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Abstract. Suppose we have a signature scheme for signing elements of
message space M1, but we need to sign messages from M. The tradi-
tional approach of applying a collision resistant hash function from M;
to My can be inconvenient when the signature scheme is used within
more complex protocols, for example if we want to prove knowledge of
a signature. Here, we present an alternative approach in which we can
combine a signature for M, a pairwise independent hash function with
key space M and message space M2, and a non-interactive zero knowl-
edge proof system to obtain a signature scheme for message space Ma.
This transform also removes any dependence on state in the signature
for M.

As a result of our transformation we obtain a new signature scheme for
signing a vector of group elements that is based only on the decisional
linear assumption (DLIN). Moreover, the public keys and signatures of
our scheme consist of group elements only, and a signature is verified by
evaluating a set of pairing-product equations, so the result is a structure-
preserving signature. In combination with the Groth-Sahai proof system,
such a signature scheme is an ideal building block for many privacy-
enhancing protocols.

1 Introduction

The hash and sign approach. In most settings it is straightforward to sign
elements of any message space. We simply view the message as a binary string
and apply a collision resistant hash function to map it into the desired range
(usually Z, or Z,) at which point it can be signed using constructions based
on number theoretic primitives. However, in some applications there is also a
disadvantage to this approach. In particular, it seems to be much more difficult
to build efficient protocols for dealing with signatures on hidden messages, e.g.
for proving knowledge of a signature on a hidden message, or issuing a signature
given only the commitment to the message (as in blind signatures).

Such protocols are essential in numerous privacy-enhancing applications such
as group signatures [ACJT00], anonymous credentials [CL01,BCL04], compact
e-cash [CHLO05,CHL06,CLMO07], range proofs [CCS08], oblivious database ac-
cess [CGHO09], and others [CHK™06,TS06,CGHO06]. One of the key elements in
all of these protocols is the ability to prove that certain hidden values have been



signed without revealing the signature nor all of the certified values. Similarly,
one might want to jointly compute a signature without revealing the key or all
the certified values.

While such protocols are extremely useful, there are relatively few known
efficient constructions. Of course one could construct these protocols based on
general commitment schemes, two party computation, and proofs of knowledge.
However, these general building blocks are extremely inefficient. A far more
practical approach is to consider particular languages for which we can generate
efficient proofs and efficient protocols using X-protocols [CDS94,Cra97,Dam02]
or the recent proof system of Groth and Sahai [GS08]. These protocols rely on
the structure of the underlying groups to generate efficient proofs for large classes
of statements.

This is where hash functions cease to be useful as universal domain extenders
for digital signatures. If the original message must be first hashed and then
signed, then a proof that a committed message has been signed must not only
prove knowledge of a valid signature on the resulting hash, but must also prove
that the pre-image of this value is contained in the given commitment. For most
modern hash functions it is completely unclear how to do this efficiently.

On the other hand, pairwise-independent hash functions often have very sim-
ple, algebraic constructions that make them much better suited for proofs and
multi-party computation. (For example, for a group G of prime order p, the sim-
ple function Hgp(z) = ga® for key (a,b) € Z2 can be shown to be a family of
pairwise independent functions from G to G.) Thus, we consider an alternative
approach, in which we can use pairwise-independent hash functions (together
with NIZK proofs) to change the message spaces allowed by a given signature
scheme.

Structure preserving signatures. The known efficient signature schemes used
in the above applications, which are sometimes referred to as CL-signatures
[CL02], focus on signing elements of Z, or Z,, where no hashing is necessary,
so one can directly construct efficient proof systems or multi-party protocols.
However, these schemes do have significant limitations. First, the resulting proof
systems must be either interactive or in the random oracle model, which means,
among other things, that it will be impossible to give a proof of knowledge
of a proof that a message has been signed. This is unfortunate, since such an
approach seems to be the key to allowing delegation in anonymous scenarios
[CG08,CL06,FP08]. Furthermore, in many cases we need to prove knowledge
of a signature on a public key, a ciphertext, a commitment, or another signa-
ture. This can be difficult since these values are often group elements and thus
not elements of the original message space. An additional disadvantage is that
the known efficient constructions of CL-signatures require significantly stronger
assumptions than traditional signature schemes.

Because of these limitations, there have been a number of efforts in recent
years to look for alternate constructions. Many of these efforts have focused on
constructions in bilinear groups because of their rich mathematical structure. In
this setting public keys, ciphertexts, and signatures are usually group elements,



and so the ideal scheme would be one whose message space consists of the ele-
ments of the bilinear group. Furthermore, if the signatures are made up of group
elements and the signature verification is done using the bilinear pairing, then
the proof system of Groth and Sahai [GS08] allows for simple, efficient proofs.
Abe et al. [AHO10] formalized these requirements (that messages, signatures,
and public keys be group elements and verification proceed via a product of
pairings) as structure-preserving signatures (SPS).!

Even before the term was coined, several early protocols made use of ad-
hoc structure-preserving signature schemes but relied on very strong assump-
tions [AWSMO07,ASMO08,GHO08]. Recently there have been a series of construc-
tions for structure-prserving signature schemes [CLY09,AHO10,AGHO11]. How-
ever, all known efficient schemes are based on so-called “g-type” or interactive
assumptions that are primarily justified based on the Generic Group model.?
Thus, we ask whether it is possible to construct structure preserving signatures
for bilinear group elements based on weaker assumptions. Ideally we would like
to be able to base privacy-protecting cryptography on the same assumptions as
conventional pairing-based cryptography.

One partial result in this direction is the scheme by Groth [Gro06], which
satisfies the standard notion of EUF-CMA security and is based on the deci-
sional linear assumption(DLIN). DLIN is one of the weakest assumptions used
in the pairing-based setting, and is also one of the assumptions underlying the
Groth-Sahai proof system, so it seems a fairly natural choice. However, while
asymptotically efficient, a signature in Groth’s scheme requires as confirmed by
the author himself [Gro07] “thousands if not millions of group elements” per
signature, so it is mainly of theoretical interest.

We focus on achieving reasonably efficient constructions based on the DLIN
assumption. Protocols based on our primitives are within an order of magnitude
or two of the efficiency of the efficient protocols mentioned above.

Our results. First, we give a general approach for constructing a signature
scheme for a message space M from a signature scheme for message space Mo,
a NIZK proof system, and a pairwise independent hash function with message
space Mo, key space M7, and any exponential sized range.

Then, as an application, we construct the first practical structure preserving
signature scheme secure under the DLIN assumption. To do this, we use the
above transformation to transform a signature for signing elements of Z, (with
certain additional properties) into a structure preserving signature scheme.

Signature schemes for signing elements of Z, seem to be simpler to con-
struct, and there are a number of constructions based on various hardness as-
sumptions [BCKL08,BCKL09,Fuc09]. Thus, this already generates a range of
structure preserving signatures schemes. However, all of these possible underly-

! For details on applications of SPS, we refer to [AFGT10] and to the full ver-
sion [CK11].

2 The parameter g influences the instance size of the assumption and depends on the
number of signatures an adversary is allowed to see.



ing signature constructions are based on fairly strong g¢-type assumptions, and
thus they don’t help us to achieve our final goal.

Instead, we construct a new DLIN based signature scheme with the neces-
sary properties based on the scheme of Hohenberger and Waters (HW) [HW09a].
Combining this with our transformation yields our final result: a structure pre-
serving signature scheme whose security is based on the DLIN assumption, which
is among the weakest assumptions used in the bilinear group setting.?

2 Preliminaries

In this section, we first describe the building blocks that we will use in our
generic construction, and then summarize the assumptions that we will need for
our application to structure-preserving signatures.

2.1 Weak F-unforgeable signature schemes

Our construction will require a signatures scheme unforgeable under a weak
chosen message attack (Weak CMA) for signing elements of some messages space
K. In a weak chosen message attack, the adversary is required to make all of his
signature queries at once, before seeing the public key or any signatures. In fact,
we will see later that this signature scheme will only be used to sign random
messages, thus security under weak chosen message attacks will suffice. In our
SPS application, we will also require that the signature scheme be F-unforgeable
for an appropriate bijection F'. Intuitively, F-unforgeability guarantees that it
is hard for the adversary to produce F'(m) and a signature on m for an m that
wasn’t signed. In our SPS application this is important because when the message
space is Z,,, known pairing based proof systems only allow one to efficiently prove
knowledge of some function of the message (e.g. g™). We now formally define
these notions:

Definition 1 (Unforgeability under Weak Chosen Message Attacks).
A weak chosen message attack (Weak CMA) [BB04,HWO09b] requires that the
adversary submits all signature queries before seeing the public key. A signature
scheme is unforgeable under weak chosen message attacks if for all Ay, Ay there
exists a negligible function v such that

Pr[(mi, ..., mq, state) < Ay (17); (sk, pk) + SigKg(1*);
o) = Sign(sk,m;) fori=1,...,Q;
(6,m) « Ay(state, pk,o™ ... @)
m ¢ {ma,...,mq} A SigVerify(pk, m, ) = accept] = v(\) .
3 Alternatively if we use a different instantiation of GS proofs, we can also prove our

scheme secure based on the SXDH assumption and an additional computational
assumption that is implied by DLIN in the asymmetric pairing setting.



For a bijection F, the Weak CMA F-unforgeability game is the same with the
exception that instead of m, Ay only has to output f, such that F~Y(f) ¢
{m1,...,mq} A SigVerify(pk, F~1(f), ) = accept.

2.2 Pairwise independent hash functions.

The second ingredient will be a family of pairwise independent hash functions.
This will be a family of functions parameterized by a "key” k € K. Intuitively,
pairwise independence means that knowing the result of a random hash function
on any one input gives no information about the result of that function on any
other point. More formally:

Definition 2. A family of hash-functions {Hy}rexc, where H, : M — R is
called pairwise independent if Vo # y € M and Va,b € R, the probability

Pr[keIC:Hk(z):a/\Hk(y):b]:W.

2.3 Non-interactive zero-knowledge proofs

The final tool we need is a non-interactive zero-knowledge (NIZK) proof of
knowledge system. A NIZK proof system consists of three algorithms PKSetup,
PKProve, and PKVerify. PKSetup(1¥) is run by a trusted party and generates
parameters crs (sometimes refered to as a common reference string) which are
given to both the prover and the verifier. The prover runs PKProve(crs, z, w) to
prove statement z with witness w which generates a proof w. The verifier runs
PKVerify(crs,z, ) to verify the proof. Informally, zero knowledge means that
there should exist a simulator (PKSimSetup, PKSimProve) that generates sim-
ulated parameters and simulated proofs that are indistinguishable from those
produced by the prover (PKSetup, PKProve); a proof system is a proof of knowl-
edge if there exists an extractor algorithm PKExtract that can extract a valid
witness from any adversarially generated proof that is accepted by PKVerify.

We use the notation 7 <— NIZKPK{(f(w)) : Rp(x,w)} to indicate that = is
a proof for statement = with witness w satisfying relation R; and that from 7
we can extract f(w).

2.4 Assumptions

Our concrete constructions will use bilinear groups groups G, G of prime order
p with a map e such that for any ¢ € G, and any a,b € Z,, it must hold
that e(g?, ¢%) = e(g,9)?, and if g is a generator for G, then e(g,g) must be a
generator for Gp. We rely on the following assumptions:

Definition 3 (Decision Linear (DLIN) [BBS04]).

Given g,g% g%, g%, g%, Z € G, for random exponents a,b,c,d € 2y, decide
whether Z = ¢t or a random element in G. The Decision Linear assump-
tion holds if all p.p.t. algorithms have negligible (with respect to the bit length of
p) advantage in solving the above problem.



Definition 4 (External Diffie-Hellman (XDH)).

The XDH assumption requires that the DDH assumption holds for a group with
a bilinear map. By necessity this can only be the case for an asymmetric bilinear
map e : Gy X Go — Gp. Moreover, w.l.o.g., say that DDH should hold for G,
there must not exist efficiently computable homomorphisms that map elements
of Gy to elements of Go. If homomorphisms in both directions are excluded,

and if DDH is also required to hold for Go, the combined assumption is called
Symmetric XDH (SXDH) assumption.

We also introduce a new assumption which we show is implied by DLIN:

Assumption 1 (Randomized Computational Diffie-Hellman (RCDH))
Let G be a group of prime order p € ©(2F). For all p.p.t. adversaries A, the fol-
lowing probability is negligible in k:

Prlg, § + G;a,b« Zp; (R1, R, Rs) « A(g,3, 9%, 9") :
Ir € Z, such that Ry = g", Ry = §", Rz = g°""]

Theorem 1. In groups with a symmetric bilinear pairing RCDH is implied by
DLIN. The proof can be found in the full version [CK11].

3 A New Hash-and-Sign Approach

Our main result is to show how to construct a signature scheme for signing
elements of a message space M based on an efficient NIZK proof of knowledge
system, a signature scheme for signing message space K and a family of pairwise
independent hash functions {Hy} : M — R with key space K and exponential
sized range.

The basic idea is that, instead of hashing messages and signing the hash,
we certify the key k of a pairwise independent hash function and append the
output of the hash h = Hy(M) to the certificate. Each hash-function key k is
used exactly once, and by the pairwise independence of Hj, the hash value h does
not help an attacker to find the hash (under the same key) of any other message.
Then, for the certification of k£ we make use of the signature scheme for I and
the zero-knowledge proof of knowledge protocol. This allows us to guarantee that
the adversary cannot learn any useful knowledge from the certification process
about k£ and thus even given many signatures, he is not able to guess a hash
value h' for any message M’ different from M.

3.1 A stateless signature scheme for message space M

Let Sige = (Kgk,Signi, Verifyx) be a (potentially stateful) Weak CMA F-
unforgeable signature scheme on message space K for some bijection F. (Note
that a stateless signature scheme would suffice - the construction would then
simply not use the state s.) Let {hx}i(n) : M — R be a pairwise independent
hash function.* Let Setup, Prove, VerifyProof be a non-interactive zero knowledge

4 We will omit the security parameter A and simply write K when it is clear from
context.



proof of knowledge system. We construct a signature scheme with message space
M as follows:

SigKg(1*): Run Kgx (1) to generate a key pair (pki, skx). Generate the com-
mon reference string crs for a NIZKPK proof system. Output pk = (pkx, crs)
and sk = (ski, crs).

Sign(sk, M): Parse sk = (skic, crs). Choose random key k < K. Compute the
signature ox < Signk*=?(sk, k) and the hash value h = Hy(M). Finally,
construct a proof of knowledge of F'(k) and the corresponding signature, i.e.:

7w € NIZKPK{(f,or) : {3k € K st. f=F(k)A
Verify;c(pk;c, k,a')c) =1Ah= Hk(M)}}

Output o = (h, 7).
Note that we write Signc®=° to indicate that in case of a stateful signature
we reset the state to the initial state after each signing operation. We will
see below that as the signature is always used inside of a NIZKPK this does
not impact security.

SigVerify(pk, M, o): Parse pk = (pki, crs) and o = (h, 7). Verify the proof 7
w.r.t. crs and pki, h, M.

3.2 Unforgeability of the signature scheme
We now prove our main result:

Theorem 2. Given a (potentially stateful) Weak CMA F-unforgeable signature
scheme (Kgx, Signi®, Verifyx), a secure NIZKPK proof system (Setup, Prove,
VerifyProof), and a pairwise independent hash function family {Hy}rex(n) whose
range is exponential in A, the resulting construction (SigKg, Sign, SigVerify) is a
stateless CMA unforgeable signature scheme.

Proof. We formally prove the security of the transformation using a sequence of
games. For simplicity, we will assume that the proof system has perfect soundness
and perfect extraction, but this can be relaxed to allow for a negligible error. Let
pi(A\) be the probability that the adversary succeeds in Game i. We let Game
1 be the EUF-CMA game for the signature scheme described above. We will
show via a series of hybrid games that the success probability in this game must
be negligible.

Game 1: EUF-CMA. This is the original EUF-CMA game for the signature
scheme described above, i.e. signing queries are answered using Sign and the
adversary succeeds if it can make SigVerify accept for a message vector that
was never signed before.

The adversary succeeds with probability p;(A).

Game 2: Implement state updates. This game proceeds just as the EUF-
CMA game except that Sign uses calls to Signi® instead of calls to Signy*=".
This means that the state is no longer reset. Let pa(\) be the probability
that the adversary succeeds in this game.



Lemma 1. A;(\) = |p2(X) — p1(N)] is negligible by computational witness
indistinguishability property of the proof system.

Proof. Note first that a proof system that is zero-knowledge is also witness
indistinguishable. Clearly, both the signatures generated by Signx*=° and
by Signx® correspond to valid witnesses for the NIZKPK in the signing al-
gorithm. We first construct a sequence of hybrid games. In each hybrid an
additional call to Signi®=" is replaced by Signic®. Given an adversary A that
has a non-negligible success difference between any of these hybrids, we can
build an algorithm B that breaks the witness indistinguishability property
of the proof system. B computes two witnesses wg and w; that are based on
Signi*=Y and Signi* respectively. B outputs wy and w; to the witness indis-
tinguishability challenge game and uses the resulting proof 7 to respond to
the ith signature query. Depending on the bit flipped by the challenge game,
A will interact with one of the two hybrids. If A succeeds in producing a
forgery, B outputs 1, otherwise 0. It follows that since A can make at most
a polynomial number of queries, A;(\) is negligible O

Game 3: reusing k. This game will proceed just as Game 2 except that once
the adversary outputs his forgery, M,5 = (h,7), we will extracts f from 7,
and compare it against the values used to answer the adversary’s queries.
The adversary succeeds in this game if and only if the signature verifies,
the message is new, and the value f corresponds to F'(k) for some k used
to answer a previous query. Let ps(A) be the probability that the adversary
succeeds in this game.

Lemma 2. Ay(\) = [ps(A) — p2(N\)| is negligible by the F-unforgeability of
the signature scheme.

Proof. The two games differ only in the event Bad that A outputs a forgery
from which a value f can be extracted that does not correspond to previous
signature queries. We give a reduction to show that an attacker for which
this event has non-negligible probability can be used to construct an algo-
rithm B that breaks the security of the underlying Weak CMA F-unforgeable
signature scheme.

Let @ correspond to the maximum number of signing queries made by A. B
publishes () random values ki ... kg € K to the Weak F-unforgeability CMA
challenger and receives () signatures in return. It sets up the proof system
by providing extraction parameters, and uses these signatures to answer the
signing queries of A. B extracts 6 and f ¢ {F(k1),..., F(kg)} from 7 and
outputs it as a forgery. By perfect extraction, we are guaranteed that ox is
a valid signature on F~1(f), so if A is successful in producing event Bad,
then f , 0 exactly matches the definition of a valid Weak CMA F-forgery.
Consequently we conclude that Ay(\) < Pr[Bad]. O

Game 4: check h. This game will proceed as in Game 2 except that once the
adversary outputs his forgery, M,o = (h,m), we let K = (k1,...,kg) be



the set of hash keys used to answer the adversary’s queries. Then we verify
whether h = Hy,(M) for any i € 1...Q. The adversary succeeds if and
only if the signature verifies, the message is new, and this check succeeds
(i.e. there is such a value). Let ps(\) be the probability that the adversary
succeeds in this game.

Lemma 3. p3(\) < ps(N) + Az(N) for negligible Az(N\) by the soundness of
the proof system.

Proof. If h is computed correctly with the hash key k corresponding to the
value f = F(k) extracted from the proof, Game 4 will be successful in all
cases in which Game 3 is successful. Thus, this follows directly from the
perfect extraction of the proof system. a

Game 5: simulate proofs. In this game, when the public parameters are gen-
erated, the challenger will run SimSetup to generate parameters crs, and
trapdoor sim. When responding to signature queries, the challenger chooses
random k < K and forms h as in the real signing protocol, but generates
the proof using SimProve. As above, we judge the adversary’s success by
verifying the proof and checking the A component of the signature against
the set of hash keys {ki,...,kg} used in previous queries. Let p5(A) be the
probability that the adversary succeeds in this game.

Lemma 4. As(A\) = |ps(A) —pa(N)]| is negligible by the zero-knowledge prop-
erty of the proof system.

Proof. An attacker with non-negligible A4(A) can be used to break the zero-
knowledge property of the proof system. We use the standard definition
of multi-theorem zero-knowledge. Given an attacker .4 with non-negligible
Ay(N), we construct an algorithm B that can distinguish whether, when
interacting with a multi-theorem zero-knowledge challenge game, it is given
real proofs or simulated proofs. B sets up the public key using the parameters
received from the challenge game; to generate each signature, it chooses
random k  KC, generates h,ox as in the signing algorithm, and generate
the zero-knowledge proof using an oracle query. If A succeeds in producing h
which does not correspond to any of the hash keys k1, ..., kg together with a
proof 7 that verifies, then B outputs 1. If |p5(A) —p4(N)| is non-negligible, then
B will succeed in the zero knowledge game with non-negligible advantage.
O

Lemma 5. ps5()\) is negligible when h is computed by a pairwise-independent
hash function whose range R is exponential in .

Proof. Suppose we know h and M for some unknown hash key k. Then for
any other b’ € R, M’ € M, the probability (taken over possible values of
k € K) that b/ = H,(M') is 1/|R| by pairwise independence. Thus, for any
key k used by the signer, the probability of A producing a correct pair A/,
M’ for that tuple is at most 1/|R|. Taking a union bound over all tuples
used gives ¢/|R| where ¢ is the total number of queries made by A. This will
be negligible since ¢ is polynomial and |R| is exponential in A.



By the triangle inequality p;(A) < A1(A) + As(A) + Az(A) + Ag(A) + ps(k) is
negligible as desired. ad

4 Structure-Preserving Signatures from DLIN

Here we show that we can instantiate the building blocks described in the previ-
ous section based on DLIN, to construct a structure-preserving signature scheme.
(In fact, we will describe a structure preserving scheme which allows us to sign
vectors of ¢ group elements at once.)

First, we will review the Groth-Sahai NIZK proof system [GS08], which gives
efficient proofs that are compatible with many pairing based schemes. Then we
briefly present the pairwise-independent hash function we use, and how it can
be used with Groth-Sahai. Finally, we will construct a new signature scheme
for elements in fol which is both secure under DLIN and compatible with
the Groth-Sahai proof system. Putting all of these together using the generic
construction in Section 3 gives a secure signature scheme. Finally, since the hash
function produces elements in the bilinear group G, and Groth-Sahai proofs are
composed of elements in G and can be verified with pairing product equations,
the result is a structure preserving signature scheme.

4.1 NIZK proofs based on DLIN: the Groth-Sahai proof system.

Groth and Sahai [GS08] (in an extension of the results of [GOS06b] and [GOS06a])
showed how to construct non-interactive proof systems under the sub-group hid-
ing, decisional linear, and external Diffie-Hellman assumptions that allow one to
directly prove the pairing product equations common in pairing-based cryptog-
raphy.

Groth-Sahai proofs. The Groth-Sahai proof system allows to generate non-
interactive zero-knowledge proofs of knowledge of values satisfying pairing prod-
uct equations. We denote a proof 7w that proves knowledge of secret values
Z1,...,xn that fulfill a pairing product equation with constants {a;};=1. n €
G,t € Gr and {v;j}i=1..N,j=1..~ by

N N N
7w NIZKPK{(z1,...,xN) : He(ai,xi) H H e(x;, x;)" =1t} .

i=1 i=1j=1
In a nutshell, Groth-Sahai proofs work by committing to all secret elements us-
ing either Linear [BBS04] or ElGamal [EG85] commitments (depending on the
assumption used). The homomorphic properties of these commitments allow one
to evaluate the pairing product equation in the committed domain. In addition,
a Groth-Sahai proof contains a constant number of group elements that allow a
verifier to check that the result of this computation corresponds to t. The ver-
ification algorithm only consists of pairings between the group elements of the
commitments and these additional proof elements. Linear and ElGamal com-
mitments are extractable. Given a setup with an extraction trapdoor, we can
extract the committed value x; from a proof, but not the opening open;. This



means that given a Groth-Sahai proof for a pairing product equation we can
extract all the elements of G that make up the witness.

4.2 Pairwise independent hash functions.

We will need a pairwise independent family of hash-functions { Hy}, where Hy :
G' -G withM=Gand k € Zf,“‘l. The function we propose is computed as

Hy(My, ... M) =gk T] M,
i=1..0

where k = (ko,...,k¢). We show that this function family is indeed pairwise
independent:

Theorem 3. The above function family is pairwise independent.
Proof. Let us express the probability
Prlk < K : Hy(x) = a A Hy(y) =b] =

k‘i k'i
[{kos - ke | g Tlimy p2i =ang™ 1y oy = b}
|Zy [+ '

We have to show that the numerator equals |Zp|e_1. This can be seen by looking
at gho | P xf = a and go | P yf = b as independent linear equations
over the variables ko, ...,k (independence follows from = # y). As there are
¢ + 1 variables and 2 equations, the solution set has ¢ — 1 dimensions and thus
has size |Z, [ 1.

Finally, we observe that, given g*, ..., ¢**, we can easily use a pairing prod-
uct equation to verify that h is correctly computed: for key k = kg, ..., ke and
message M = My, ..., My, it will be the case that h = Hp(M) iff e(h,g) =
e(g,gk")]_[f=1 e(M;, g¥). Thus, we can use the Groth-Sahai proof system to
prove knowledge of gFo, ... ¢* and M;,..., M, such that h is correct.

4.3 A signature scheme for elements of Z,

We will base our exponent-signature scheme Sig,,..,,, on the Hohenberger and
Waters [HW09a] stateful signature scheme which was proved secure under the
CDH assumption. In that scheme, each signature is indexed by a unique index
s that is initialized to 0, and increased before each signing. A signature with
message m, secret key a, public bases u,v,d, w, z, and randomness ¢, 7 consists
of two group elements o; = (u™v"d)*(w'8*)125h)* and oy = ¢, and the two
exponents r, s € Z,. We adapt their scheme to obtain a stateful signature that is
F-unforgeable under weak chosen message attacks (Weak CMA F-unforgeable)
under the Randomized Computational Diffie-Hellman (RCDH) assumption, a
new assumption which is implied by the DLIN assumption. We also show how to
reuse the state to sign multiple message blocks. Interestingly, when we apply the



transformation presented in Section 3, the result will be a fully secure, stateless
signature scheme for signing group elements.

Simplifying the Hohenberger and Waters scheme. Recall that in the HW
scheme, signatures include elements oy = (u™v"d)*(w'8)125h)t and oy = ¢?,
and the two exponents 7,s € Z,. When building a zero-knowledge proof of
knowledge of signature possession, we must prove that the signature is well
formed, which in this case requires proving the correspondence between [lg(s)]
and s. This typically involves two steps: 1) proving that a commitment contains
the value 281 and 2) proving that this value is bigger than s. The range proof
technique by [Bou00] for interactively proving the latter relation for large s uses
hidden order groups and is based on the Strong RSA assumption. To obtain a
scheme that is based purely on CDH, one has to use alternative range proof
techniques, e.g. [BCDvdG87]. While such proofs can be efficiently computed
([Bou00] estimates a proof size of 27.5 kB), we are primarily interested in non-
interactive proofs based on the Groth-Sahai proof system.

As pointed out in [HW09a], instead of signing lg(s) as part of o1 one can
also sign s using a signature scheme that is already CMA secure under the
CDH assumption, e.g. by employing the Waters signature [Wat05]. While this
approach may be slightly circular, it gives us a performance advantage, as the
expected number of signatures is usually much smaller than the size of the
message space Zp.5 Moreover, as we will see, when many messages are signed
with related state (e.g. when we sign multiple message blocks at once), we need
only sign a single state value, thus resulting in greater advantage.

Finally, we note that for our transformation we only require a weak signature
scheme; thus we can simplify the resulting signature scheme further by replacing
the Chameleon hash u™v" with u™ itself.6

Our construction. Let G be a symmetric bilinear group with pairing operation
e: G xG — Gr. Let g,§ be random generators for G. The resulting signature
scheme is as follows:

Signgzp(l’\) runs the Waters key generation to generate (pk,,, sk ), chooses
random a + Z, and u,d, z,h < G, and outputs secret key sk = (a, sk,,) and
a public key pk = (g, g, 9% u,d, z, h, pk,,). (The initial value of s is 0.)

Sign3,, (sk,m) is a stateful signature algorithm which first increases the state s.
To sign a message m, it computes o1 = (u™d)*(z°h)?, o5 = g*, and a Waters
signature o3 on s. The algorithm outputs o = (01, 02, 03, 5).

® The Waters signature operates bit-by-bit on it’s message, and directly proving knowl-
edge of a valid Waters signature has cost proportional to the bit-length of the mes-
sage. Thus, proving correctness of our resulting signature will thus have cost pro-
portional to the bit-length of the maximum possible value of s rather than the bit
length of the message.

5 We note that, as part of their result, Hohenberger and Waters [HW09b] give a generic
transformation from Weak CMA security to CMA security based on Chameleon
hashes. Weak CMA F-unforgeable signatures are, however, sufficient to obtain a
CMA secure signature scheme for signing group elements via our transform.



SigVerify ., (pk, m, o) parses o as (01, 09,03,4) and checks that signature o3 on i
is valid. Then it uses the bilinear map to check (a1, g) = e(u™d, g*)e(o2, 2°h).

Note: We write Sign?,,(sk,m) to indicate that we run the signing algorithm on
state s.

Security of our construction. We show that this signature scheme is unforge-
able under weak chosen message attacks, and moreover, that it is F-unforgeable
under such attacks for a simple function F' that maps exponents to group el-
ements. (Recall that F-unforgeability means that it is impossible to produce
F(m) and a forged signature on m. This allows us to prove a contradiction even
when we can extract only F(m) and not m as is the case when we use the
Groth-Sahai proof system.)

S

Theorem 4. Our (SigKg,,,,Sign?,,, SigVerify.,) signature scheme is unforge-
able under weak chosen message attacks under the CDH assumption. The proof
is omitted. It follows very closely the proof of F-unforgeability presented below.
Theorem 5. Let F(m) = (g™,§™). Our (SigKg,,,, Sign;,,, SigVerify, ) signa-
ture scheme is Weak CMA F-unforgeable under the RCDH assumption. Since
RCDH s implied by DLIN, this means the signature is secure under DLIN.

Proof. A successful adversary A outputs a forgery ¢ = (&1,03,03, z~) If the
signature on index i was never created, we break the signature scheme that is
used to sign the index s. Thus we concentrate on the case where the adversary
reuses one of the s values from the signing queries as i. The first step in a
reduction to RCDH will be to guess this 1. (Here we have at most a polynomial
loss in the tightness of the reduction.)

Setup:  As we consider a weakly secure signature scheme, the game starts with
the adversary outputting polynomially many messages mq, ..., mqg, @ < poly(X).
The reduction chooses a random index i*, 1 < i* < Q. Given (g, 9%, ¢°) as
specified in the RCDH assumption, the parameters are set up as follows. Choose
random y4 € Z, and set u = g®, d = g~¥™i* g¥¢ then choose random ., x), € ZLp,
and set z = ¢gg%=, h = g~ g*». The reduction outputs pk = (9,9%u,d,z,h).

Sign:  The adversary is now given signatures on messages mq,...,mg, @ <

poly(\), that are computed as follows:

For s = i*, choose random ¢ and form o1 = (g%)¥%4(2%h)!, 02 = g'. Note that this
results in a correctly distributed signature as
(") (="h)! =
(™)™ =) (g (")’ =
((gb)mi* (g—bm,;* gyd))a(zsh)t :(umi* d)a(zsh)t .

For s # i* , choose random ¢’ and implicitly let ¢ = ¢’ —a(ms—m;»)/(s—i*). Form
o1 = (g0)veT®=sten (M=) and gy = T for T = gt /(g®)(ms—ma=)/(s=07),



Then T' = gt/_“(ms—mi*)/(s—i*) =¢' and

(ga)ydeszrzh, (gb)t’(s—i*) _

(gyd)a( wzsgwh)t(gb)t'(s—i*) _

(ums d)a(ga:zsga:h)t(gb)t’(s—i*) (g—ab)(ms—mi*) _

(umsd)a(gxzsgrh)t(gb(s—i*))t —
(u™ed)®(gHe)s g~ o) =(umed)* ()" .

Response:  Eventually the adversary responds with a forgery ¢ = (61, 72, 73, 1),
g™, g™, such that m ¢ {m1,...,mqg}. If ¢ # ¢* the reduction aborts. Otherwise

it outputs g /g™, g™ /g™ and 61/g“yd&ézzi_xh) as a RCDH triple.

Signing multiple message blocks. For our transformation, we actually need
to be able to sign vector of exponents, i.e. we need our signature scheme Sign,,,,
to have message space Z; for n > 1. There is also an efficiency advantage to
batching several messages together: We note that the Waters signature on the
index s needs to be done only once. The indices of the individual signatures will
besetton-(s—1)+1,....,n-(s—1)+n.

Our multiple message block signature is as follows:

SigKg,,, (1*) is unchanged.

Signi_ezp(sk, mi,...,my). The signature algorithm increases the state s. To sign
message m, it then computes o1 ; = (u™d)*(z"*~DHIh)ti | and g ; = g,
for j = 1.n and t; < Z,. We also add a Waters signature o3 on s. The
algorithm outputs o = ({01,j,02,;}j=1..n, 03, 5).

SigVerify,, o, (Pk, M1, ..., My, 0). Parse o as ({015,025 }j=1..n,03,1). The verifi-
cation algorithm first checks that signature o3 on 7 is valid. It uses the bilinear
map to verify e(oy j,g) = e(u™d, g%)e(os,;, 2"~ VIR, for j = 1..n.

Unforgeability and F-unforgeability under weak CMA attacks can be shown via
a straightforward extension of the proof for the single message scheme. Note
that the reduction now has to guess values i* and j*, where 1 < ¢* < @ and
1 < j* < n respectively. The RCDH challenge is embedded into message block
j* of signature query i*.

Efficient zero-knowledge proof of knowledge. Except for the value s, the
signature o = ({01,j,02,;}j=1..n,03,5) consists only of group elements. When
employing the Groth-Sahai proof system, the Waters signature o3 is proved in
a bit-by-bit fashion that allows us to extract s (see [FP09] for further details).
It is thus possible to give proofs of knowledge for the above signature scheme
using the pairing-product equation proofs in [GS08] in a straightforward way.
If we combine this with the pairing-product equations described in Section 4.2,
we can generate an efficient GS proof for the relation needed for our generic
construction.



Instantiation stateless signature
DLIN 100 4 244 + 9z
¢-BB-HSDH + ¢-TDH + DLIN 794 T7¢
RCDH + SXDH 77+ 18¢ + 6z
¢-BB-HSDH + ¢-TDH + SXDH 61 + 6/

Table 1. Estimated size in group elements of a signature and a proof for different
versions of our transform: £ is the number of group elements signed and N = 2% is an
upper bound on the number of signatures generated per key pair.

4.4 Performance analysis

For the performance analysis we instantiate our signatures and proofs with two
signature schemes — the scheme based on RCDH described in Section 4.3 and one
based on ¢-BB-HSDH and ¢-TDH described in [BCKL09].” We instantiate the
Groth-Sahai proofs under DLIN and SXDH. Here £ is the number of signatures,
and 27 is the maximum number of signatures issued. Table 1 gives estimates for
the size of a signature and a proof of signature possession (expressed in number of
group elements). More details concerning the performance analysis can be found
in the full version [CK11]. We note that while our signatures and proofs are still
somewhat expensive, they are still within the realm of feasibility (and not much
more expensive than the signature scheme used in [BCKL09] for example).

5 Conclusion and Open Problems

We construct a reasonably efficient signature scheme for signing group elements
based on DLIN, one of the weakest decisional assumptions in the pairing setting
(and the weakest one that was used to construct Groth-Sahai proofs). We show
that such a signature scheme is an important building block for numerous cryp-
tographic protocols. As our construction does not make use of “g-type” assump-
tions, it can be used for instantiations of protocols under weaker assumptions
for which as of now only instantiations in the random oracle or generic group
model were known.

Thus, we see a tradeoff between efficiency and security, and we argue that
in many cases sacrificing an order of magnitude in efficiency for a significantly
weaker (and non ¢-type) and more standard assumption may be a reasonable
exchange. Furthermore, this result can be seen as evidence that schemes based
on relatively weak assumptions can be practical, and as support for the argument
that, while they are very important developments, we need not necessarily be
satisfied with schemes based on the generic group model, but rather that we
should continue looking for schemes which are both efficient and based on weak
assumptions.

" For a discussion of other possible instantiations for the exponent signature scheme,
see the full version [CK11].
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