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ABSTRACT
Web search components such as ranking and query sug-
gestions analyze the user data provided in query and click
logs. While this data is easy to collect and provides infor-
mation about user behavior, it omits user interactions with
the search engine that do not hit the server; these logs omit
search data such as users’ cursor movements. Just as clicks
provide signals for relevance in search results, cursor hover-
ing and scrolling can be additional implicit signals. In this
work, we demonstrate a technique to extend models of the
user’s search result examination state to infer document rele-
vance. We start by exploring recorded user interactions with
the search results, both qualitatively and quantitatively. We
find that cursor hovering and scrolling are signals telling us
which search results were examined, and we use these in-
teractions to reveal latent variables in searcher models to
more accurately compute document attractiveness and sat-
isfaction. Accuracy is evaluated by computing how well our
model using these parameters can predict future clicks for a
particular query. We are able to improve the click predic-
tions compared to a basic searcher model for higher ranked
search results using the additional log data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

Keywords
cursor data, scrolling, searcher models, click data, user in-
teractions, search result examination

1. INTRODUCTION
Web search engines allow users to search and retrieve rele-

vant documents from billions of Web pages. The user issues
a query and the search engine returns a list of results, gen-
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erally ranked in order of relevance. The relevance of the
results is based on a number of factors: how well a docu-
ment matches the query, a document’s reputation, and more
recently, implicit feedback in the form of past behaviors for
that query from many users. Records of these user behav-
iors are commonly sourced from query logs containing users’
queries and the corresponding clicks, if any. Query logs are
easy to collect, since they typically already exist as web
server access logs without modification to the search engine.

Being able to compute relevance scores from implicit feed-
back allows a search engine to better rank the search results
for future queries. Clicks (in the aggregate) provide a clear
signal that users were attracted to the search result, and
numerous studies have used click data in searcher models
to infer relevance scores. These searcher models (e.g., [4, 7,
34]) track the user’s state as they examine search results and
use the observable events (e.g., clicks) to infer search result
attractiveness and document relevance. However, query logs
possess inherent limitations, some of which have been noted
in the literature [11, 24]. They are unable to reveal actual
user intent, provide little data about uncommon queries, and
omit many interactions. Furthermore, they are uninforma-
tive for queries that have no clicks, i.e., abandoned queries.

In this paper, we introduce richer interaction data that
can be used to supplement query and click data. This richer
data comprises cursor movements and scrolling on the search
engine results page (SERP), data which is not collected by
commercial search engines but may be potentially useful.
We believe cursor movements and scrolling can be additional
implicit signals of relevance. These interactions can be cap-
tured at scale and can be recorded without disrupting the
user, as shown in Huang et al. [21]. Actions such as cursor
hovering and scrolling can be translated into implicit rele-
vance feedback when overlaid on the SERP. In this work, we
explore techniques to extend searcher models by using cur-
sor hovering and scrolling activity to reveal latent variables
in these searcher models to more accurately infer search re-
sult attractiveness and document relevance. As far as we are
aware, this is the first study that explores the potential of
cursor and scrolling interactions for use in searcher models.

Our primary contribution in this work is our study of
extending a popular searcher model by adding hover and
scroll data, informed by our analysis of replays of user in-
teractions on the search results page. We find qualitative
evidence that from a human observer’s perspective, hover-
ing and scrolling provide insight into the user’s intentions
and attention as they examine the SERP. We find that we



can improve searcher models by estimating whether a search
result was viewed based on cursor hover and scroll behavior.

The remainder of the paper is structured as follows. In
Section 2 we describe related work that characterizes cursor
interactions with SERPs and searcher models. Section 3
describes the cursor data that we used in our study. We
present an initial exploratory analysis of the data, which
was useful in informing decisions about model features, in
Section 4. In Section 5 we describe an extension to the
searcher model using the cursor hover and scroll data, and
present results of experiments using them in Section 6. We
discuss the findings, their implications, and limitations of
the method in Section 7, and conclude in Section 8.

2. RELATED WORK
Two lines of prior research are related to the work de-

scribed in this paper: (i) studies characterizing how people
interact with search result pages using their cursor, and (ii)
searcher models primarily using click data.

2.1 Cursor Tracking on the Web and in Search
Buscher et al. investigated the use of gaze tracking to

predict salient regions of Web pages [2] and the use of visual
attention as implicit relevance feedback to personalize search
[3]. To avoid eye-tracking studies, cursor tracking has been
evaluated as an alternative to eye tracking for determining
attention on the Web page. Initial studies established a
close correspondence between gaze and cursor position [16,
21, 29, 30]. An early study by Chen et al. [5] showed that
the distance between gaze and cursor was markedly shorter
in regions of encountered pages to which users attended.
More recent work has focused on the relationship between
cursor and gaze on search tasks. In a study involving 32
subjects performing 16 search tasks each [29, 30], Rodden
et al. identified a strong alignment between cursor and gaze
positions. They found that the distance between cursor and
gaze positions was longer along the x-axis than the y-axis,
and was generally shorter when the cursor was placed over
the search results. Guo and Agichtein [16] reported similar
findings in a smaller study of ten subjects performing 20
search tasks each. Like Rodden et al., Guo and Agichtein
noticed that distances along the x-axis tended to be longer
than the distances along the y-axis. They could predict with
77% accuracy when gaze and cursor were strongly aligned
using cursor features. Huang et al. [21] similarly found a
correlation in cursor and gaze positions, and noted that the
correlation was stronger on SERPs than on other Web pages.
Huang et al. [20] determined when alignment occurred based
on factors of time and cursor behavior. They showed that
the alignment between cursor and gaze is stronger as the
user is more active with the cursor.

Guo and Agichtein [14] captured cursor movements us-
ing a modified browser toolbar and found differences in cur-
sor travel distances between informational and navigational
queries. Furthermore, a decision tree could classify the query
type using cursor movements more accurately than using
clicks. Guo and Agichtein also used interactions such as
cursor movement, hovers, and scrolling to accurately infer
search intent and interest in search results [15]. They fo-
cused on automatically identifying a searcher’s research or
purchase intent based on features of the interaction. Rodden
et al. [30] identified four general uses of the cursor in Web
search—neglecting the cursor while reading, using the cursor

as a reading aid (either horizontally or vertically), and using
the cursor to mark interesting results. In a large-scale study,
Huang et al. [21] conducted an analysis of cursor activity (in-
cluding clicks on hyperlinks, clicks on non-hyperlinks, hover
behavior) and its relation to Web search behavior. They also
showed how cursor activity could be used to estimate the
relevance of search results and to differentiate between good
and bad search abandonment. Rather than tracking the cur-
sor unobtrusively via cursor tracking, Lagun and Agichtein
[25] presented a method to estimate gaze position by blur-
ring the SERP and only revealing a region proximal to the
cursor. They found that result viewing and clickthrough
patterns agree closely with unrestricted viewing of results,
as measured by eye-tracking equipment.

One line of related research has explored the use of cursor
movements, clicks, and gaze as implicit indicators of interest
on Web pages. In early work, Goecks and Shavlik modified
a Web browser to record themselves browsing hundreds of
Web pages [10]. They found that a neural network could
predict variables such as the amount of cursor activity on
the SERP, which they considered surrogate measurements
of user interest. Claypool et al. [6] developed the “curious
browser”, a custom Web browser that recorded activity from
75 students browsing over 2,500 Web pages. They found that
cursor travel time was a positive indicator of a Web page’s
relevance, but could only differentiate highly irrelevant Web
pages. They also found that the number of clicks on a page
did not correlate with its relevance. Hijikata [19] used client-
side logging to monitor five subjects browsing a total of 120
Web pages. They recorded actions such as text tracing and
link pointing using the cursor. The findings showed that
these behaviors were good indicators for interesting regions
of the Web page, around 1.5 times more effective than rudi-
mentary term matching between the query and regions of the
page. Shapira et al. [31] developed a special Web browser
and recorded cursor activity from a small number of com-
pany employees browsing the Web. They found that the
ratio of cursor movement to reading time was a better indi-
cator of page quality than cursor travel distance and overall
length of time that users spend on a page. Liu and Chung
[26] recorded cursor activity from 28 students browsing the
Web. They noticed patterns of cursor behaviors, including
reading by tracing text. Their algorithms predicted users’
cursor behaviors with 79% accuracy.

2.2 Searcher Models Using Click Data
Searcher models have been developed from two main hy-

potheses that are commonly used as assumptions in the
models. Since users are biased towards clicking search re-
sults that are more highly ranked [23], the examination
hypothesis is used to isolate a search result’s attractiveness
from its position. This hypothesis, originally formulated in
Richardson et al. [28], states that the likelihood that a user
will click on a search result is influenced only by 1) whether
the user examined the search result and 2) its attractive-
ness. In other words, a user must examine a search result
before potentially clicking that result. By making this as-
sumption, a search result’s attractiveness can be computed
independent to its position in the ranking, i.e.,

P (Ci = 1) = P (Ei = 1)P (Ci = 1|Ei = 1),

where the term P (Ei = 1) is the position bias and the term
P (Ci = 1|Ei = 1) is the search result’s attractiveness.



To determine whether a user examined the search result,
some searcher models draw from the cascade hypothesis
[7] which dictates the search results a user has examined.
The cascade hypothesis states that a user always examines
search results sequentially and goes from top-to-bottom on
the SERP. A user decides whether to click a result before
examining the next result, preventing scenarios where the
user returns to a higher-ranked search result after passing it
by. Therefore, if users do not examine a particular search
result, they will not examine any search results below it, i.e.,

P (E1 = 1) = 1,

P (Ei+1 = 1|Ei = 0) = 0.

While the original cascade model stipulated that once a
user clicked, they would no longer examine any search re-
sults, extensions of this hypothesis have sidestepped that as-
sumption. The Dependent Click Model [13] allows for query
sessions comprising multiple clicks: it possesses a parameter
representing the probability that the clicked document is ir-
relevant and that the user returns to examining more search
results. The Click Chain Model [12] and Dynamic Bayesian
Network Model (DBN) [4] both extend this by adding an ad-
ditional parameter representing the probability that a user
abandons a query session without clicking, thus circumvent-
ing the cascade hypothesis’s side effect that users are as-
sumed to examine every search result in abandoned queries.
Later in the paper, we will describe our extension to the
DBN model, which we selected because of its popularity in
the literature and its good performance. Additionally, the
inference step could be simplified and the model itself was
conducive to the inclusion of cursor data due to a separate
examination state; these are two more reasons this model
was particularly suited to our study.

Other searcher models such as the User Browsing Model
[9] and the Partially-Observable Markov Model [34] avoid
the cascade hypothesis entirely by allowing that the user
jumps between search results non-sequentially in their exam-
ination. However, these models must possess more param-
eters representing the probabilities of transitions between
search result positions. This makes the inference particu-
larly difficult when there are fewer query sessions with clicks
from which to learn.

The research presented in this paper intersects the two
categories of prior work presented in this section by extend-
ing searcher models using cursor tracking.

3. CURSOR DATA
We recorded interaction data directly on the SERP of the

Bing Web search engine. Log data were gathered over a
period of 13 days between May 26, 2011 and June 7, 2011
during an external experiment on a small fraction of user
traffic, primarily from English-speaking countries. We sam-
pled by user, storing every query from each user in the ex-
periment. In total, our data comprised around 1.8 million
queries, averaging eight queries per searcher (median = 3
queries).

To record user interactions with the SERP at scale with-
out the need to install any browser plugins, we used an effi-
cient and scalable approach similar to that used by Huang et
al. [21]. We implemented entirely JavaScript-based logging
functions that were embedded into the HTML source code
of the SERP. To obtain a detailed understanding of user in-
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Query: lady gaga concert tickets
Cursor moves from top to hover over 3rd search result
Cursor pauses for 3 seconds
Text“Tour Dates Only” is hovered with the cursor
Cursor moves to the 4th search result, pausing 1s
User scrolls to the 5th search result, pausing 3s
Cursor returns to the 4th search result and clicks
Click: Result 4 [http://gaga.com/tix/]

Figure 1: A user searches for “lady gaga concert
tickets”, examines the first page of results, and clicks
the 4th search result. Typical query logs contain
only query and click data (bold).
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Query: flourless cake recipe
Cursor moves to the bottom-right over whitespace
No activity for 4 seconds
Cursor moves over to the scrollbar
User scrolls down half a screen
No activity for 2 seconds
User scrolls down half a page
Cursor makes left-right motions over the 6th result
User scrolls to the bottom of the page
User quickly scrolls back up to the top
Cursor moves to the top-right over the page
User closes the page

Figure 2: A user searches for “flourless cake recipe”
and scrolls to the bottom of the page, then scrolls
back up and closes the window.

teractions with the SERP, we deployed methods to measure
and record a variety of interactions with the page as well as
page characteristics, such as the layout of elements on the
page. We recorded information on cursor movements, clicks,
scrolling, as well as bounding boxes of certain components
on the SERP and the browser’s viewport size.

Figure 1 presents a fictional query along with the corre-
sponding click data and client-side interactions. In this and
many other cases, the cursor and scrolling data reveals more
information about the user’s intent. In the above scenario,
the query logs only show that a query was issued, and that
some time later, the 4th result was clicked. This is use-
ful information, but the interaction data supplement this by
showing that the user was active the whole time examining
several results and that the user likely examined the 5th re-
sult and returned to the 4th result, indicating the 1–3 and
5th results may have been less relevant than the 4th result.

Figure 2 presents a fictional query that has no clicks. In
typical query logs, the only recorded data would be the query
text itself. The richer cursor and scrolling data here shows
that the user did indeed scroll all the way to the bottom. We
also see that the user paused to read through the results1. In
this particular case, it seems reasonable to assume the user
abandoned the query because they did not find what they
were seeking. Thus, this query can be labeled as unsatisfying
in a user-centered analysis of the logs.

1Query logs can compute the dwell time of a click, but only
if another recorded event occurs after the click.



When logging any additional type of user interaction data
beyond clickthrough, a tradeoff has to be made between: (i)
level of detail (e.g., temporal and spatial resolution), (ii) the
impact of any additional JavaScript code on page weight,
page load time, and therefore the user experience, which
can be sensitive to even small increases in load time, and
(iii) the amount of data transferred (and hence bandwidth
consumed) between the client and the remote server, as well
as log volume created on the backend server. We negoti-
ated a tradeoff between these dimensions by: (i) reasonably
coarsening the log resolution, (ii) compressing the JavaScript
code down to around three kilobytes, and (iii) compressing
the log data as well as using a buffering approach for its
transferal via Ajax to the backend server. We now describe
in more detail the fields recorded in our log data and the
methods used to record them.

3.1 Cursor Positions
The JavaScript function for logging cursor positions pe-

riodically checked the cursor’s x- and y-coordinates within
the Web page relative to its top-left corner of the page ev-
ery 250 milliseconds. Whenever the cursor had been moved
more than 8 pixels away from its previously logged position,
its new coordinates were sent to the backend server. Eight
pixels correspond to approximately half a line of text on the
SERP. Since cursor tracking was relative to the document,
we captured cursor alignment to SERP content regardless
of how the user got to that position (e.g., by scrolling, or
keyboard). Therefore, this approach was compatible with
other behaviors such as scrolling or keyboard input. In pre-
vious cursor tracking studies, the cursor position was polled
at particular time intervals, such as every 50 milliseconds
(ms) [15] or every 100ms [29]. This is impractical at a large
scale because of the large amount of data to transfer from
the user’s computer to the server. Our approach is similar
to Huang et al. [21], who found that a 40ms pause provided
a reasonable tradeoff between data quantity and granular-
ity of the recorded events. However, we elected to record
the cursor position every 250ms since we were sending data
to the remote server every eight pixels of cursor movement,
rather than every two seconds. As such we wanted to min-
imize the data gathered and transmitted to avoid adversely
affecting the user experience with delays associated with log
data capture and data transmission to the remote server.

3.2 Clicks
Clicks were recorded using the JavaScript onMouseDown

event handling method. Thus, the backend server received
log entries with location coordinates for every click, no mat-
ter whether the click occurred on a link or elsewhere on
the page (even on white space containing no content that
appears adjacent to or between SERP elements). In or-
der to identify clicks on hyperlinks and differentiate them
from clicks on inactive page elements, we also extracted and
logged unique hyperlink identifiers that were embedded in
the SERP, along with the corresponding URL of the hy-
perlink. The URL helped identify the actual search result
because different query sessions could have different search
results or the same search results ranked differently.

3.3 Scrolling
We also recorded the current scroll position, i.e., the y-

coordinate of the uppermost visible pixel of the SERP in the

browser viewport. This coordinate was checked three times
per second and was recorded whenever it had changed more
than 40 pixels compared to the last logged scroll position.
Forty pixels correspond to the height of about two lines of
text. From this coordinate we were able to gain a number
of insights into scrolling activity, including whether the user
was scrolling up or down, and the maximum scroll depth in
the result page, in order to understand how far down the
page the user had scrolled.

3.4 Page Layout
Simply logging the text of what was displayed on the

SERP is insufficient for reconstructing its layout since SERPs
vary per query (depending on what kinds of SERP elements
are shown, etc.), font sizes, and other browser preferences.
To reconstruct the exact SERP layout as it was rendered in
the user’s browser, we recorded the positions and sizes of
certain regions. The specific regions in which we were inter-
ested in were as follows: (i) top and bottom search boxes,
(ii) left rail and its contained related searches, search his-
tory, and query refinement areas, (iii) mainline results area
and its contained result entries, including advertisements
and instant answers, and (iv) right rail.

For each region bounding box, we determined and logged
the coordinates of its upper left corner as well as its width
and height in pixels. Using this information, we could later
map the positions of cursor positions and clicks to specific
regions of the page. The recorded data also contained the
size of the user’s Web browser window, which combined with
the scrolling activity could deduce information about the
parts of the page that were visible at a particular time during
the query session.

Figure 3 presents a screenshot of the page layout of a
reconstructed SERP taken from a query session replay. Im-
portant components are outlined in light blue boxes; the
user’s cursor position is shown as a gray pointer; and the
green area represents parts of the Web page not visible in
the browser window on the user’s screen at the current time.

4. EXPLORATORY ANALYSES
Before constructing any searcher models, we wanted to

obtain a deeper understanding of the recorded cursor and
scrolling activity since this type of data was relatively un-
explored. This included both a qualitative perspective and
a more traditional quantitative analysis of the data. The
findings here inform the approach we take in enhancing the
searcher model.

4.1 Qualitative Observations
We began by reconstructing the SERP layout from the

recorded logs, and developed a tool to replay the entire se-
quence of cursor interactions on the page in great detail.
This included an outline highlighting the viewable area of
the Web page (based on the dimensions of the Web browser
viewport), since this would change according to the users’
screen resolution and their scrolling. One of the authors then
visually investigated a random sample of over a hundred re-
plays of interactions on the search result pages made by
real users. During the replays, the author put himself in the
users’ place to determine their intent. His judgments of their
intents were informed by the cursor behaviors described in
prior literature. These qualitative observations were a rich



Figure 3: The reconstructed SERP during a query session replay. Light blue boxes outline important com-
ponents, a grey pointer represents the user’s cursor position, and the green area overlays off-screen portions
of the Web page. The number in the top-left is the time elapsed since the start of the query session.

way of truly understanding the data and provided a number
of key insights that were difficult to quantify.

First, we saw that many users could only view a small
portion of the Web page initially, which only displayed ads or
an “Answer” element (such as the PhonebookAnswer, which
shows local results and contact information, in Figure 3);
these users would often scroll down a bit to view at least
a couple of search results. The time spent pausing after
a scroll suggested that they indeed examined those newly
revealed search results. We were less confident that the user
had examined all the visible search results if they did not
scroll, since they often clicked a link or abandoned the query
immediately after the page loaded.

Second, while we could not see where the user was actu-
ally looking, the cursor would commonly move around the
page from top-to-bottom while hovering over particular ar-
eas, and then move to the scrollbar to reveal more search
results, corresponding nicely with the linear traversal hy-
pothesis [23]. This behavior seemed to suggest that when-
ever a user hovered over a search result, they had at least
examined that result and the search results above it.

Third, we observed some users moving their cursor back-
and-forth horizontally which we believed to be them follow-
ing the cursor as they read text; some users would do this
quite frequently in a single query session. This corroborates
previous work that observed this behavior in lab settings
[20, 26, 30], and suggests that this behavior is specific to
individual users.

Finally, we observed many sessions in which the user would
move their cursor quickly and directly from the search box
to the first search result, without scrolling down to view any
of the lower-ranked search results. This happened often in
navigational queries, so this provoked the question whether

interaction data would be more or less useful in navigational
queries; we explore this later in Section 6.2.2.

4.2 Quantitative Summary
As described in an earlier section, the raw interaction

events comprised cursor positions, clicks, window scrolls,
and page layout. Statistics specific to the different types
of interaction data logged include:

Cursor: Users hovered over multiple search result cap-
tions (mean = 2.6, median = 2), even for navigational queries
when it was clear that a single search result will suffice. This
pattern of behavior has been observed in previous studies of
eye tracking [8], as well as previous work on large-scale cur-
sor tracking [21].

Clicks: Mouse clicks were collected regardless of whether
they were navigational clicks (clicks on a hyperlink) or in-
teractive clicks on controls in the page (17.1% of clicks).
64.7% of all clicks were hyperlink clicks and 35.2% were non-
hyperlink clicks, including re-query events (estimated from
clicks on the upper or lower search boxes) totaling around
11% of all queries.

Scrolling: Window scrolling is a client-side interaction
that is rarely captured in the context of Web search. Of
the queries in our set, 29.7% contained at least one scroll
event. 61.8% of logged interaction sequences for a query
ended on a downwards scroll. As expected, there were more
downward scrolls than upward scrolls, and the majority of
scrolled queries (54.8%) comprised only downward scrolls.
This suggests that most queries do not result in the user
returning to the top of the SERP to examine search results
that may be hidden following scrolling.

Figure 4 contrasts queries in which the user has scrolled
with queries where the user did not scroll. As expected,
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Figure 4: The click distributions for cases in which
the user does not scroll, and when there is at least
one scroll event during the query session. The distri-
bution is heavily skewed when there is no scrolling,
and almost linear when the user has scrolled.

when the user has not scrolled, the click distribution is sig-
nificantly more skewed towards higher-ranked search results.
The difference between the click distributions is quite dras-
tic: in query sessions where the user has scrolled, search re-
sults in lower-ranked positions have a fairly good chance of
being selected. This is consistent with the examination hy-
pothesis mentioned earlier, and supports a hypothesis that
scrolling towards a set of search results makes it likely the
user has examined those results.

The observations informed the following two hypotheses
that we wanted to apply to searcher models: 1) when a user
scrolled down, they have already examined the search results
in their viewing area and those above it, and 2) when a user
hovered over a search result, they have examined it and the
search results above it. In the next section, we validate these
hypotheses by implementing them in a traditional searcher
model that uses only clicks.

5. EXTENDING A SEARCHER MODEL
Searcher models are structured based on theoretical knowl-

edge of a user’s search examination process. Their inter-
nal parameters are inferred from observable data, which in
turn can be applied to compute relevance label scores for
search results. Label scores are position-independent and
computed from the model for every query × search result.
The search results can then be re-ranked using these labels
for future occurrences of the same query. Thus, a better
searcher model can compute more accurate relevance labels
for search ranking.

We replicate the Dynamic Bayesian Network (DBN) model
[4] as the baseline model to which we compare against. The
DBN model is the most cited searcher model since the Cas-
cade Model (which compared favorably to all models before
it). It compares favorably to the Cascade Model [4, 36], and
fares well compared to other models (e.g., [36, 37]). Thus,
the DBN model serves as a solid baseline for our purposes;
it provides an example searcher model in which we can focus
on whether cursor data can improve a model, rather than
outperforming all models, i.e., more of an analysis of the
value of cursor data than strictly model development.

The DBN model is a graphical model where the nodes
represent states of the user examining the search results.
The model is represented formally as follows:

• Ei: the user examined the search result

• Ci: the user clicked the search result

• Ai: the search result attracted the user

• Si: the landing page satisfied the user (relevance)

Ai = 1, E1 = 1⇔ Ci = 1

P (Ai = 1) = au

P (Si = 1|Ci = 1) = su

Ci = 0⇒ Si = 0

Si = 1⇒ Ei+1 = 0

P (Ei+1 = 1|Ei = 1, Si = 0) = λ

Ei = 0⇒ Ei+1 = 0

In this model, users examine search results from top to
bottom, assessing at each result whether or not it is attrac-
tive enough to click (cascade hypothesis), which depends
only on the attractiveness of the link au (examination hy-
pothesis). If they click, there is some probability su they
will be satisfied and stop the search process; if they are not
satisfied, they either return to the search results page to
examine the next search result with probability λ, or aban-
don the search. Figure 5 enumerates the user states and
decisions in the DBN model; the “hover above and scroll
towards” state was a new observable event generated from
the cursor data. Examining a search result could emit this
event, but the events are not a precondition of examining a
result.

During the exploratory analysis phase, we saw that scrolling
towards a set of search results led to a higher chance of those
results being examined. Additionally, hovering over a search
result similarly suggested that result and those above it were
examined. These assumptions were incorporated into the
searcher model by adding the following constraint:

(∃h ∈ H : i ≤ h) ∨ i ∈ V ⇒ P (Ei = 1),

where H is the set of search result positions the user hovered
over, and V is the set of all search results shown when the
user scrolled. These events would reveal that the user had
examined the search results, but a user examining a search
result would not necessarily emit a corresponding hover or
scroll event.

We reimplement the DBN model with λ = 1, labeled Al-
gorithm 1 in Chapelle and Zhang [4], to simplify the infer-
ence of latent variables. Then we incorporate the additional
examination constraint to validate the observations in the
exploratory analyses.

6. EXPERIMENT
In this section, we describe an experiment comparing the

baseline DBN model with the modified DBN model incorpo-
rating cursor data for computing relevance labels. We define
the click perplexity metric used to evaluate the model and
report the experiment and results.
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Figure 5: Flow diagram of the users’ states in
the modified Dynamic Bayesian Network model en-
hanced with cursor hover and scrolling data. The
hexagon represents the new potentially observable
events that can be captured in interaction logs.

6.1 Evaluation
While we cannot evaluate unobserved events in a searcher

model, we can test how well the model predicts clicks, the
observable events. Click perplexity was evaluated in a num-
ber of other searcher model studies [9, 12, 35, 36, 37] as a
measure of predicting click-through rates. Our evaluation
used a similar methodology as the past studies in litera-
ture: query sessions were divided evenly into training and
test sets, each comprising at least 5 query sessions; we only
accepted one query session from each user for a particular
query to prevent a small number of users from dominating
the data. There were 7,341 queries in which at least 10
unique users issued the query; this filtered out queries with
insufficient data.

We compared the DBN model with only click data, as it
is implemented in the literature, with the DBN model with
click and cursor data from our logs. These data were used to
train the searcher model, and the trained model was used to
predict clicks in the test set2. Better prediction of clicks in
the test set implies that the searcher model (and its inferred
parameters) better reflects the result examination process.
The click perplexity quantifies how much the test data sur-
prises the trained model; it is computed for each combina-

2The cursor data was only used for training the searcher
model, and not for testing, i.e., we did not try to predict
cursor movements and scrolling.

tion of query and position as,

pi = 2− 1
N

∑N
n=1(C

n
i log2q

n
i +(1−Cn

i )log2(1−qni ))

where pi is the perplexity in the ith position, N is the num-
ber of links, and qni is the predicted click probability for
the nth query session. The exponent represents the cross-
entropy estimated from a probability distribution. The low-
est perplexity is 1, meaning the trained model perfectly pre-
dicted the test data, while a larger perplexity means the
model was less accurate in predicting the test data. Be-
cause the lower bound of the perplexity depends on the click-
through rate of the query, the perplexity varies substantially
depending on the position of the search result. Therefore,
we computed a separate perplexity value for each of the top
ten rank positions.

6.2 Results
We now report on the results of our experiments. Figure

6 shows the computed perplexities for each position on the
SERP. The baseline searcher model comprising only click
data did not perform as well as the searcher model incorpo-
rating both click and scrolling data. The latter model was
further improved when incorporating hover data as well, al-
though the improvement was small since there is an overlap
between the search results the user scrolls to, and the search
results at or above that which the user hovers above.
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Figure 6: A comparison between 3 variations of
the DBN model: 1) the baseline model using only
click data, 2) a modified model also incorporating
scrolling data, and 3) a modified model incorporat-
ing clicks, scrolling, and hover data. Lower click
perplexity represents better prediction. Error bars
represent the standard error of the mean.

It is clear that the additional cursor data improves rel-
evance labels for search results in positions 2–5, but the
prediction is slightly worse for search results in positions
6–10. However, users benefit more from the better predic-
tion accuracy for the search results in higher positions since
users consider them more important, so we believe there
is an overall improvement. More accurate click predictions
signify that the document relevance and search result at-



tractiveness labels are more likely to be close to true objec-
tive values of these parameters. For search results in posi-
tions 6–10, there appears to be a slight decrease in accuracy
for predicted clicks in the models incorporating cursor data.
We are unsure whether this is due to overfitting or noise
in the data. The difference in perplexity for using clicks
only compared to clicks + scrolling was significant at the
t(7340) ≥ 8.26, p < 0.001 level at positions 2–5. The dif-
ference in perplexity for using clicks + scrolling data com-
pared to clicks + scrolling + hover data was significant at
the t(7340) ≥ 3.07, p < 0.002 level at positions 2 and 3, as
the perplexity drops from 1.46 to 1.37 in position 2 and from
1.25 to 1.21 in position 3. Both differences were significant
even after applying the Bonferroni correction.

We performed two additional sets of analyses of our results
designed to better understand the nature of our gains. We
studied the distribution of gains and losses across the top
10 rank positions. We also studied the effect of query types
(navigational versus non-navigational) on our click predic-
tion accuracy. We now report the findings of each.

6.2.1 Gains and Losses
For each of the 7,341 queries in our set, and for each rank

position, we determined whether the DBN model with full
cursor data (clicks + scrolling + hovers) outperformed the
model with only clicks. We then computed the percentage
of queries for which the model with cursor data attained a
perplexity value above, below, or equal to the clicks-only
model. Note that to simplify the analysis, we ignored the
magnitude of difference between the models for a query. Fig-
ure 7 highlights the change in click prediction performance
for different positions.
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Figure 7: The percentage of queries whose click per-
plexity was helped or hurt by adding cursor hover
and scroll data to the DBN searcher model.

The findings reveal a number of things. First, there was
generally no change for the first rank position. Second, the
biggest gains from the cursor model came at position 2,
where over 60% of queries were benefited by using the addi-
tional cursor data. Third, the fraction of queries for which
the cursor model performed best decreased fairly rapidly
with rank, ending with only 5% of queries benefiting from

cursor data for at rank position 10. One possible explana-
tion is that since users only scroll for a third of queries, we
possess less hover and scrolling evidence from which to learn
user preferences at lower ranks. Finally, for the second rank
position onwards, the fraction of queries for which there is
no change remains fairly constant in the 20–35% range (in-
creasing gradually with rank). Although there were no im-
mediately noticeable patterns in those queries, they need
more analysis since they may represent an opportunity for
additional gains, especially further down the ranking, where
they represent a sizeable fraction of queries.

6.2.2 Effect of Query Intent
We also segmented the queries into navigational and non-

navigational query types to see if performance differences
existed between different query intents in our models. Tee-
van et al. adopted a metric of click entropy as a threshold
to classify navigational and non-navigational query types
[33]. They showed that navigational queries classified in this
manner exhibited differences in user behavior. We used the
same method to segment the queries in our set, and iden-
tified 2,407 navigational queries and 3,509 non-navigational
queries. The remaining 1,426 queries had a click entropy
value between the navigational and non-navigational thresh-
olds, and were removed from this part of the analysis.

Originally, we hypothesized that cursor and scrolling data
may be less useful for navigational queries, since the clicks
can be determined more easily. However, our findings (sum-
marized in Figure 8) showed that click prediction improved
when cursor data was added in both navigational and non-
navigational queries, particularly in higher-ranked positions;
the click predictions were almost evenly improved in naviga-
tional queries as in non-navigational queries. Differences in
click perplexity between all four combinations—navigational
and non-navigational queries, with and without cursor data—
were statistically significant at the t(5915) ≥ 7.63, p < .001
level after applying the Bonferroni correction. We also in-
spected the individual queries for which the additional cur-
sor data helped and hurt click prediction; the queries ex-
hibited no discernible pattern. It appears that the improve-
ments were uniform and not particular to one type of query.
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7. DISCUSSION
Initial exploratory findings have given us key insights. The

replays and aggregate analyses have suggested that users
seem to examine the search results they scroll towards, and
the search results they hover over. We were able to convert
these findings into constraints in the DBN model, a pop-
ular searcher model. An experiment comparing the DBN
model with only click data to the DBN model with hover
and scrolling as examination signals showed that the addi-
tional data helped predict clicks. After further disentangling
the queries into navigational and non-navigational query in-
tents, we found little difference between the two types of
queries, and visually inspecting the queries themselves sus-
tained our confidence that better relevance labels can be
inferred across all types of queries. Our experiments have
shown that by augmenting query logs with richer interac-
tion data attainable at scale (in our case, cursor hover and
scrolling), we can realize improvements in existing searcher
models. The better searcher models can compute more ac-
curate attractiveness and relevance labels for pairs of query
× search result, which in turn lead to position-independent
search result scores that can be ranked.

This work has implications for the design of search sys-
tems. Search companies have been processing query logs
for some time now, and the amount of query logs that can
be collected is limited—they cannot obtain more query and
click data from a fixed number of users. However, com-
panies can scalably and efficiently collect more search data
such as cursor movements and scrolling. These can be used
to improve searcher models by generating more accurate at-
tractiveness and relevance labels for search results. Search
engineers can then leverage these labels to supplement ex-
isting scoring factors for ranking the search results, such as
document and link analyses algorithms. Additionally, the la-
bels can be used for analytics and to answer questions such
as “Which search results are highly attractive but are not
actually relevant?” or “For which queries are users likely to
abandon because of unattractive search results?”

In other data-intensive computer science areas such as
natural language processing and data mining, there has been
evidence that collecting and mining additional data can be
more useful than improving algorithms. A study by Banko
and Brill [1] compared various learning algorithms for dis-
ambiguating natural language. They showed that increasing
the amount of data by 10-fold would make even the worst
algorithm better than the best algorithm. A recent article
published by Google researchers about “The Unreasonable
Effectiveness of Data” [17] highlights the power of web-scale
data for machine translation. Rajaraman presented anecdo-
tal evidence to argue that, “adding more, independent data
usually beats out designing ever-better algorithms to analyze
an existing data set” in an article titled “More data usually
beats better algorithms” [27]. A similar phenomenon may
be occurring in Web search, where growing dependence on
user-generated search logs makes it more important going
forward to collect more independent data. Cursor interac-
tions and scrolling activity are new types of data that are
more difficult to interpret but can supplement existing query
logs. We may be able to improve ranking in the future, as
well as user assistance interface features, by modeling inter-
action on different interface features.

We acknowledge several limitations in our study which
may be addressed in future work. Our searcher model was

fairly simple since our goal was to demonstrate the value
of new interaction data rather than develop the best overall
searcher model. Our searcher model does not take advantage
of several metrics that have been shown to improve searcher
models: click order [22], the duration between clicks [18],
and temporally changing relevance of search results [32]. An-
other limitation is that SERPs in commercial search engines
are becoming richer and more interactive. While SERPs
have greatly evolved from 10 blue links, features such as
hover preview and interactive customized displays for many
types of search results have changed how users behave. Fi-
nally, the extensions we made to the searcher model were in-
formed by an exploratory analysis of replays of user sessions;
the results show that there can be benefit to incorporating
non-click data in searcher models, but we have not investi-
gated what other forms of data may similarly improve them.
These limitations can be addressed in future work, perhaps
with searcher models beyond the DBN model, incorporating
previously mentioned factors such as click order, duration,
and temporal relevance.

8. CONCLUSIONS
We have conducted exploratory analyses of recorded user

interactions on the SERP with both qualitative and quan-
titative approaches. These analyses suggested that scrolling
towards a set of search results and hovering over search re-
sults are related to whether a user examined them. By
adding these interactions as constraints in a popular searcher
model, we were able to infer attractiveness and relevance
labels for search results. We evaluated newly generated la-
bels from the revised searcher model by comparing it to the
searcher model using only click data. The searcher model
with the additional cursor data was able to better predict
future clicks, implying that the labels are more accurate.

Click data in query logs are but one source of user behav-
ior data that can be used for ranking. We have shown that
collecting richer data in the form of client-side interactions
can be useful. Cursor and scrolling activity is only a subset
of recordable interaction data, and using new independent
data may be a fruitful avenue to pursue. As we previously
referenced, researchers in data mining and machine transla-
tion have found that simply adding more data can result in
an order of magnitude of greater improvement in the system
than making incremental improvements to the processing al-
gorithms. We have yet to see if richer data will make such an
impact in the application of ranking from searcher models,
but our experiment suggests the possibility.
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