, dynamic logic is faster than static

CMOS. Furthermore, for complex functions the transistor count is almost halved. The big

disadvantages of this type of logic is the need for repeated charging and discharging even

when the inputs do not change their state. Therefore, dynamic logic consumes more power

than static CMOS despite the lower transistor count. Another problem is the sensitivity to

leakage current of the n-block (in the order of Ioff when the output is HIGH (during the

clock-HIGH phase). This imposes a lower limit to the clock frequency. Also, as the ratio

Ioff

Ion
is limited by the supply voltage VDD must be above a certain limit, which also limits

the power efficiency of dynamic logic. These problems can be alleviated to some extent

by using a positive feedback with a narrow PMOS transistor at the output buffer, which

97

then works like a latch. The extra charge needed to change the switch the latch causes

a usually small speed penalty. The precharge-evaluate operation cycles of the circuit are

shown in Fig.A.8 [Schrom (1998)].

A.2 The IRSIM Switch Level Simulator

IRSIM is a tool for simulating digital circuits. It is a “switch-level ”simulator; that is, it

treats transistors as ideal switches. Extracted capacitance and lumped resistance values

are used to make the switch a little bit more realistic than the ideal, using the RC time

constants to predict the relative timing of events. IRSIM shares a history with magic,

although it is an independent program. Magic was designed to produce, and IRSIM to

read, the “.sim ”file format, which is largely unused outside of these two programs. Parts

of Magic were developed especially for use with IRSIM, allowing IRSIM to run a simula-

tion in the "background while displaying information about the values of signals directly

on the VLSI layout. For “quick ”simulations of digital circuits, IRSIM is still quite useful

for confirming basic operation of digital circuit layouts. The addition of scheduling com-

mands put IRSIM into the same class as Verilog simulators. The current version of the

simulator is 9.7 [Edwards (2007)].

A.3 Modeling details

The first step in creating a .sim file for a circuit is to label all the nodes. Label power VDD

and ground as GND. IRSIM is not case sensitive and the cases will work interchangeably.

one can label the other nodes anyway he want. For the circuit in Fig.A.3, the inputs are

labeled VA and VB and the output node is labeled VOUT . The internal nodes are arbitrarily

labeled VC . When using IRSIM, it is helpful to have the labeled circuit schematic available

so that one can know the names of the nodes that one want to probe. The irsim_logic.sim

file for the above circuit is shown in Table.A.1.

In the net file, the transistor types occur first in the list followed by the gate, source and

drain nodes in that order. At the end of the list, the length and the width of the transistors

98

Table A.1: An example of a .sim file for the IRSIM simulator

line text

1 | units: 100 tech: scmos

2 |

3 | type gate source drain length width

4 | —— —— ——– ——- ——– ——-

5 | p VA VDD VC LVDDVC
WVDDVC

6 | p VB VC VD LVCVD
WVCVD

7 |

8 | n VA VOUT GND LVOUT GND WVOUT GND

9 | n VB VOUT GND LVOUT GND WVOUT GND

are recorded. This input format provides a clean way of a genetic representation of the

netlist. The interconnection is manipulated according to the GA to obtain the required

functionality among a set of transistors as described in Sec.2.2.2. A detailed tutorial

about the operation and working of the simulator with typical designs can be found at

[Edwards (2007)].

99

APPENDIX B

PDPE ESTIMATES USING THE GENETIC SEARCH

AND PARTITIONING METHODS

The modified genetic search 0and the vector partitioning method were described in Chap.3.

In this appendix, we present the results obtained from the experiments conducted on the

ISCAS’85 benchmark circuits. We elaborate on the results presented in Sec.3.5. The

specification for the combinational benchmark circuits were also presented in the same

section.

B.1 Modified Genetic Search Method

B.1.1 Results for the Zero Delay Model

Table B.1: Power virus vectors and genetic search progres-

sion - zero delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

c17 98 13 01001 10110

C432 984 224 0010010011011011 1101001110100100

1111101111001101 0100010000111010

1011 1110

C499 234 306 1110101110001110 0001010001110000

0001110010110111 1111001101001010

101011100 000110011

Table B.1: Power virus vectors and genetic search progres-

sion - zero delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

C880 988 479 0000100100010010 1111111011111111

1111110110000000 1100000101100111

1011000110000100 0100010001110011

111001101111 101110010000

C1355 1016 596 1101010111101100 0110111000010001

1101001111111100 0010110001001011

000110000 111001011

C1908 252 964 0001110011000111 1110001100111000

0111001110001010 1000110000111111

1 0

C2670 510 1380 1010111001110000 1001010111001111

0001000111011111 0110111011100100

1100101111101000 0111010110010110

1001010000101111 0010110111010000

0010011111101000 1111100010110000

0010001011001010 1101100000111101

1011101010100100 1010010101000001

1101101001000111 0001001110001000

1000010000001001 0110001001000110

1101111101100011 0011000001001100

0110101011010100 1101110100101011

101

Table B.1: Power virus vectors and genetic search progres-

sion - zero delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

0111000011010101 1010101110100011

0001001100111110 1110110111100001

0111111111000100 1100100010111010

101011111 000110000

C3540 146 1633 1111011000111110 0000000110001001

0011101101101001 1101010010010100

1001111011000101 0001001100101110

11 00

C5315 788 2815 0111101101111101 1010011110001010

0110101000010101 1001011001111010

1000111111000100 1111100000110110

0100011111010101 1011100111100111

1010101100100101 1001010001001010

0001100010011010 1110010001100111

1101000011001000 1010111101110111

1001100110000011 0111011101111100

0100000010000010 1010111110111101

0011001001000011 1101110110011100

0110100001111110 1000011110000001

11 00

C7552 207 3541 0111010011011000 0010001100001011

102

Table B.1: Power virus vectors and genetic search progres-

sion - zero delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

0011011100000100 1101111100110110

0001101011101110 0100101100010111

1011110110111010 1100011010100100

0111001111000100 0101111111000111

1010101000100000 1011100111110110

0110111001000101 0101010001000101

1010000011011001 1111010101010111

1110010001110101 0100010000100101

1011010100111110 0100001011100110

0011111000100111 0111011000101110

1010111110101010 0000000010001101

001010001101000 010110110010100

Presented in Table.B.1 is the number of generations required for the genetic method in the

zero delay model. The table also shows the final power virus vector pair which results in

the number of toggles reported in column 3. The ISCAS circuits are shown in column 1.

B.1.2 Results for the Unit Delay Model

This section presents the results for the modified genetic method using the unit delay

model for the benchmark circuits. The power virus vector pairs are shown in column 4

and column 5 of Table.B.2. The successive application of IP Vector 1 and IP Vector 2

103

for the benchmark circuits results in the peak number of toggles shown in column 3. The

number of generations required for the genetic method to converge are shown in column

2.

Table B.2: Power virus vectors and genetic search progres-

sion - unit delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

c17 67 16 10001 01110

C432 1788 363 0010010001010100 1101101010100011

1000110100100100 0111001110111011

0110 1001

C499 851034 631 0000100110101011 1111011101000100

0101111100110111 1010100011101000

101011100 110100011

C880 23600 791 1010101010011111 1101010111100000

0000101011111010 1111010110001001

0101100100010100 1010111001101111

011101111101 100011001110

C1355 54 757 1011001001000110 1110010110011001

1100101101000100 0010010000111011

111100111 101111000

C1908 644 1756 0001111100110000 1000000011001111

1100000100100010 0011101001001001

0 0

C2670 142 2580 1001110000110000 0110101100001111

104

Table B.2: Power virus vectors and genetic search progres-

sion - unit delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

1011000001101001 0101100111010110

0010010011110011 1110111101100000

0011110011101000 1100001100000111

0100101010110001 0001010101001011

0101110001011000 0010000010111011

1100111000100011 1101000011001101

1100000011111100 0010011001100011

0010110110100101 1111101010001010

0100000110100001 0011111000011110

0011100001000111 0101011110111000

1101000101011101 0010001101100010

1101010000001100 0010101100010011

1111101100010111 0000000111101001

101111111 011000100

C3540 28 2717 0110011111100011 1011100010011000

1011100000111011 0100010111000001

1010101001101000 1101110011110111

01 10

C5315 3454 5197 1000111001000101 0111010111110010

1110011010001100 0011101011111111

1111110101101101 0100001010110100

105

Table B.2: Power virus vectors and genetic search progres-

sion - unit delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

0010100100111100 1101010101010011

0101000000011101 1010010111100110

1111101111010000 0010011000101101

0000101101101101 1111010010010110

1001000101001010 0110110011110101

1100110100111000 1011111011010111

0010001011111000 1101100101001100

1001010110000010 0110101001101101

10 00

C7552 25744 7883 0011101011100010 1100011100111100

1110011011110101 0001100000001010

0111000011011011 1000111101000101

1010100110001001 1001011101111110

1110100110000011 0001011101111100

0110111010101011 0001110101010101

1011010011000001 1010101100100010

0011000111100011 1100101001001000

0101110101111010 1011001001000101

0100111010000011 0010110101111100

1000110001100100 0111101101101011

0111101011010000 1000000110101100

106

Table B.2: Power virus vectors and genetic search progres-

sion - unit delay model for the ISCAS’85 benchmark circuits

Circuit # Generations # Pk Togls IP Vector 1 IP Vector 2

101111110011101 001000001100111

B.2 Vector Partitioning Method, Zero Delay

The results for the genetic method on the ISCAS’85 benchmark suite with the zero and

unit delay models was presented in Sec.B.1.1 and in Sec.B.1.2 respectively. The vector

partitioning method was proposed in Sec.3.4.1 of Chap.3.

This section presents the results for the partitioning method using the zero delay model

for the benchmark circuits. The power virus vector pairs are shown in column 4 and

column 5 of Table.B.3. The successive application of IP Vector 1 and IP Vector 2 (from

columns 4 and 5 respectively) for the benchmark circuits results in the peak number of

toggles shown in column 3. The partition splits at the primary inputs (simple uniform)

are shown in column 2. This can be enhanced by the cone based algorithm [Saucier et al.

(1993)] described in Sec.3.4.1 in Chap.3

Table B.3: Power virus vectors and partitioning iteration -

zero delay model for the ISCAS’85 benchmark circuits

Circuit IP Partitions # Pk Togls IP Vector 1 IP Vector 2

c17 (< 0, 2 >, < 3, 4 >) 12 00001 11110

C432 (< 0, 5 >, < 6, 11 > 242 1100010001000100 1011101110101011

. . . < 30, 35 >) 1100011101101100 0011101010011000

0100 1011

C499 (< 0, 7 >, < 8, 15 > 249 0101111101000101 0011001001010110

107

Table B.3: Power virus vectors and partitioning iteration -

zero delay model for the ISCAS’85 benchmark circuits

Circuit IP Partitions # Pk Togls IP Vector 1 IP Vector 2

. . . < 32, 40 >) 0100000011010011 1001110101001000

011101100 110011000

C880 (< 0, 9 >, < 10, 19 > 498 1111101010011010 1000011000111111

. . . < 50, 59 >) 0011011101111111 1011100001000101

1110001111101111 1001101100001000

011111111100 101001100011

C1355 (< 0, 7 >, < 8, 15 > 509 1000111111111001 0011101100101100

. . . < 32, 41 >) 0001111010100110 0100000000001101

000000000 000000000

C1908 (< 0, 5 >, < 6, 11 > 886 0100110011101001 1001001100001010

. . . < 25, 31 >) 0111101001001001 0110100100100110

0 0

C2670 (< 0, 5 >, < 6, 11 > 1266 1011111001001111 0010101101010101

. . . < 25, 31 >) 1101100111111110 1010101000010001

1001001000111100 1001110000010000

0000010100011111 1000100100100001

1001011101001101 0010100001010000

1010110001100111 0101101011011000

0100111001000011 1111101110111011

1100000110110000 0001100001000001

0111010111101010 1000101100010100

108

Table B.3: Power virus vectors and partitioning iteration -

zero delay model for the ISCAS’85 benchmark circuits

Circuit IP Partitions # Pk Togls IP Vector 1 IP Vector 2

0100001110101001 1011110110010011

1011110110010000 0100111001111010

1001001000010010 0101100101000001

1001011111011100 0010011000100011

0100111111000100 0001000000101111

001111110 110001010

C3540 (< 0, 9 >, < 10, 19 > 1395 1111100001110110 1100010011001010

. . . < 40, 49 >) 1111100111001111 0100110011110000

0101001110000010 0011110111111101

00 00

C5315 (< 0, 21 >, < 22, 43 > 2673 0011011110110110 1100011001010011

. . . < 154, 177 >) 1100001000111111 0011110111000100

0110000101001000 1000010100010101

0101100010010010 0001111101001101

1110000111110110 1000001100001001

0000110100111010 1111010001001111

1011110011100100 0111101000011100

1000110000000001 0001101101101111

1011001100101110 1100001110011011

1011010101100110 1110001100101001

0010001110101101 1110000101111000

109

Table B.3: Power virus vectors and partitioning iteration -

zero delay model for the ISCAS’85 benchmark circuits

Circuit IP Partitions # Pk Togls IP Vector 1 IP Vector 2

01 11

C7552 (< 0, 17 >, < 18, 35 > 3431 0110101011100111 0010011010110000

. . . < 180, 206 >) 1000010100010110 0111110101101001

0000111101100000 0000001110010111

1111101110010111 0001001001110010

1101011111010111 1000110111011000

1110000100111110 1100111011000010

1111001110000110 0001010101011101

0101000100010100 0001011011101101

0001101111110000 1000010110100100

1001000100111100 0000001010100100

0001101101010011 0011011001100000

0000101101000110 1000111001101101

111110101100000 110110101101011

110

APPENDIX C

HAMMING CODE AND ECC

C.1 Error Correcting Codes(ECC)

Codes that correct errors have a mature, difficult, and mathematically oriented theory but

this appendix describes a simple and elegant code, discovered in 1949. Thanks to Prof.

Neal Wagner at the University of Texas at San Antonio from whose book draft on “The

laws of cryptography”, portions of this appendix are borrowed [Wagner (2002)].

C.2 Hamming Codes

Richard Hamming found a beautiful binary code that will correct any single error and

will detect any double error (two separate errors). The Hamming code has been used for

computer RAM, and is a good choice for randomly occurring errors. The Hamming code

was used in Chap.5 and its implementation was described in Sec.5.4.1. This appendix

provides insights into technical details of the same.

The Hamming code uses extra redundant bits to check for errors, and performs the

checks with special check equations. A parity check equation of a sequence of bits just

adds the bits of the sequence and insists that the sum be even (for even parity) or odd (for

odd parity). In this appendix, we describe its use based on even parity. Alternatively, one

says that the sum is taken modulo 2 (divide by 2 and take the remainder), or one says that

the sum is taken over the integers mod 2, Z2. A simple parity check will detect if there

has been an error in one bit position, since even parity will change to odd parity. (Any

odd number of errors will show up as if there were just 1 error, and any even number of

errors will look the same as no error). One has to force even parity by adding an extra

parity bit and setting it either to 1 or to 0 to make the overall parity come out even. It is

important to realize that the extra parity check bit participates in the check and is itself

Table C.1: Parity Checks for the first 17 bits of the Hamming code

Pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

BRep 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001

Chk1 x x x x x x x x x

Chk2 x x x x x x x x

Chk4 x x x x x x x x

Chk8 x x x x x x x x

Chk16 x x

checked for errors, along with the other bits. The Hamming code uses parity checks over

a portion of the positions in a block. Suppose there are bits in consecutive positions from

1 to n − 1. The positions whose position number is a power of 2 are used as check bits,

whose value must be determined from the data bits. Thus the check bits are in positions

1, 2, 4, 8, 16, . . . to the largest power of 2 that is less than or equal to the largest bit

position. The remaining positions are reserved for data bits.

Each check bit has a corresponding check equation that covers a portion of all the bits,

but always includes the check bit itself. Consider the binary representation of the position

numbers: 1 = 12, 2 = 102, 3 = 112, 4 = 1002, 5 = 1012, 6 = 1102, and so forth. If

the position number has a 1 as its rightmost bit, then the check equation for check bit 1

covers those positions. If the position number has a 1 as its next-to-rightmost bit, then the

check equation for check bit 2 covers those positions. If the position number has a 1 as its

third-from-rightmost bit, then the check equation for check bit 4 covers those positions.

Continue in this way through all check bits. Table.C.1 summarizes this. In the table, the

check bits are in positions 1, 2, 4, 8, and 16, and are marked in bold. Table C.2 shows

an example assuming a data bit word 1101101. The check equations in Table.C.1 are

used to determine the values for check bits in positions 1, 2, 4, and 8, to yield the word

11101010101 [Wagner (2002)]

Intuitively, the check equations allow one to “zero-in ”on the position of a single error.

For example, suppose a single bit is transmitted in error. If the first check equation fails,

then the error must be in an odd position, and otherwise it must be in an even position. In

other words, if the first check fails, the position number of the bit in error must have its

112

Table C.2: Parity Check Example for a 7 bit data word

Position 1 2 3 4 5 6 7 8 9 10 11

Bin Rep 1 10 11 100 101 110 111 1000 1001 1010 1011

Word 1 1 1 0 1 0 1 0 1 0 1

Check 1 1 1 0 1 0 1

Check 2 1 1 1 1 1 1

Check 4 0 1 0 1

Check 8 0 1 0 1

Table C.3: Single Error detection using the Hamming ECC

Pos 1 2 3 4 5 6 7 8 9 10 11 Chk

BRep 1 10 11 100 101 110 111 1000 1001 1010 1011

Word 1 1 1 0 1 0 1 0 1 0 0(Er)

Chk1 1 1 0 1 0 0 1 fail

Chk2 1 1 1 1 1 0 2 fail

Chk4 0 1 0 1 - pass

Chk8 0 1 0 0 8 fail

rightmost bit (in binary) equal to 1; otherwise it is zero. Similarly the second check gives

the next-to-rightmost bit of the position in error, and so forth. Table.C.3 shows the result

of a single error in position 11 (changed from a 1 to a 0). Three of the four parity checks

fail, as shown below. Adding the position number of each failing check gives the position

number of the error bit, 11 in this case. This shows how to get single-error correction

with the Hamming code. One can also get double-error detection by using a single extra

check bit, which is in position 0. (All other positions are handled as above.) The check

equation in this case covers all bits, including the new bit in position 0. In case of a single

error, this new check will fail. If only the new equation fails, but none of the others, then

the position in error is the new 0th check bit, so a single error of this new bit can also be

corrected. In case of two errors, the overall check (using position 0) will pass, but at least

one of the other check equations must fail. This is how one detects a double error. In this

case there is not enough information present to say anything about the positions of the

two bits in error. Three or more errors at the same time can show up as no error, as two

113

Table C.4: Hamming ECC block sizes

Check Bits Max Data Bits Max Total Size

3 1 4

4 4 8

5 11 16

6 26 32

7 57 64

8 120 128

errors detected, or as a single error that is “corrected”with a bogus correction. Notice that

the Hamming code without the extra 0th check bit would correct a double error in some

bogus position as if it were a single error. Thus the extra check bit and the double error

detection are very important for this code. Notice also that the check bits themselves will

also be corrected if one of them is transmitted in error (without any other errors) [Wagner

(2002)].

C.3 Block sizes for the Hamming Code

The Hamming code can accommodate any number of data bits, but it is interesting to

list the maximum size for each number of check bits. Table.C.4 includes the overall

check bit, so that this is the full binary Hamming code, including double error detection

[Hamming (2008)]. For example, with 64 bits or 8 bytes, one gets 7 bytes of data (plus 1

bit) and uses 1 byte for the check bits (actually, only 7 bits). Thus an error-prone storage

or transmission system would only need to devote 1 out of each 8 bytes 12.5% to error

correction/detection.

114

REFERENCES

1. A. V Oppenheim, S. R. W. and J. R. Buck, Discrete time signal Processing, 2nd Edition.

Pearson Education, .

2. Actel, T. R. (December 2002). Understanding soft and firm errors in semiconductor

devices − questions and answers - http://www.actel.com/documents/ser_faq.pdf. URL

http://www.actel.com.

3. Adams, J. and J. Willson, A. (1984). Some efficient digital prefilter structures. IEEE

Transactions on Circuits and Systems, 31(3), 260–266.

4. Adoptech (2008). Design optimization - http://www.adoptech.com/design-

optimization/design-opt.htm. URL http://www.adoptech.com.

5. Antoniou, A., Digital Signal Processing: Signals, Systems and Filters. McGraw-Hill,

2005.

6. Bahuman, A., B. Bishop, and K. Rasheed, Automated synthesis of standard cells using

genetic algorithms. In VLSI, 2002. Proceedings. IEEE Computer Society Annual Sympo-

sium on. 2002.

7. Bigelow, K. (1996). Inside logic gates: Cmos logic -

http://www.play-hookey.com/digital/electronics/cmos_gates.html. URL

http://www.play-hookey.com.

8. Bolchini, C., D. Quarta, and M. D. Santambrogio, Seu mitigation for sram-based fpgas

through dynamic partial reconfiguration. In GLSVLSI ’07: Proceedings of the 17th great

lakes symposium on Great lakes symposium on VLSI. ACM, New York, NY, USA, 2007.

ISBN 978-1-59593-605-9.

9. Bull, D. R. and D. H. Horrocks (1991). Primitive operator digital filters. Circuits,

Devices and Systems, IEE Proceedings G, 138(3), 401–412.

10. C Carmichael, P. B., E Fuller and M. Caffrey, Seu mitigation techniques for virtex

fpgas in space application. In Proceedings of the MAPLD’99 (Poster), page 24. IEEE,

1999.

11. Cho, N. I. and S. U. Lee (). Optimal design of finite precision fir filters using linear

progression with reduced constraints. IEEE Transactions on Signal Processing.

12. Chou, T.-L., K. Roy, and S. Prasad (1994). Estimation of circuit activity considering

signal correlations and simultaneous switching, 300–303.

13. CMOS (2008). Complementary metal oxide semiconductor (cmos) -

http://en.wikipedia.org/wiki/cmos. URL http://en.wikipedia.org.

115

http://www.actel.com
http://www.adoptech.com
http://www.play-hookey.com
http://en.wikipedia.org

14. Course, M. S. (2002). Single event transient (set), mapld short course -

http://www.klabs.org/.../tutorial/minicourses/radiation_mapld_2002/radiation_course

_2002_mapld.hardcopy/f_set.ppt. URL http://www.klabs.org.

15. Devadas, S., K. Keutzer, and J. White (1992). Estimation of power dissipation in

CMOS combinational circuits using boolean function manipulation. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 11(3), 373–383.

16. Edwards, T. (2007). Irsim version 9.7 switch-level simulator -

http://opencircuitdesign.com/irsim/. URL http://opencircuitdesign.com.

17. fpga4fun (2008). How fpgas work - http://www.fpga4fun.com/fpgainfo2.html. URL

http://www.fpga4fun.com.

18. Godlberg, D. E., Genetic Algorithms in Search Optimization and Machine Learning.

Addison-Wesley SF, 1989.

19. Greenwood, G. W. and A. M. Tyrrel, An Introduction to Evolvable Hardware. IEEE

Press, Wiley Interscience, International, 2007.

20. Hamming (2008). Hamming code general algorithm -

http://en.wikipedia.org/wiki/hamming_code#general_algorithm. URL

http://en.wikipedia.org.

21. Haseyama, M. and D. Matsuura (2006). A filter coefficient quantization method with

genetic algorithm, including simulated annealing. IEEE Signal Processing Letters, 13(4),

189–192.

22. Heusler, L. S. and W. Fichtner (1991). Transistor sizing for large combinational digital

cmos circuits. Integr. VLSI J., 10(2), 155–168. ISSN 0167-9260.

23. Ho, M. C., S. Leung, H. Kurokawa, and O. C. Choy, Digital logic synthesis using

genetic algorithms. In Genetic Algorithms in Engineering Systems: Innovations and Ap-

plications, 1997. GALESIA 97. Second International Conference On (Conf. Publ. No.

446). Glasgow, UK, 1997. ISSN 0537-9989.

24. Hoflich, W. (2005). Using the cx4000 readback capability -

http://www.xilinx.com/support/documentation/application_notes/xapp015.pdf. URL

http://www.xilinx.com.

25. Holland, J. H., Adaptation of Natural and Artificial Systems. University of Michigan

Press Ann Arbor, MI, 1975.

26. Horrocks, D. H. and Y. M. A. Khalifa, Genetically derived filter circuits using preferred

valuecomponents. In Analogue Signal Processing, IEE Colloquium on. London, UK,

1994.

27. Hounsell, B. I. and T. Arslan, A novel genetic algorithm for the automated design of

performance driven digital circuits. In Evolutionary Computation, 2000. Proceedings of

the 2000 Congress on, volume 1. 2000.

116

http://www.klabs.org
http://opencircuitdesign.com
http://www.fpga4fun.com
http://en.wikipedia.org
http://www.xilinx.com

28. Hsiao, M. S. (1999). Peak power estimation using genetic spot optimization for large vlsi

circuits, 38.

29. Hsiao, M. S., E. M. Rudnick, and J. H. Patel, Effects of delay models on peak power

estimation of VLSI sequential circuits. In Computer-Aided Design, 1997. Digest of Tech-

nical Papers., 1997 IEEE/ACM International Conference on. 1997a.

30. Hsiao, M. S., E. M. Rudnick, and J. H. Patel, K2: an estimator for peak sustainable

power of VLSI circuits. In Low Power Electronics and Design, 1997. Proceedings., 1997

International Symposium on. 1997b.

31. Hsiao, M. S., E. M. Rudnick, and J. H. Patel (2000). Peak power estimation of VLSI

circuits: new peak power measures. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 8(4), 435–439.

32. Jan M. Rabaey, A. C. and B. Nikolic, Digital Integrated Circuits, 2/E. Prentice Hall,

2003.

33. Jong, K. A. D. (1975). An analysis of the behavior of a class of genetic adaptive systems..

Ph.D. thesis, Ann Arbor, MI, USA.

34. Kastensmidt, F. L., L. Sterpone, L. Carro, and M. S. Reorda, On the optimal design

of triple modular redundancy logic for SRAM-based FPGAs. In Design, Automation and

Test in Europe, 2005. Proceedings. 2005.

35. Knoth, L. A. (1997). Eee 425 honors project: Dynamic

cmos - http://www.lauraknauth.com/academic/dyncmos.html. URL

http://www.lauraknauth.com.

36. Kodel, D. M. (1980). Design of optimal finite precision fir filters using linear program-

ming techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, (3),

304–308.

37. Kriplani, H. (1994). Worst case voltage drops in power and ground buses of CMOS VLSI

circuits. Ph.D. thesis, Champaign, IL, USA.

38. Kriplani, H., F. Najm, P. Yang, and I. Hajj, Resolving signal correlations for estimating

maximum currents in CMOS combinational circuits. In Design Automation, 1993. 30th

Conference on. 1993.

39. Lefebvre, M. and D. Marple, The future of custom cell generation in physical synthesis.

In Design Automation Conference, 1997. Proceedings of the 34th. 1997.

40. Lim, Y., S. Parker, and A. Constantinides (1982). Finite word length FIR filter design

using integer programming over a discrete coefficient space. Acoustics, Speech, and Sig-

nal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions

on, 30(4), 661–664.

41. Lima, F., L. Carro, and R. Reis, Designing fault tolerant systems into SRAM-based

FPGAs. In Design Automation Conference, 2003. Proceedings. 2003.

42. Lu, W. S. and A. Antoniou, Two-Dimensional Digital Filters. Marcel Dekker NY, 1992.

117

http://www.lauraknauth.com

43. Manne, S. et al., Computing the maximum power cycles of a sequential circuit. In Design

Automation, 1995. DAC ’95. 32nd Conference on Page(s):23 - 28. 1995.

44. Mastipuram, R. and E. C. Wee (2004). Soft errors impact on system reliability -

http://www.edn.com/article/ca454636.html. URL http://www.edn.com.

45. Mazumder, P. and E. M. Rudnick, Genetic algorithms for VLSI design, layout and test

automation. Prentice Hall, 1999.

46. Miller, J. F., An evolvable hardware approach to digital filter design. In Evolutionary

Hardware Systems (Ref. No. 1999/033), IEE Half-day Colloquium on. 1999.

47. Miron Abromovici, C. E. S., John M. Emmert, An integrated approach to on-line test-

ing, diagnosis, and fault tolerance for fpgas in adaptive computing systems. In Proceed-

ings of The 3rd NASA/DoD Workshop on Evolvable Hardware, pp.73–79. NASA/DoD,

2001.

48. Mitchell, M., An Introduction to Genetic Algorithms. MIT Press, 1998.

49. Mocanu, O.-D. and J. Oliver (1999). Fault-tolerant memory architecture against

radiation-dependent errors: A mixed error control approach. J. Electron. Test., 14(1-2),

169–180. ISSN 0923-8174.

50. Najeeb, K., K. Gururaj, V. Kamakoti, and V. M. Vedula, Controllability-driven power

virus generation for digital circuits. In VLSI Design, 2007. Held jointly with 6th Interna-

tional Conference on Embedded Systems., 20th International Conference on. 2007.

51. Normand, E. (December 1998). Presentation by e normand to the c-17 avion-

ics group - http://www.boeing.com/assocproducts/radiationlab/publications/. URL

http://www.boeing.com.

52. Optimization (2008). Mathematical optimization -

http://en.wikipedia.org/wiki/optimization_(mathematics). URL

http://en.wikipedia.org.

53. Ou, E., Fast error-correcting circuits for fault-tolerant memory. In MTDT ’04: Proceed-

ings of the Records of the 2004 International Workshop on Memory Technology, Design

and Testing. IEEE Computer Society, Washington, DC, USA, 2004. ISBN 0-7695-2193-

2.

54. Parks, T. W. and C. S. Burrus, Digital Filter Design. John Wiley NY, 1987.

55. Pasternak, C., J.H; Salama (1993). Differential pass transistor logic. Circuits and

Devices Magazine, IEEE, 9, 23–28.

56. Pedram, M. (1996). Power minimization in ic design: principles and applications. ACM

Trans. Des. Autom. Electron. Syst., 1(1), 3–56. ISSN 1084-4309.

57. Pittman, J. and C. A. Murthy (2000). Fitting optimal piecewise linear functions using

genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(7), 701–718.

118

http://www.edn.com
http://www.boeing.com
http://en.wikipedia.org

58. Rabiner, L. R., J. H. McClellan, and T. W. Parks (1975). FIR digital filter design

techniques using weighted chebyshev approximation. Proceedings of the IEEE, 63(4),

595–610.

59. Reddy, E. S. S., V. Chandrasekhar, M. Sashikanth, V. Kamakoti, and N. Vijaykrish-

nan, Cluster-based detection of seu-caused errors in luts of sram-based fpgas. In ASP-

DAC ’05: Proceedings of the 2005 conference on Asia South Pacific design automation.

ACM, New York, NY, USA, 2005. ISBN 0-7803-8737-6.

60. Redmill, D. W. and D. R. Bull, Automated design of low complexity FIR filters. In Cir-

cuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International Sympo-

sium on, volume 5. 1998.

61. Rogenmoser, R., H. Kaeslin, and T. Blickle, Stochastic methods for transistor size op-

timization of cmos vlsi circuits. In PPSN IV: Proceedings of the 4th International Con-

ference on Parallel Problem Solving from Nature. Springer-Verlag, London, UK, 1996.

ISBN 3-540-61723-X.

62. Sabbir, U. A. and A. Antoniou, Design of digital filters using genetic algorithms. In 6th

International Symposium on Signal Processing and Information Technology. IEEE, 2006.

63. Saramaki, T., T. Neuvo, and S. K. Mitra (1988). Design of computationally efficient

interpolated FIR filters. IEEE Transactions on Circuits and Systems, 35(1), 70–88.

64. Saucier, G., D. Brasen, and J. P. Hiol, Partitioning with cone structures. In ICCAD ’93:

Proceedings of the 1993 IEEE/ACM international conference on Computer-aided design.

IEEE Computer Society Press, Los Alamitos, CA, USA, 1993. ISBN 0-8186-4490-7.

65. Schrom, G. (1998). Ultra-Low-Power CMOS Technology. Ph.D. thesis, Adamsgasse 3/3,

A-1030 Wien, Matrikelnummer 8326270.

66. Suckley, D. (1991). Genetic algorithm in the design of FIR filters. Circuits, Devices and

Systems, IEE Proceedings G, 138(2), 234–238.

67. Sundaralingam, S. and K. Sharman, Genetic evolution of adaptive filters. In Proceed-

ings of Digital Signal Processing (DSP) UK, pp. 47–53. IEE, 1997.

68. Suzuki, M., N. Ohkubo, T. Yamanaka, A. Shimizu, and K. Sasaki (1993). A 1.5ns 32b

cmos alu in douple pass-transistor logic. Dig. Tech. Papers, ISSCC, 90–91.

69. T H Cormen, R. L. R., C E Leiserson and C. Stein, Introduction to Algorithms, 2nd

Edition. Prentice Hall, 2005.

70. Torresen, J. and K. A. Vinger, High performance computing by context switching re-

configurable logic. In Proceedings of the 16th European Simulation Multiconference on

Modelling and Simulation 2002. SCS Europe, 2002. ISBN 90-77039-07-4.

71. Tufte, G. and P. C. Haddow, Evolving an adaptive digital filter. In Evolvable Hardware,

2000. Proceedings. The Second NASA/DoD Workshop on. 2000.

72. Wade, G., P. Van-Eetvelt, and H. Darwen (1990). Synthesis of efficient low-order FIR

filters from primitive sections. Circuits, Devices and Systems, IEE Proceedings G, 137(5),

367–372.

119

73. Wagner, N. R. (2002). The laws of cryptography: The hamming code

for error correction - http://www.cs.utsa.edu/w̃agner/lawsbookcolor/laws.pdf. URL

http://www.cs.utsa.edu.

74. Wang, C. Y. and K. Roy (2000). Maximization of power dissipation in large CMOS

circuits considering spurious transitions. Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers,

IEEE Transactions on], 47(4), 483–490.

75. Wang, C.-Y., K. Roy, and T.-L. Chou, Maximum power estimation for sequential cir-

cuits using a test generation based technique. In Custom Integrated Circuits Conference,

1996., Proceedings of the IEEE 1996. 1996.

76. Wenzel, W. and K. Hamacher (1999). Stochastic tunneling approach for global mini-

mization of complex potential energy landscapes. Phys. Rev. Lett., 82(15), 3003–3007.

77. Woods, S. and G. Casinovi, Efficient solution of systems of boolean equations. In

Computer-Aided Design, 1996. ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM

International Conference on. 1996.

78. XAPP151 (October 2004). Virtex series configuration architecture user guide

- http://www.xilinx.com/support/documentation/application_notes/xapp151.pdf. URL

http://www.xilinx.com.

79. XAPP258 (Januray 2005). Fifos using virtex-ii block ram -

http://www.xilinx.com/support/documentation/application_notes/xapp258.pdf. URL

http://www.xilinx.com.

80. XAPP464 (March 2005). Using look-up tables as distributed ram in spartan 3 generation

fpgas - http://www.xilinx.com/support/documentation/application_notes/xapp464.pdf.

URL http://www.xilinx.com.

81. XAPP645 (February 2004). Error detection and correction in virtex-ii pro devices

- http://www.xilinx.com/support/documentation/application_notes/xapp645.pdf. URL

http://www.xilinx.com.

82. Xilinx (2005). Xilinx virtex-v capabilities - block ram -

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/capabilities/

block_ram.htm. URL http://www.xilinx.com.

83. Yano, K. et al. (1990). A 3.8ns cmos 16x16-b multiplier using complementary pass-

transistor logic. Proceedings of the IEEE Journal of Solid-State Circuits, 25, 388–395.

120

http://www.cs.utsa.edu
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com

LIST OF PAPERS BASED ON THESIS

Conferences:

1. M. Shoaib, Noor. M, and Kamakoti. V. A Genetic Approach to Gateless Custom

VLSI Design Flow. to appear in the Proceedings of the 19th IEEE International

Conference on Microelectronics (ICM), 29-31 Dec 2007, Cairo, Egypt.

2. Karthik. K. S, Shyam. S, Ramasubramanian. S, Noor. M, Shoaib. M and Kamakoti. V

A SEU Tolerant Distributed CLB RAM for Run-Time Reconfiguration. accepted at

the 12th IEEE International VLSI Design and Test Symposium (VDAT), July 2008,

Bangalore, India.

Journals:

1. M. Shoaib, Noor. M and Kamakoti. V Genetic Evolution of Self-Adaptive Arbi-

trary Response FIR Filters. submitted to the IEEE Transactions on Evolutionary

Computation.

121

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	MOTIVATION AND BACKGROUND
	Design Optimization Paradigms
	Evolutionary Optimization
	Genetic Algorithms: Principles of Natural Selection
	A Basic GA Cycle
	Representation ()
	Variation ()
	Evaluation ()
	Selection ()

	Reconfigurable Hardware and Reliability
	Logic Cell
	Interconnect and Routing
	Internal RAM
	Errors in High Performance Memories

	Context and Objective
	Organization of Thesis

	A GENETIC APPROACH TO GATELESS CUSTOM VLSI DESIGN FLOW
	Introduction and Background
	Genetic Topological Synthesis
	Representation and initial population
	Variation: Crossover and Mutation
	Selection and termination:

	Experimental Results
	Future Work
	Summary

	VECTOR PARTITIONING AND GENETIC SEARCH METHODS FOR PDPE IN DIGITAL CIRCUITS
	Prelude
	Early estimation techniques

	Handling the PDPE problem
	Previous Work
	Contribution

	Algorithms for Power Virus Generation
	Vector Partitioning
	Genetic Pattern Matching

	Experimental Results
	Summary

	HARDWARE BASED GENETIC EVOLUTION OF FIR FILTERS
	Introduction
	Adaptive Filters
	Some Approaches to FIR Filter Design
	Genetic Operators from a new perspective

	FIR Architectures and Design
	FIR filter architectures
	Spatial and frequency domain design

	Evolutionary System Design
	Intrinsic Design
	The Evolutionary System on Chip (ESoC):

	Experimental results
	Summary

	A SEU TOLERANT DISTRIBUTED CLB RAM FOR IN-CIRCUIT RECONFIGURATION
	SEUs and FPGAs
	Distributed CLB RAMs
	Fault Tolerant DRAM
	Application: In-Circuit Reconfiguration
	Design Specifics

	Experimental Results
	Future Work
	Summary

	EPILOGUE
	Wrap Up
	Conclusions
	Future Work

	CMOS LOGIC DESIGN AND THE IRSIM SIMULATOR
	Digital CMOS Logic Design
	Static CMOS Logic Design
	Dynamic CMOS Logic Design

	The IRSIM Switch Level Simulator
	Modeling details

	PDPE ESTIMATES USING THE GENETIC SEARCH AND PARTITIONING METHODS
	Modified Genetic Search Method
	Results for the Zero Delay Model
	Results for the Unit Delay Model

	Vector Partitioning Method, Zero Delay

	HAMMING CODE AND ECC
	Error Correcting Codes(ECC)
	Hamming Codes
	Block sizes for the Hamming Code

