
Constant-Size Structure-Preserving Signatures
Generic Constructions and Simple Assumptions

Masayuki Abe∗ Melissa Chase∗∗ Bernardo David∗∗∗ Markulf Kohlweiss†

Ryo Nishimaki∗ Miyako Ohkubo††

∗ NTT Secure Platform Laboratories, NTT Corporation, Japan
{abe.masayuki,nishimaki.ryo}@lab.ntt.co.jp

∗∗ Microsoft Research, Redmond, USA
melissac@microsoft.com

∗∗∗ University of Brasilia, Brazil
bernardo.david@aluno.unb.br

† Microsoft Research, Cambridge, UK
markulf@microsoft.com

†† Security Architecture Laboratory, NSRI, NICT, Japan
m.ohkubo@nict.go.jp

Abstract

This paper presents efficient structure-preserving signature schemes based on assumptions as simple as Decision-Linear.
We first give two general frameworks for constructing fully secure signature schemes from weaker building blocks such
as variations of one-time signatures and random-message secure signatures. They can be seen as refinements of the Even-
Goldreich-Micali framework, and preserve many desirable properties of the underlying schemes such as constant signature
size and structure preservation. We then instantiate them based on simple (i.e., not q-type) assumptions over symmetric and
asymmetric bilinear groups. The resulting schemes are structure-preserving and yield constant-size signatures consisting of
11 to 17 group elements, which compares favorably to existing schemes relying on q-type assumptions for their security.

Keywords: Structure-preserving signatures, One-time signatures, Groth-Sahai proof system, Random message attacks

i

Contents

1 Introduction 1
1.1 Our contribution . 1
1.2 Related Works . 2

2 Preliminaries 2
2.1 Notation . 2
2.2 Bilinear groups . 2
2.3 Assumptions . 3

3 Definitions 4
3.1 Common setup . 4
3.2 Signature schemes . 4
3.3 Partial one-time and tagged one-time signatures . 5
3.4 Structure-preserving signatures . 6

4 Generic Constructions 6
4.1 SIG1: Combining tagged one-time and RMA-secure signatures . 6
4.2 SIG2: Combining partial one-time and XRMA-secure signatures . 7

5 Instantiating SIG1 8
5.1 Setup for Type-I groups . 8
5.2 Tagged one-time signature scheme . 8
5.3 RMA-secure signature scheme . 11
5.4 Security and efficiency of resulting SIG1 . 17

6 Instantiating SIG2 17
6.1 Setup for Type-III groups . 17
6.2 Partial one-time signatures for uniliteral messages . 18
6.3 Partial one-time signatures for bilateral messages . 19
6.4 XRMA-secure signature scheme . 20
6.5 Security and efficiency of resulting SIG2 . 24

7 Applications and Open Questions 24

A Tagged one-time signature scheme (Obsolete) 27

ii

1 Introduction
A structure-preserving signature (SPS) scheme [1] is a digital signature scheme with two structural properties (i) the ver-
ification keys, messages, and signatures are all elements of a bilinear group; and (ii) the verification algorithm checks a
conjunction of pairing product equations over the key, the message and the signature. This makes them compatible with
the efficient non-interactive proof system for pairing-product equations by Groth and Sahai (GS) [28]. Structure-preserving
cryptographic primitives promise to combine the advantages of optimized number theoretic non-blackbox constructions with
the modularity and insight of protocols that use only generic cryptographic building blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the GS proof system has led to many
new and more efficient schemes: Groth [27] showed how to construct an efficient simulation-sound zero-knowledge proof
systems (ss-NIZK) building on generic constructions of [15, 37, 32]. Abe et al. [4] show how to obtain efficient round-optimal
blind signatures by instantiating a framework by Fischlin [18]. SPS are also important building blocks for a wide range of
cryptographic functionalities such as anonymous proxy signatures [20], delegatable anonymous credentials [6], transferable
e-cash [21] and compact verifiable shuffles [14]. Most recently, [29] show how to construct a structure preserving tree-
based signature scheme with a tight security reduction following the approach of [24, 16]. This signature scheme is then
used to build a ss-NIZK which in turn is used with the Naor-Yung-Sahai [33, 36] paradigm to build the first CCA secure
public-key encryption scheme with a tight security reduction. Examples for other schemes that benefit from efficient SPS
are [7, 11, 8, 30, 25, 5, 35, 22, 19, 26].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by these constructions, any structure-
preserving signature scheme can be used as a drop-in replacement. Unfortunately, all known efficient instantiations of SPS [4,
1, 2] are based on so-called q-type or interactive assumptions that are primarily justified based on the Generic Group model.
An open question since Groth’s seminal work [27] (only partially answered by [13]) is to construct a SPS scheme that is both
efficient – in particular constant-size in the number of signed group elements – and that is based on assumptions that are as
weak as those required by the GS proof system itself.

1.1 Our contribution
Our first contribution consists of two generic constructions for chosen message attack (CMA) secure signatures that combine
variations of one-time signatures and signatures secure against random message attacks (RMA). Both constructions inherit the
structure-preserving and constant-size properties from the underlying components. The second contribution consists in the
concrete instantiations of these components which result in constant-size structure-preserving signature schemes that produce
signatures consisting of only 11 to 17 group elements and that rely only on basic assumptions such as Decisional-Linear
(DLIN) for symmetric bilinear groups and analogues of DDH and DLIN for asymmetric bilinear groups. To our knowledge,
these are the first constant-size structure-preserving signature schemes that eliminate the use of q-type assumptions while
achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second for asymmetric (Type-III) pairing
groups. See Table 1 and 2 in Section 5.4 and 6.5, respectively, for the summary of efficiency of the resulting schemes. We
give more details on our generic constructions and their instantiations:

• The first generic construction (SIG1) combines a new variation of one-time signatures which we call tagged one-time
signatures and signatures secure against random message attacks (RMA). A tagged one-time signature scheme, denoted
by TOS, is a signature scheme that attaches a fresh tag to a signature. It is unforgeable with respect to tags that are
used only once. In our construction, a message is signed with our TOS scheme using a fresh random tag, and then
the tag is signed with the second signature scheme, denoted by rSIG. Since the rSIG scheme only signs random tags,
RMA-security is sufficient.

• The second generic construction (SIG2) combines partial one-time signatures and signatures secure against extended
random message attacks (XRMA). The latter is a novel notion that we explain below. Partial one-time signatures,
denoted by POS, are one-time signatures for which only a part of the one-time key is renewed for every signing opera-
tion. They were first introduced by Bellare and Shoup [9] under the name of two-tier signatures. In our construction, a
message is signed with the POS scheme and then the random one-time public-key is certified by the second signature
scheme, denoted by xSIG. The difference between a TOS scheme and a POS scheme is that a one-time public-key is
associated with a one-time secret-key. Since the secret-key is needed for signing, it must be known to the reduction
in the security proof. XRMA-security guarantees that xSIG is unforgeable even if the adversary is given auxiliary in-
formation associated with the randomly chosen messages. The auxiliary information facilitates access to the one-time
secret-key by the reduction.

• To instantiate SIG1, we construct structure-preserving TOS and rSIG signature schemes based on DLIN over Type-I
bilinear groups. Our TOS scheme yields constant-size signatures and tags. The resulting SIG1 scheme is structure-
preserving, produces signatures consisting of 17 group elements, and relies solely on the DLIN assumption.

1

• To instantiate SIG2, we construct structure-preserving POS and xSIG signature schemes based on assumptions that
are analogues of DDH and DLIN in Type-III bilinear groups. The resulting SIG2 scheme is structure-preserving,
produces signatures consisting of 11 group elements for uniliteral messages in a base group or 14 group elements for
biliteral messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant number of random group elements.
This observation is interesting in light of [3] that implies the impossibility of constructing collision resistant and shrinking
structure-preserving hash functions, which could immediately yield constant-size signatures. Our (extended) RMA-secure
signature schemes are structure-preserving variants of Waters’ dual-signature scheme [39]. In general, the difficulty of con-
structing CMA-secure SPS arises from the fact that the exponents of the group elements chosen by the adversary as a message
are not known to the reduction in the security proof. On the other hand, for RMA security, it is the challenger that chooses the
message and therefore the exponents can be known in reductions. This is the crucial advantage for constructing (extended)
RMA-secure structure-preserving signature schemes based on Waters’ signature scheme.

Finally, we mention a few new applications. Among these is the achievement of a drastic performance improvement when
using our partial one-time signatures in the work by Hofheinz and Jager [29] to construct CCA-secure public-key encryption
schemes with a proof of security that tightly reduces to DLIN or SXDH.

1.2 Related Works
Even, Goldreich and Micali [17] proposed a generic framework (the EGM framework) that combines a one-time signature
scheme and a signature scheme that is secure against non-adaptive chosen message attacks (NACMA) to construct a signature
scheme that is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework. There are two reasons why the
original framework falls short for our purpose. The first is that relaxing to NACMA does not seem a big help in constructing
efficient structure-preserving signatures since the messages are still under the control of the adversary and the exponents of
the messages are not known to the reduction algorithm in the security proof. As mentioned above, resorting to (extended)
RMA is a great help in this regard. In [17], they also showed that CMA-secure signatures exist iff RMA-secure signatures
exist. The proof, however, does not follow their framework and their impractical construction is mainly a feasibility result. In
fact, we argue that RMA-security alone is not sufficient for the original EGM framework. As mentioned above, the necessity
of XRMA security arises in the reduction that uses RMA-security to argue security of the ordinary signature scheme, as
the reduction not only needs to know the random one-time public-keys, but also their corresponding one-time secret keys in
order to generate the one-time signature components of the signatures. The auxiliary information in the XRMA definition
facilitates access to these secret keys. Similarly, tagged one-time signatures avoid this problem as tags do not have associated
secret values. The second reason that the EGM approach is not quite suited to our task is that the EGM framework produces
signatures that are linear in the public-key size of the one-time signature scheme. Here, tagged or partial one-time signature
schemes come in handy as they allow the signature size to be only linear in the size of the part of the public key that is
updated. Thus, to obtain constant-size signatures, we require the one-time part to be constant-size.

Hofheinz and Jager [29] constructed a SPS scheme by following the EGM framework. The resulting scheme allows tight
security reduction to DLIN but the size of signatures depends logarithmically to the number of signing operation as their
NACMA-secure scheme is tree-based like the Goldwasser-Micali-Rivest signature scheme [24]. Kohlweiss and Chase [13]
construct a SPS scheme with security based on DLIN that improve the performance of Groth’s scheme [27] by several orders
of magnitude. The size of the resulting signatures, however, are still linear in the number of signed group elements, and an
order of magnitude larger than in our constructions.

2 Preliminaries

2.1 Notation
Appending element y to a sequence X = (x1, . . . , xn) is denoted by (X, y), i.e., (X, y) = (x1, . . . , xn, y).

When algorithm A is defined for input x and output y, notation ~y ← A(~x) for ~x := {x1, . . . , xn} means that yi ← A(xi)
is executed for i = 1, . . . , n and ~y is set as ~y := (y1, . . . , yn). For set X , notation a ← X denote a uniform sampling from
X . Independent multiple sampling from the same set X is denoted by a, b, c, ..← X .

2.2 Bilinear groups
Let G be a bilinear group generator that takes security parameter 1λ and outputs a description of bilinear groups Λ :=
(p,G1,G2,GT , e), where G1, G2 and GT are groups of prime order p, and e is an efficient and non-degenerating bilinear
map G1×G2 → GT . Following the terminology in [23] this is a Type-III pairing. In the Type-III setting G1 6= G2 and there

2

are no efficient mapping between the groups in either direction. In the Type-III setting, we often use twin group elements,
(Ga, Ĝa) ∈ G1 × G2 for some bases G and Ĝ. For X in G1, notation X̂ denotes for an element in G2 that logX = log X̂
where logarithms are with respect to default bases that are uniformly chosen once for all and implicitly associated to Λ.
Should their relation be explicitly stated, we write X ∼ X̂ . We count the number of group elements to measure the size
of cryptographic objects such as keys, messages, and signatures. For Type-III groups, we denote the size by (x, y) when it
consists of x and y elements from G1 and G2, respectively.

We refer to the Type-I setting when G1 = G2 (i.e., there are efficient mappings in both directions). This is also called the
symmetric setting. In this case, we define Λ := (p,G,GT , e). When we need to be specific, the group description yielded by
G will be written as Λasym and Λsym.

2.3 Assumptions
We first define computational and decisional Diffie-Hellman assumptions (co-CDH, DDH1) and decision linear assumption
(DLIN1) for Type-III bilinear groups. Corresponding more standard assumptions, CDH, DDH, and DLIN, in Type-I groups
are obtained by setting G1 = G2 and G = Ĝ in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: co-CDH).
The co-CDH assumption holds if, for any polynomial-time algorithm A, probability Advco-cdh

G,A (λ) := Pr[Z = Gxy |Λ ←
G(1λ) ; x, y ← Zp ; Z ← A(Λ, G,Gx, Gy, Ĝ, Ĝx, Ĝy)] is negligible in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in G1: DDH1).
Let Gddh1(1λ) be an algorithm that, on input security parameter 1λ, runs group generator Λ := (p,G1,G2,GT , e)← G(1λ),
chooses G ← G1 and x, y, z ← Zp, and outputs Iddh1 := (Λ, G,Gx, Gy) and (x, y, z). The DDH1 assumption holds if for
polynomial-time adversary A, advantage Advddh1

G,A (λ) := |Pr[1← A(Iddh1, G
xy) | (Iddh1, x, y, z)← Gddh1(1λ)]− Pr[1←

A(Iddh1, G
z) | (Iddh1, x, y, z)← Gddh1(1λ)] | is negligible in λ.

Definition 3 (Decision Linear Assumption in G1: DLIN1).
Let Gdlin1(1λ) be an algorithm that on input security parameter λ, runs group generator Λ := (p,G1,G2,GT , e) ← G(1λ),
selects x, y, z ← Zp andG1, G2, G3 ← G∗1, and outputs Idlin1 := (Λ, G1, G2, G3, G

x
1 , G

y
2) and (x, y, z). The DLIN1 assump-

tion holds if, for all polynomial-time adversary A, advantage Advdlin1
G,A (λ) := | Pr[1← A(Idlin1, G3

x+y) | (Idlin1, x, y, z)←
Gdlin1(1λ)]− Pr[1← A(Idlin1, G3

z) | (Idlin1, x, y, z)← Gdlin1(1λ)] | is negligible in λ.

For DDH1 and DLIN1, we define an analogous assumption in G2 (DDH2) by swapping G1 and G2 in the respective
definitions. In Type-III bilinear groups, it is assumed that both DDH1 and DDH2 hold simultaneously. The assumption is
called the symmetric external Diffie-Hellman assumption (SXDH), and we define advantage Advsxdh

G,C by Advsxdh
G,C (λ)

def
=

Advddh1
G,A (λ) + Advddh2

G,B (λ). We extend DLIN in a similar manner as DDH, and SXDH.

Definition 4 (External Decision Linear Assumption in G1: XDLIN1).
Let Gxdlin(1λ) be an algorithm that on input security parameter λ, runs group generator Λ := (p,G1,G2,GT , e) ← G(1λ),
selects x, y, z ← Zp and G1, G2, G3 ← G∗1, Ĝ1, Ĝ2, Ĝ3 ∈ G∗2 such that (G1, G2, G3) ∼ (Ĝ1, Ĝ2, Ĝ3), and outputs
Ixdlin := (Λ, G1, G2, G3, Ĝ1, Ĝ2, Ĝ3, G

x
1 , G

y
2, Ĝ

x
1 , Ĝ

y
2) and (x, y, z). The XDLIN1 assumption holds if, for all polynomial-

time adversary A, advantage Advxdlin1
G,A (λ) := | Pr[1 ← A(Ixdlin, G3

x+y) | (Ixdlin, x, y, z) ← Gxdlin(1λ)] − Pr[1 ←
A(Ixdlin, G3

z) | (Ixdlin, x, y, z)← Gxdlin(1λ)] | is negligible in λ.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilinear group model [38, 10] where
one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 , in XDLIN1 from G1, G2, G3, G

x
1 , G

y
2 in DLIN1. We define the

XDLIN2 assumption analogously by giving Ĝx+y3 , respectively Ĝz3, to A instead. Then we define the simultaneous external
decision Diffie-Hellman assumption, SXDLIN, that assumes that both XDLIN1 and XDLIN2 hold at the same time. By
Advxdlin2

G,A (Advsxdlin
G,A , resp.), we denote the advantage function for XDLIN2 (and SXDLIN, resp.).

Finally we recall two computational assumptions (tightly) reduced from one of the above basic assumptions.

Definition 5 (Double Pairing Assumption in G1 [4]:DBP1).
The DBP1 assumption holds if, for any polynomial-time A, probability Advdbp1

G,A (λ)
def
= Pr[1 = e(Gz, Z) e(Gr, R) ∧ Z ∈

G∗2 |Λ← G(1λ) ; (Gz, Gr)← G∗1 ×G∗1 ; (Z,R)← A(Λ, Gz, Gr)] is negligible in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by swapping G1 and G2. It is known that
DBP1 (DBP2, resp.) is implied by DDH1 (DDH2, resp.) and the reduction is tight [4]. Thus the following holds.

3

Lemma 1. SXDH⇒ DBP1 ∧ DBP2. In particular, Advdbp1
G,A (λ) + Advdbp2

G,B (λ) ≤ Advsxdh
G,C (λ) holds.

Note that the double pairing assumption does not hold in Type-I groups since Z = Gr, R = Gz is a trivial solution. The
following analogous assumption will be useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [12]: SDP).
The SDP assumption holds if, for any polynomial-time A, advantage Advsdp

G,A(λ)
def
= Pr[1 = e(Gz, Z) e(Gr, R) ∧ 1 =

e(Hz, Z) e(Hs, S) ∧ Z ∈ G∗ |Λ ← G(1λ) ; (Gz, Gr, Hz, Hs) ← G∗4 ; (Z,R, S) ← A(Λ, Gz, Gr, Hz, Hs)] is negligi-
ble in λ.

As shown in [12] for the Type-I setting, the simultaneous double pairing assumption holds for G if the decision linear
assumption holds for G.

Lemma 2. DLIN⇒ SDP. In particular, Advsdp
G,A(λ) ≤ Advdlin

G,B(λ) holds.

3 Definitions

3.1 Common setup
All building blocks make use of a common setup algorithm Setup that takes the security parameter 1λ and outputs a global
parameters gk that is given to all other algorithms. Usually gk consists of a description Λ of a bilinear group setup and a
default generator for each group. In this paper, we include several additional generators in gk for technical reasons. Note that
when the resulting signature scheme is used in multi-user applications different additional generators need to be assigned to
individual users or one needs to fall back on the common reference string model, whereas Λ and the default generators can
be shared. Thus we count the size of gk when we assess the efficiency of concrete instantiations. For ease of notation, we
make gk implicit except w.r.t. key generation algorithms.

3.2 Signature schemes
We use the following syntax for signature schemes suitable for the multi-user and multi-algorithm setting. The key generation
function takes global parameter gk generated by Setup (usually it takes security parameter 1λ), and the message spaceM is
determined solely from gk (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three polynomial-time algorithms (Key,Sign,Vrf)
that;

• SIG.Key(gk) is a probabilistic algorithm that generates a long-term public-key vk and a secret-key sk.

• SIG.Sign(sk,msg) is an algorithm that takes sk and message msg, and outputs signature σ.

• SIG.Vrf(vk,msg, σ) outputs 1 for acceptance or 0 for rejection.

Correctness requires that 1 = SIG.Vrf(vk,msg, σ) holds for any gk generated by Setup, any keys generated as (vk, sk)←
SIG.Key(gk), any message msg ∈M, and any signature σ ← SIG.Sign(sk,msg).

Definition 8 (Attack Game(ATK)). Let Osig be an oracle and A be an oracle algorithm. We define a meta attack game as
a sequence of execution of algorithms as follows.

ATK(A, λ) =


gk ← Setup(1λ),
pre← A(gk),
(vk, sk)← SIG.Key(gk),
(σ†,msg†)← AOsig(vk)

 (1)

AdversaryA commits to pre, which is typically a set of messages, in the first run. This formulation is to capture non-adaptive
attacks. It is implicit that a state information is passed to the second run of A. Let Qm be list of messages and signatures
observed by A before outputting the resulting forgery. The output of ATK is (vk, σ†,msg†, Qm).

Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message attack security is defined by the attack
game ATK where pre is empty and oracle Osig is the signing oracle that, on receiving a message msg, performs σ ←
SIG.Sign(sk,msg), and returns σ.

4

Definition 10 (Non-Adaptive Chosen-Message Attack (NACMA)). Non-adaptive chosen message attack is is attacks game
ATK where pre is a list of messages and oracle Osig returns signatures for the messages in pre.

Definition 11 (Random Message Attack (RMA)[17]). Random message attack security is defined by the attack game ATK
where pre is empty and oracle Osig is the following: on receiving a request, it chooses msg uniformly fromM defined by
gk, computes σ ← SIG.Sign(sk,msg), and returns (σ,msg).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes gk and outputs msg ∈ M that
distributes uniformly over M. Furthermore, MSGGen outputs auxiliary information aux that may give a hint about the
random coins used for selecting msg.

Definition 12 (Extended Random Message Attack (XRMA)). Extended random message attack is attack game ATK where
pre is empty and oracle Osig is the following. On receiving a request, it runs (msg, aux) ← MSGGen(gk), computes
σ ← SIG.Sign(sk,msg), and returns (σ,msg, aux).

For an attack ATK ∈ {CMA,NACMA,RMA,XRMA}, we define unforgeability as follows.

Definition 13 (Unforgeability against ATK). Signature scheme SIG is unforgeable against attack ATK (UF-ATK), if for all
polynomial-time oracle algorithm A the advantage function Advuf-atk

SIG,A is negligible in λ, where

Advuf-atk
SIG,A(λ) = Pr

[
msg† 6∈ Qm ∧
1 = SIG.Vrf(vk, σ†,msg†)

∣∣ (vk, σ†,msg†, Qm)← ATK(A, λ)

]
. (2)

Fact 1. UF-CMA ⇒ UF-NACMA ⇒ UF-XRMA ⇒ UF-RMA, i.e., Advuf-cma
SIG,A(λ) ≥ Advuf-nacma

SIG,A (λ) ≥ Advuf-xrma
SIG,A (λ)

≥ Advuf-rma
SIG,A(λ) .

3.3 Partial one-time and tagged one-time signatures

Partial one-time signatures, also known as two-tier signatures [9], are a variation of one-time signatures where only part of
the public-key must be updated for every signing, while the remaining part can be persistent.

Definition 14 (Partial One-Time Signature Scheme [9]). A partial one-time signatures scheme POS is a set of polynomial-
time algorithms POS.{Key,Update,Sign,Vrf}.

• POS.Key(gk) generates a long-term public-key pk and a secret-key sk . The message spaceMo is associated with pk .
(Recall however, that we require thatMo be completely defined by gk.)

• POS.Update() takes gk as implicit input, and outputs a pair of one-time keys (opk , osk). We denote the space for
opk by Kopk .

• POS.Sign(sk ,msg, osk) outputs a signature σ on message msg based on secret-keys sk and osk .

• POS.Vrf(pk , opk ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that 1 = POS.Vrf(pk , opk ,msg, σ) holds except for negligible probability for any gk,
pk , opk , σ, and msg ∈ Mo, such that gk ← Setup(1λ), (pk , sk) ← POS.Key(gk), (opk , osk) ← POS.Update(),
σ ← POS.Sign(sk ,msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in addition to the long-term secret key
takes a tag as input. A tag is one-time, i.e., it must be different for every signing.

Definition 15 (Tagged One-Time Signature Scheme). A tagged one-time signature scheme TOS is a set of polynomial-
time algorithms TOS.{Key,Tag,Sign,Vrf}.

• TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . The message spaceMt is associated with pk .

• TOS.Tag() takes gk as implicit input and outputs tag . By T , we denote the space for tag .

• TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on secret-key sk and tag tag .

• TOS.Vrf(pk , tag ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

5

Correctness requires that 1 = TOS.Vrf(pk , tag ,msg, σ) holds except for negligible probability for any gk, pk , tag , σ,
andmsg ∈Mt, such that gk ← Setup(1λ), (pk , sk)← TOS.Key(gk), tag ← TOS.Tag(), σ ← TOS.Sign(sk ,msg, tag).

A TOS scheme is POS scheme for which tag = osk = opk . We can thus give a security notion for POS schemes that
also applies to TOS schemes by reading Update = Tag and tag = osk = opk .

Definition 16 (Unforgeability against One-Time Adapative Chosen-Message Attacks). A partial one-time signature scheme
is unforgeable against one-time adaptive chosen message attacks (OT-CMA) if for all polynomial-time oracle algorithm A
the advantage function Advot-cma

POS,A is negligible in λ, where

Advot-cma
POS,A(λ) = Pr

 ∃(opk ,msg, σ) ∈ Qm s.t.
opk† = opk ∧ msg† 6= msg ∧
1 = POS.Vrf(pk , opk†, σ†,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),
(pk , sk)← POS.Key(gk),

(opk†, σ†,msg†)← AOt,Osig(pk)

 . (3)

Qm is initially an empty list. Ot is the one-time key generation oracle that on receiving a request invokes a fresh session j,
performs (opk j , osk j) ← POS.Update(), and returns opk j . Osig is the signing oracle that, on receiving a message msgj
for session j, performs σj ← POS.Sign(sk ,msgj , osk j), returns σj to A, and records (opk j ,msgj , σj) to the list Qm.
Osig works only once for every session. Strong unforgeability is defined as well by replacing condition msg† 6= msg with
(msg†, σ†) 6= (msg, σ).

We define a non-adaptive variant (OT-NACMA) of the above notion by integrating Ot into Osig so that opk j and σj are
returned to A at the same time. Namely, A must submit msgj before seeing opk j . It is obvious that if a scheme is secure
in the sense of OT-CMA, the scheme is also secure in the sense of OT-NACMA. If a scheme is strongly unforgeable, it is
unforgeable as well. By Advot-nacma

POS,A (λ) we denote the advantage of A in this non-adaptive case. For TOS, we use the same
notations, OT-CMA and OT-NACMA, and define advantage functions Advot-cma

TOS,A and Advot-nacma
TOS,A accordingly. For strong

unforgeabiltiy, we use label sot-cma and sot-nacma.

We define a condition that is relevant for coupling random message secure signature schemes with partial one-time and
tagged one-time signature schemes in later sections.

Definition 17 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if TOS.Tag outputs tag that uniformly
distributes over tag space T . Similarly, POS is called uniform-key if POS.Update outputs opk that uniformly distributes
over key space Kopk .

3.4 Structure-preserving signatures
A signature scheme is structure-preserving over a bilinear group Λ, if public-keys, signatures, and messages are all base group
elements of Λ, and the verification only evaluates pairing product equations. Similarly, partial one-time signature schemes
are structure-preserving if their public-keys, signatures, messages, and tags or one-time public-keys consist of base group
elements and the verification only evaluates pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining tagged one-time and RMA-secure signatures
Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time signature scheme with tag space T
such thatMr = T . We construct a signature scheme SIG1 from rSIG and TOS. Let gk be a global parameter generated by
Setup(1λ).

• SIG1.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk). Output vk := (pk t, vkr) and sk :=
(sk t, skr).

• SIG1.Sign(sk,msg): Parse sk into (sk t, skr). Run tag ← TOS.Tag(), σt ← TOS.Sign(sk t,msg, tag), σr ←
rSIG.Sign(skr, tag). Output σ := (tag , σt, σr).

• SIG1.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t, tag , σt,msg) and 1 = rSIG.Vrf(vkr, σr, tag).
Output 0, otherwise.

We prove the security of the above construction by showing a reduction to the security of each component. As our
reductions are efficient in their running time, we only relate success probabilities.

6

Theorem 1. SIG1 is unforgeable against adaptive chosen message attacks (UF-CMA) if TOS is uniform-tag and unforge-
able against one-time non-adaptive chosen message attacks (OT-NACMA), and rSIG is unforgeable against random message
attacks (UF-RMA). In particular, Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ).

Proof. Any signature that is accepted by the verification algorithm must either reuse an existing tag, or sign a new tag. The
success probability Advuf-cma

SIG1,A(λ) of an attacker on SIG1 is bounded by the sum of the success probabilities Advot-nacma
TOS,B (λ)

of an attacker on TOS and the success probability Advuf-rma
rSIG,C(λ) of an attacker on rSIG.

Game 0: The actual Unforgeability game. Pr[Game 0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no longer accept repetition of tags.

Lemma 3. |Pr[Game 0]− Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Proof. Attacker A wins in Game 0, but loses in Game 1, iff it produces a forgery that reuses a tag from a signing
query. We describe a reduction B that use such an attacker to break the OT-NACMA-security of TOS The reduction B
receives gk and pk t from the challenger of TOS, sets up vkr and skr honestly by running rSIG.Key(gk), and provides
gk and vk = (vkr, pk t) to A.

To answer a signing query, B uses the signing oracle of TOS to get tag and σt, signs tag using skr to produce σr, and
returns (tag , σt, σr). When A produces a forgery (tag†, σ†t , σ

†
r) on message msg†, B outputs (msg†, tag†, σ†t) as a

forgery for TOS.

Game 2: The fully idealized game. The winning condition is changed to reject all signatures.

Lemma 4. |Pr[Game 1]− Pr[Game 2]| ≤ Advuf-rma
rSIG,C(λ)

Proof. Attacker A wins in Game 1, iff it produces a forgery with a fresh tag. We describe a reduction C that use A
to break the UF-RMA security of rSIG. Algorithm C receives gk and vkr, runs (pk t, sk t) ← TOS.Key(gk), and
provides gk and vk = (vkr, pk t) to A.

To answer signing query on message msg, C consults Osig and receives random message msgr and signature σr. C
then uses msgr as a tag, i.e., tag = msgr, and create signature σt on msg by running TOS.Sign(sk t,msg, tag). It
then returns (tag , σt, σr). Note that for a uniform-tag TOS scheme these tags distribute uniformly over the tag space.
Thus the reduction simulation is perfect. When A produces a forgery (tag†, σ†t , σ

†
r) on msg†, reduction C outputs

(tag†, σ†r) as a forgery.

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

Theorem 2. If TOS.Tag produces constant-size tags and signatures in the size of input messages, the resulting SIG1 pro-
duces constant-size signatures as well. Furthermore, if TOS and rSIG are structure-preserving, so is SIG1.

We omit the proof of Theorem 2 as it is done simply by examining the construction.

4.2 SIG2: Combining partial one-time and XRMA-secure signatures
Let xSIG be a signature scheme with message spaceMx, and POS be a partial one-time signature scheme with one-time
public-key space Kopk such thatMx = Kopk . We construct a signature scheme SIG2 from xSIG and POS. Let gk be a
global parameter generated by Setup(1λ).

• SIG2.Key(gk): Run (pk t, sk t) ← POS.Key(gk), (vkx, skx) ← xSIG.Key(gk). Output vk := (pk t, vkx) and
sk := (sk t, skx).

• SIG2.Sign(sk,msg): Parse sk into (sk t, skx). Run (opk , osk)← POS.Update(), σt ← POS.Sign(sk t,msg, osk),
σx ← xSIG.Sign(skx, opk). Output σ := (opk , σt, σx).

• SIG2.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1 if 1 = POS.Vrf(pk t, opk , σt,msg), and 1 = xSIG.Vrf(vkx,
σx, opk). Output 0, otherwise.

7

Theorem 3. SIG2 is unforgeable against adaptive chosen message attacks (UF-CMA) if POS is uniform-key and unforge-
able against one-time non-adaptive chosen message attacks (OT-NACMA), and xSIG is unforgeable against extended ran-
dom message attacks (UF-XRMA) with respect to POS.Update as the message generator. In particular, Advuf-cma

SIG2,A(λ) ≤
Advot-nacma

POS,B (λ) + Advuf-xrma
xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 1. The only difference appears in constructing C in the second step.
Since POS.Update is used as the extended random message generator, the pair (msg, aux) is in fact (opk , osk). Given
(opk , osk), adversary C can run POS.Sign(sk ,msg, osk) to yield legitimate signatures.

As for our first generic construction, the following theorem holds immediately from the construction.

Theorem 4. If POS produces constant-size one-time public-keys and signatures in the size of input messages, resulting SIG2
produces constant-size signatures as well. Furthermore, if POS and xSIG are structure-preserving, so is SIG2.

5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to obtain our first SPS scheme. We do so
in Type-I bilinear group setting. The resulting SIG1 scheme is an efficient structure-preserving signature scheme based only
on the DLIN assumption.

5.1 Setup for Type-I groups
The following setup procedure is common for all instantiations in this section. The global parameter gk is given to all
functions implicitly.

Setup(1λ): Run Λ = (p,G,GT , e) ← G(1λ) and choose random generators (G,C, F, U1, U2) ← G∗5. Output gk :=
(Λ, G,C, F, U1, U2).

The parameters gk also fix the message spaceMr := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2) ∈ G6 | (m1,m2) ∈ Z2
p} for

the RMA-secure signature scheme defined below. For our generic framework to work, the tagged one-time signature schemes
should have the same tag space.

5.2 Tagged one-time signature scheme
Basically, a tag in our scheme consists of a pair of elements in G. However, due to a constraint from rSIG we show in the
next section, the tags will have to be in an extended form. We therefore parameterize the one-time key generation function
Update with a flag mode ∈ {normal,extended} so that it outputs a key in the original or extended form. Although mode is
given to Update as input, it should be considered as a fixed system-wide parameter that is common for every invocation of
Update and the key space is fixed throughout the use of the scheme. Accordingly, this extension does not affect the security
model at all.

[Scheme TOS]

• TOS.Key(gk): Parse gk = (Λ, G,C, F, U1, U2). Choosewz, wr, µz, µs, τ1, τ2 randomly from Z∗p and computeGz :=
Cwz , Gr := Cwr , Hz := Cµz , Hs := Cµs , Gt := Cτ1 and Ht := Cτ2 . For i = 1, . . . , k, uniformly choose χi, γi, δi
from Zp and compute

Gi := Gχiz G
γi
r , and Hi := Hχi

z Hδi
s . (4)

Output pk := (Gz, Gr, Hz, Hs, Gt, Ht, G1, . . . , Gk, H1, . . . ,Hk) ∈ G2k+6 and sk := (χ1, γ1, δ1, . . . , χk, γk, δk, wz,
wr, µz, µs, τ1, τ2).

• TOS.Tag(mode): Take (G,C, F, U1, U2) from gk . Choose (t1, t2)← Zp and output tag := (T1, T2) = (Ct1 , Ct2) ∈
G2 if mode = normal or tag := (T1, T2, T3, T4, T5, T6) = (Ct1 , Ct2 , F t1 , F t2 , U t11 , U

t2
2) ∈ G6 if mode = extended.

• TOS.Sign(sk ,msg, tag): Parse msg into (M1, . . . ,Mk) ∈ Gk, tag into (T1, T2, T3, T4, T5, T6), and sk accordingly.
Choose ζ randomly from Zp and compute Then compute

Z := Cζ
k∏
i=1

M−χii and R := (T τ11 G−ζz)
1
wr

k∏
i=1

M−γii and S := (T τ22 H−ζz)
1
µs

k∏
i=1

M−δii . (5)

Output σ := (Z,R, S) ∈ G3 as a signature.

8

• TOS.Vrf(pk , σ,msg, tag): Parse σ as (Z,R, S) ∈ G3, msg as (M1, . . . ,Mk) ∈ Gk, and tag as (T1, T2, T3, T4,
T5, T6) or (T1, T2) depending on mode. Return 1 if

e(T1, Gt) = e(Gz, Z) e(Gr, R)

k∏
i=1

e(Gi,Mi) (6)

e(T2, Ht) = e(Hz, Z) e(Hs, S)

k∏
i=1

e(Hi,Mi) (7)

holds. Return 0, otherwise.

The scheme is correct as the following relation holds for the verification equation and the computed signatures.

e(Gz, Z) e(Gr, R)

k∏
i=1

e(Gi,Mi) = e(Gz, C
ζ
k∏
i=1

M−χii) e(Gr, (T
τ1
1 G−ζz)

1
wr

k∏
i=1

M−γii)

k∏
i=1

e(Gχiz G
γi
r ,Mi)

= e(Gz, C
ζ) e(C, T τ11)e(C,G−ζz)

= e(C, T τ11)

= e(T1, Gt)

and

e(Hz, Z) e(Hs, S)

k∏
i=1

e(Hi,Mi) = e(Hz, C
ζ
k∏
i=1

M−χii) e(Hs, (T
τ2
2 H−ζz)

1
µs

k∏
i=1

M−γii)

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz, C
ζ) e(C, T τ22)e(C,H−ζz)

= e(C, T τ22)

= e(T2, Ht)

Theorem 5. Above TOS is strongly unforgeable against one-time adaptive chosen message attacks (OT-CMA) if the SDP
assumption holds. In particular, Advsot-cma

TOS,A ≤ Advsdp
G,B + 1/p.

Proof. Given successful forgerA against TOS as a black-box, we construct B that is successful in breaking SDP. We consider
the case mode = extended in the following. The other case, mode = normal can be automatically obtained by dropping
(T3, T4, T5, T6).

Given instance Isdp = (Λ, Gz, Gr, Hz, Hs) of SDP, algorithm B simulates the attack game against TOS as follows.
It first build gk. Choose G and C randomly from G∗, and choose f, u1, u2 from Z∗p. Compute F := Cf , U1 := Cu1 ,
U2 := Cu2 and set gk := (Λ, G,C, F, U1, U2). This yields a gk from the same distribution as produced by Setup. Next B
simulates TOS.Key by following the original prescription except that Λ and (Gz, Gr, Hz, Hs) are taken from Isdp. Note that
wz, wr, µz, µs, i.e., the discrete-logs of Gz , Gr, Hz , Hs with respect to base C, are not known to the simulator, but they are
not needed in simulating Gi and Hi as in (4).

On receiving one-time key query, algorithm B simulates TOS.Tag by randomly selecting ζ, ρ, ϕ from Zp and computing

T1 := (GζzG
ρ
r)

1
τ1 , T2 := (Hζ

zH
ϕ
s)

1
τ2 , (8)

and T3 := T f1 , T4 := T f2 , T5 := Tu1
1 , T6 := Tu2

2 by using f , u1 and u2 generated in Setup.
On receiving signing query msgi from A, algorithm B simulates Osig by simulating TOS.Sign without having wr and

µs. It is done by using ζ, ρ, and ϕ used in TOS.Tag as follows.

Z := Cζ
k∏
i=1

M−χii and R := Cρ
k∏
i=1

M−γii and S := Cϕ
k∏
i=1

M−δii . (9)

9

The above simulated signature (Z, R, S) can satisfy verification equations.

e(Gz, Z) e(Gr, R)

k∏
i=1

e(Gi,Mi) = e(Gz, C
ζ
k∏
i=1

M−χii) e(Gr, C
ρ
k∏
i=1

M−γii)

k∏
i=1

e(Gχiz G
γi
r ,Mi)

= e(Gz, C
ζ) e(Gr, C

ρ)

= e(GζzG
ρ
r , C)

= e((GζzG
ρ
r)

1
τ1 , Cτ1)

= e(T1, Gt)

and

e(Hz, Z) e(Hs, S)

k∏
i=1

e(Hi,Mi) = e(Hz, C
ζ
k∏
i=1

M−χii) e(Hs, C
ϕ

k∏
i=1

M−δii)

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz, C
ζ) e(Hs, C

ϕ)

= e(Hζ
zH

ϕ
s , C)

= e((Hζ
zH

ϕ
s)

1
τ2 , Cτ2)

= e(T2, Ht)

For each signing, transcript (tag , σ,msg) is recorded. When A outputs a forgery (tag†, σ†,msg†), algorithm B searches
the records for (tag , σ,msg) such that tag† = tag and (msg†, σ†) 6= (msg, σ). If no such entry exists, B aborts. Otherwise,
B computes

Z? :=
Z†

Z

k∏
i=1

(
M†i
Mi

)χi
, and R? :=

R†

R

k∏
i=1

(
M†i
Mi

)γi
, and S? :=

S†

S

k∏
i=1

(
M†i
Mi

)δi
,

where (Z,R, S,M1, . . . ,Mk) and its dagger counterpart are taken from (σ,msg) and (σ†,msg†), respectively. B finally
outputs (Z?, R?, S?). This completes the description of B.

We first claim that the simulation by B is perfect. The parameters and keys generated in Setup and TOS.Key due to the
uniform choice of Isdp = (Λ, Gz, Gr, Hz, Hs). The distribution of every tag and signature is perfect as T1 and T2 distribute
uniformly due to the randomness of ρ and ϕ, and so does Z due to the randomness of ζ. (T3, · · · , T6, R and S are then
uniquely determined from the relevant relations.) Accordingly, A outputs successful forgery with noticeable probability and
B finds a corresponding record (tag , σ,msg).

We next claim that each χi is independent of the view of A. We show that, if coins χ1, . . . , χk distribute uniformly
over Zkp , other coins, i.e., (γ1, . . . , γk, δ1, . . . , δk) and (ζ(1), ρ(1), ϕ(1), . . . , ζ(qs), ρ(qs), ϕ(qs)) for qs queries, distribute uni-
formly as well retaining consistency with the view of A. (By ζ(j), we denote ζ with respect to the j-th query. We
follow the convention hereafter. For simplicity, we assume that A makes qs one-time key queries and the same num-
ber of signing queries.) Observe that the view of A making qs signing queries consists of independent group elements
(C,F, U1, U2, Gz, Gr, Hz, Hs, Gt, Ht, G1, H1, . . . , Gk, Hk) and (T

(j)
1 , T

(j)
2 , Z(j),M

(j)
1 , . . . ,M

(j)
k) for j = 1, . . . , qs. (We

omit G from the view as it is independent and not used at all.) We represent the view by the discrete-logarithms of these
group elements with respect to base C. Namely, the view is (1, f, u1, u2, wz, wr, µz, µs, τ1, τ2, w1, . . . , wk, µ1, . . . , µk) and
(t

(j)
1 , t

(j)
2 , z(j),m

(j)
1 , . . . ,m

(j)
k) for j = 1, . . . , qs. The view and the coins follow relations

wi = wzχi + wrγi, µi = µzχi + µsδi for i = 1, . . . , k, (10)

τ1t
(j)
1 = wzζ

(j) + wrρ
(j), τ2t

(j)
2 = µzζ

(j) + µsϕ
(j), and (11)

z(j) = ζ(j) −
k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (12)

Equations in (10), (11), and (12) correspond to those in (4), (8), and the first one in (9), respectively.
Consider χ` for fixed ` in {1, . . . , k}. For every value of χ`, the linear equations in (10) determine γ1, . . . , γk and

δ1, . . . , δk. Similarly, if m` 6= 0, equations in (11), and (12) determine ζ(j), ρ(j), and ϕ(j) for j = 1, . . . , qs. If m` = 0, then

10

χ` is independent of ζ(j), ρ(j), and ϕ(j) for j = 1, . . . , qs. The above holds for every ` in {1, . . . , k}. Thus, if χ1, . . . , χk
distributes uniformly over Zkp , then other coins distribute uniformly as well retaining the consistency with the view of A.

Finally, we claim that (Z?, R?, S?) is a valid solution to the given instance of SDP. Since both forged and recorded
signatures fulfil equation (6) (7), dividing the equations results in

1 = e

(
Gz,

Z†

Z

)
e

(
Gr,

R†

R

) k∏
i=1

e

(
Gχiz G

γi
r ,

M†i
Mi

)

= e

(
Gz,

Z†

Z

k∏
i=1

(
M†i
Mi

)χi)
e

(
Gr,

R†

R

k∏
i=1

(
M†i
Mi

)γi)
= e (Gz, Z

?) e (Gr, R
?) ,

and

1 = e

(
Hz,

Z†

Z

)
e

(
Hs,

S†

S

) k∏
i=1

e

(
Hχi
z Hδi

s ,
M†i
Mi

)

= e

(
Hz,

Z†

Z

k∏
i=1

(
M†i
Mi

)χi)
e

Hs,
S†

S

k∏
i=1

(
M†i
Mi

)δi
= e (Hz, Z

?) e (Hs, S
?) .

What remains is to prove that Z? 6= 1. We have either msg† 6= msg(j) or σ† 6= σ. In the former case, there exists

` ∈ {1, . . . , k} such that M†`
M`
6= 1. As already proven, χ` is independent of the view of A. Thus

(
M†`
M`

)χ`
distributes

uniformly over G and Z? = 1 holds only if Z† = Z
∏

(M†i /Mi)
−χi , which happens only with probability 1/p over the

choice of χ`. In the latter case, (Z†, R†, S†) 6= (Z,R, S) and msg† = msg(j). Suppose that, without loss of generality,
Z† = Z. Then R† = R holds since they are uniquely determined from the first verification equation. S† = S holds as well
from the second verification equation. Thus such a case can never happen. We thus have Advsot-cma

TOS,A ≤ Advsdp
G,B+1/p as stated.

5.3 RMA-secure signature scheme
For our random message signature scheme we will use a construction based on the dual system signature proposed in [39].
While the original scheme is CMA-secure under the DLIN assumption, the security proof makes use of a trapdoor com-
mitment to elements in Zp and consequently messages are elements in Zp rather than G. Our construction below resorts
to RMA-security and removes this commitment to allows messages to be a sequence of random group elements satisfying
a particular relation. As mentioned above, the message space Mx := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2) ∈ G6 | (m1,

m2) ∈ Z2
p} is defined by generators (C,F, U1, U2) in gk.

[Scheme rSIG]

rSIG.Key(gk): Given gk := (Λ, G,C, F, U1, U2) as input, uniformly select V, V1, V2, H from G∗ and a1, a2, b, α, and ρ
from Z∗p. Then compute and output vk := (B,A1, A2, B1, B2, R1, R2,W1,W2, V, V1, V2, H,X1, X2) and sk :=
(vk,K1,K2) where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a11 , R2 := V V a22 , W1 := Rb1, W2 := Rb2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3,M4,M5,M6). Pick random r1, r2, z1, z2 ∈ Zp. Let r = r1 + r2.
Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M5M6H)r1 , S1 := K2V
r, S2 := K−11 V r1 G

z1 , S3 := B−z1 ,

S4 := V r2 G
z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

11

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3,M4,M5,M6) and σ into (S0, S1, . . . , S7). Also parse vk accordingly.
Verify the following pairing product equations:

e(S7,M5M6H) = e(G,S0)

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2)

e(F,M1) = e(C,M3) e(F,M2) = e(C,M4) e(U1,M1) = e(C,M5) e(U2,M2) = e(C,M6)

The scheme is structure-preserving by construction and the correctness is verified by inspecting the following relation.

e(S1, G
b) e(S2, G

b·a1) e(S3, G
a1) = e(K2V

r, Gb) e(K−11 V r1 G
z1 , Gb·a1) e(B−z1 , Ga1)

= e(Gα·a1V r, Gb) e(G−αV r1 G
z1 , Gb·a1) e(G−b·z1 , Ga1)

= e(Gα·a1V r, Gb) e(G−αV r1 , G
b·a1)

= e(Gα·a1V r, Gb) e(G−α·a1V r·a11 , Gb)

= e(V r, Gb) e(V r·a11 , Gb)

= e(G,V V a11)b·r

e(S6, V V
a1
1) e(S7, R

b
1) = e(Br2 , V V a11) e(Gr1 , V bV b·a11)

= e(Gb·r2 , V V a11) e(Gr1 , V bV b·a11)

= e(G,V V a11)b·r

Thus, the second equation holds since r = r1 + r2. The third equation can be verified analogously, and the remaining
equations are easily verified.

Theorem 6. The above rSIG scheme is secure against random message attacks under the DLIN assumption. In particular, for
any polynomial-time adversaryA against rSIG that makes at most qs signing queries, there exists polynomial-time algorithm
B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs + 2) · Advdlin
G,B(λ).

Proof. We refer to the signatures output by the signing algorithm as a normal signature. In the proof we will consider an
additional type of signatures to which we refer to as simulation-type signatures that are computationally indistinguishable but
easier to simulate. For γ ∈ Zp, simulation-type signatures are of the form

σ = (S0, S
′
1 = S1 ·G−a1a2γ , S′2 = S2 ·Ga2γ , S3, S

′
4 = S4 ·Ga1γ , S5, . . . , S7)

We first give the outline of the proof using some lemmas. Proofs for the lemmas are given after the outline.

Lemma 5. Any signature that is accepted by the verification algorithm must be formed either as a normal signature, or a
simulation-type signature.

Based on the notion of simulation-type signatures, we consider a sequence of games. Let pi be the probability that the
adversary succeeds in Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively simulation-type

forgery. Then by Lemma 5, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.

Lemma 6. In Game 0, the adversary produces a valid forgery which is a simulation-type signature only with negligible
probability psim

0 (λ) under the DLIN assumption. More concretely, there exists an adversary B1 such that psim
0 (λ) =

Advdlin
G,B1

(λ).

Game i: The real security game except that the first i signing queries are answered with simulation-type signatures.

12

Lemma 7. The probability thatA outputs a normal-type forgery is the same (up to a negligible amount) in Game i−1
as in Game i: pnorm

i−1 (λ) ≤ pnorm
i (λ) + ∆i(λ) for some negligible ∆i(λ) under the DLIN assumption. More concretely,

there exists an adversary B2 such that |pnorm
i−1 (λ)− pnorm

i (λ)| = Advdlin
G,B2

(λ).

Game q: All private key queries are answered with simulation-type signatures.

Lemma 8. In Game q, A outputs a normal-type forgery with at most negligible probability pnorm
q (λ) under the CDH

assumption. More concretely, there exists an adversary B3 such that pnorm
q (λ) = Advcdh

G,B3
(λ).

We have shown that in Game q, A can output a normal-type forgery with at most negligible probability. Thus, by Lemma 7
we can conclude that the same is true in Game 0. Since we have already shown that in Game 0 the adversary can output
simulation-type forgeries only with negligible probability, and that any signature that is accepted by the verification algo-
rithm is either normal or simulation-type, we conclude that the adversary can produce valid forgeries with only negligible
probability

Advuf-rma
rSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) = psim

0 (λ) +

q∑
i=1

|pnorm
i−1 (λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ Advdlin
G,B1

(λ) + qAdvdlin
G,B2

(λ) + Advcdh
G,B3

(λ) ≤ (q + 2) · Advdlin
G,B(λ) .

Proof. (of Lemma 5)
We have to show that only normal and simulation-type signatures can fulfil these equations. We ignore the first row of
verification equations that establish that M is well-formed. A signature has 4 random exponents, r1, r2, z1, z2. A simulation-
type signatures has additional exponent γ.

We interpret S7 as Gr1 , and it follows from the first verification equation that S0 is (M5M6H)r1 . We interpret S3 as
G−bz1 , S5 as G−bz2 , and S6 as Gr2b. Now we have fixed all exponents of a normal signature. The remaining two verification
equations tell us that

e(Gb, S1) · e(Gba1 , S2) = e(V V a11 , Gr2b) · e((V V a11)b, Gr1) · e(Ga1 , Gbz1),

e(Gb, S1) · e(Gba2 , S4) = e(V V a22 , Gr2b) · e((V V a22)b, Gr1) · e(Ga2 , Gbz2) · e(G,G)αa1b.

We interpret S1 as Gα·a1V rG−a1a2γ . Now we have two equations and two unknowns that fix S2 to G−αV r1 G
z1Ga2γ and S4

to V r2 G
z2Ga1γ respectively. For γ = 0 we have a normal signature otherwise a simulation-type signature.

Proof. (of Lemma 6).
Suppose for contradiction that there is an adversary A, which, when playing Game Real (and thus receiving only normal
signatures), produces forgeries which are formed like simulation-type signatures. Then we can create an adversary B for
DLIN as follows:

Let Idlin = (Λ, G1, G2, G3, X, Y, Z) be an instance of DLIN where there exist random x, y, z ∈ Zp such that X = Gx1 ,
Y = Gy2 and Z = Gz3 or Gx+y3 . Given Idlin, adversary B works as follows. It first sets G := G3, and A1 := G1 and
A2 := G2. Then it chooses random b, α, ρ ∈ Zp and computes B1 := Gb1 and B2 := Gb2, K1 := Gα3 , K2 := Gα1 and
X1 := Gρ3, X2 := G

αb/ρ
1 . It also chooses random v, v1, v2 and sets V = Gv3 , V1 = Gv13 , and V2 = Gv23 . (This way we know

the discrete log of these values w.r.t. G3.) B further computes R1 = V V a11 = Gv3G
v1
1 and R2 := V V a22 = Gv3G

v2
2 . It then

chooses U,H at random from G. Our final public-key is

vk = (Gb3, G1, G2, G
b
1, G

b
2, G

v
3G

v1
1 , G

v
3G

v2
2 , G

vb
3 G

v1b
1 , Gvb3 G

v2b
2 , Gv3, G

v1
3 , G

v2
3 , U,H,X1, X2)

and our final secret key is
sk = (vk,Gα3 , G

α
1).

Note that both the distribution of the public and secret keys is statistically close to that in the real DLIN game. Moreover, to
sign random messages, B can follow the real signing algorithm by using sk.

Suppose that A produces a valid forgery σ† and msg†. Then B proceeds as follows: It parses σ† as (S0, . . . , S7).
Recall that in Lemma 5, it is shown that if the verification equations hold, then we must have S1 = Gαa1V rG−a1a2γ ,
S2 = G−αV r1 G

z1Ga2γ , and S4 = V r2 G
z2Ga1γ . If this is a simulation-type signature, we will have γ 6= 0. Rewritten

according to our choice of public-key, this means that S1 = Gα1V
rG−fγ2 , S2 = G−α3 V r1 V

z1Gγ2 , and S4 = V r2 G
z2
3 G

γ
1 , where

13

f is the discrete log of G1 w.r.t. G3. Thus, if we can extract G−fγ2 , Gγ2 , G
γ
1 , we can easily break the DLIN instance by testing

whether e(Z,G−fγ2) = e(Gγ2 , X)e(Gγ1 , Y). But, recall that the signature includes S3 = G−bz13 , S5 = G−bz23 , S6 = Gbr23 ,
and S7 = Gr13 , and we know b, α and the discrete logarithms of V, V1, V2 w.r.t. G3. Thus, it will be straightforward to extract
the above values.

Proof. (of Lemma 7).
Suppose for contradiction that there exists an adversary A such that the probabilities that A outputs a normal-type forgery in
Game i and Game i + 1 differ by a non-negligible amount. Then we will use A to construct an algorithm B that breaks the
DLIN assumption.

We are given an instance of DLIN; Idlin = (G1, G2, G3, X, Y, Z). Note that determining whether a signature is of normal-
type or simulation-type naturally corresponds to a DLIN problem: each signature contains S7 = Gr1 , S6 = (Gb)r2 , and S1

which will include V r1+r2 or V r1+r2G−a1a2γ depending on whether this is a normal- or simulation-type signature. (Recall
that we define r = r1 + r2.) If we set G = G2, Gb = G1, and V = G3, then it seems fairly straightforward to argue based
on the DLIN assumption that it will be impossible for the adversary to distinguish normal and simulation-type signatures.
However, we cannot tell whether A’s forgery is normal- or simulation-type in this simulation. Thus, there will be no way for
B to take advantage of a change in A’s success probability to solve the DLIN challenge.

The solution is to set things up so that, with high probability we can take S0 from the adversary’s forgery and extract
something that looks like Gr1 (which will allow us to distinguish DLIN tuples and consequently detect simulation-type
signatures), but at the same time we are guaranteed that for the i-th message, the G component of S0 will cancel out, leaving
only an Gr12 component which will not allow the challenger itself to know whether a simulated signature is normal-type or
simulation-type.

More specifically, the idea will be to choose some secret values ξ1, ξ2, β, χ1, χ2, χ3 and embed them in the parameters
so that Uw1

1 Uw2
2 H = Gχ1w1+χ2w2+χ3

2 Gξ1w1+ξ2w2+β
3 . Then S0 = (Uw1

1 Uw2
2 H)r1 = G

(χ1w1+χ2w2+χ3)r1
2 G

(ξ1w1+ξ2w2+β)r1
3 .

If ξ1w1 + ξ2w2 + β 6= 0, this gives useful information on Gr13 (in particular it will allow us to test candidate values), while
if ξ1w1 + ξ2w2 + β = 0, this has no G3 component and thus doesn’t help at all with finding Gr13 . We choose ξ1, ξ2, β so
that ξ1w1 + ξ2w2 + β = 0 for the (w1, w2) used to generate the ith message. Furthermore, we will guarantee that ξ1, ξ2, β
are information theoretically hidden even given this pair (w1, w2), so the adversary has only negligible chance of producing
another message with Uw

∗
1

1 , U
w∗2
2 such that ξ1w∗1 + ξ2w

∗
2 + β = 0 as well.

Message space setup and key generation: Set (C,F), used to define message spaceM, to (Gϕ1 , G3). We choose random
ξ1, ξ2, β, χ1, χ2, χ3 ← Zp, and compute U1 = Gχ1

2 Gξ13 , U2 = Gχ2

2 Gξ23 , and H = Gχ3

2 Gβ3 . These values will be
uniformly distributed, and independent of ξ1, ξ2, β.

gk = (G, C, F, U1, U2) = (G, Gϕ1 , G3, G
χ1

2 Gξ13 , G
χ2

2 Gξ23)

We set G = G2, B = G1. We choose random a1, a2, α, ρ← Zp, and compute Ga1 , Ga2 , Ga1b, Ga2b, Gρ,and Gαa1b/ρ

using these values.

Next, we choose V, V1, V2. We must choose these values carefully so that we can compute both Ri and Rbi , and at the
same time so that the component V r of a signature-value S1 gives us some useful information (in particular it will allow
us to derive Gr3). We do this by choosing v1, v2, δ, and computing V = G−a1a2δ3 , V1 = Gv12 G

a2δ
3 , and V2 = Gv22 G

a1δ
3 .

Now, this means R1 = Ga1v12 and R2 = Ga2v22 , and we can easily compute Rb1 = Ga1v11 and Rb2 = Ga2v21 . At the same
time, note that these values are all distributed identically to the corresponding values in the real public and secret key.
Store a1, a2, α, v1, v2, δ and

sk = (vk,Gα, Gαa1) = (vk,Gα2 , G
αa1
2).

Publish

vk = (Gb, Ga1 , Ga2 , Gba1 , Gba2 , R1, R2, R
b
1, R

b
2, V, V1, V2, H,G

ρ, Gαa1b/ρ)

= (G1, G
a1
2 , G

a2
2 , G

a1
1 , G

a2
1 , G

a1v1
2 , Ga2v22 , Ga1v11 , Ga2v21 , G−a1a2δ3 , Gv12 G

a2δ
3 , Gv22 G

a1δ
3 ,

Gχ3

2 Gβ3 , G
ρ
2, G

αa1/ρ
1).

Note that both of these tuples are distributed statistically close to those produced by Setup and SIGr.Key.

Signatures for j-th message where j < i. Pick wj1,wj2 at random and compute (M1,M2,M3,M4,M5,M6) = (Cwj1 ,
Cwj2 , Fwj1 , Fwj2 , U

wj1
1 , U

wj2
2). B can compute a simulation-type signatures for this message since it has sk and

Ga1a2 = Ga1a22 .

14

Signatures for i-th message: Pick w1,w2 such that ξ1w1 + ξ2w2 + β = 0 and compute (M1,M2,M3,M4,M5,M6) =
(Cw1 , Cw2 , Fw1 , Fw2 , Uw1

1 , Uw2
2). Note that since no information about ξ1, ξ2, β is revealed this message will look

appropriately random to the adversary. We will implicitly set r1 = y and r2 = x. We compute S6 = Gbr2 = Gx1 = X
and S7 = Gr1 = Gy2 = Y . Recall that we chose U1, U2, H such that Uw1

1 Uw2
2 H = Gχ1w1+χ2w2+χ3

2 . Thus, we can
compute S0 = (M5M6H)r1 = Y χ1w1+χ2w2+χ3 .

What remains is to compute S1, S2, S4. Note that this involves computing V r, V r1 , and V r2 respectively. This is where
we will embed our challenge. Recall that V = G−a1a2δ3 . Thus, we will compute V r = (Gr1+r23)−a1a2δ as Z−a1a2δ . If
Z = Gx+y3 this will be correct; ifZ = Gz3 for random z, then there will be an extra factor ofG−a1a2δ(z−(x+y))3 . If we let
Gγ = G

δ(z−(x+y))
3 (which is uniformly random from the adversary’s point of view), then this is distributed exactly as

it should be in a simulation-type signature. Thus, we compute S1 which should be either Gαa1V r or Gαa1V rG−a1a2γ

as Gαa12 Z−a1a2δ .

We can try to apply the same approach to compute V r1 to get S1. However, recall that we set V1 = Gv12 G
a2δ
3 . Thus,

computing V r1 involves computing Gr2, which we cannot do. (If we could we could use that to break the DLIN
assumption.) To get around this, we use z1, z2: choose random s1, s2 and implicitly set Gz1 = G−v1r2+s12 and
Gz2 = G−v2r2+s22 . While we cannot compute these values, we can compute G−z1b = Gv1r2−s11 = Xv1G−s11 and
G−z2b = Xv2G−s21 . Then to generate S2, we can compute

G−α2 Y v1Za2δGs12 = G−αGr1v12 Za2δGs12 G
r2v1
2 G−r2v12

= G−αG
(r1+r2)v1
2 Za2δGs1−r2v12

= G−αGrv12 Za2δGz1 .

If Z = Gx+y3 = Gr3, then this will be

G−αGrv12 Gra2δ3 Gz1 = G−α(Gv12 G
a2δ
3)rGz1

= G−αV r1 G
z1 .

If Z = Gz 6=x+y3 , then this will be:

G−αGrv12 Gza2δ3 Gz1 = G−αGrv12 Gra2δ3 G
a2δ(z−(x+y))
3 Gz1

= G−αGrv12 Gra2δ3 Ga2γGz1

= G−αV r1 G
a2γGz1

where the second to last equality follows from our choice of γ above. By a similar argument, we compute S4 as
Y v2Za1δGs22 and argue that this will be either V r2 G

z2 or V r2 G
z2Ga1γ as desired. Let S := (S0, S1, S2, S3, S4, S5, S6, S7)

where

S0 = Y χ1wi1+χ2wi2+χ3 S1 = Gαa12 Z−a1a2δ S2 = G−α2 Y v1Za2δGs12

S3 = Xv1G−s11 S4 = Y v2Za1δGs22 S5 = Xv2G−s21

S6 = X S7 = Y.

Signatures for j-th message where j > i: Pickw1, w2 and computemj = (M1,M2,M3,M4,M5,M6) = (Cw1 , Cw2 , Fw1 ,
Fw2 , Uw1

1 , Uw2
2) and a signature σ according to SIGr.Sign(sk,mj). Output σ,mj .

On receiving A’s forgery: A sends a signature S = (S0, S1, . . . , S7) and (M1,M2,M3,M4,M5,M6) = (Cw1 , Cw2 , Fw1 ,
Fw2 , Uw1

1 , Uw2
2) for some message w1, w2. B outputs 1 if and only if

e(S0, G1) · e(Mξ1
3 Mξ2

4 Gβ3 , S6)

= e((S1G
−αa1
2)−1/(−a1a2δ), (M

1/ϕ
1)ξ1(M

1/ϕ
2)ξ2Gβ1) · e(S7, (M

1/ϕ
1)χ1(M

1/ϕ
2)χ2Gχ3

1) .

By Lemma 5, we are guaranteed that if the signature S verifies, then there must exist w1, w2, r1, r2, γ such that S0 =
(Uw1

1 Uw2
2 H)r1 , S1 = Gαa1V rG−a1a2γ , S6 = Gbr2 , and S7 = Gr1 where r = r1 + r2. We are also guaranteed that

M1 = (Gϕ1)w1 , M2 = (Gϕ1)w2 and M3 = Gw1
2 , M4 = Gw2

2 .

15

Rephrased in terms of our parameters, this means

S0 = (Gχ1w1+χ2w2+χ3

2 Gξ1w1+ξ2w2+β
3)r1 S1 = Gαa12 G−a1a2δr3 G−a1a2γ2

S6 = Gr21 S7 = Gr12 .

Plugging this into the above computation we get that B will output 1 if and only if

e((Gχ1w1χ2w2+χ3

2 Gξ1w1+ξ2w2+β
3)r1 , G1) · e((Gw1

3)ξ1(Gw2
3)ξ2Gβ3 , G

r2
1)

= e((Gαa12 G−a1a2δr3 G−a1a2γ2 G−αa12)1/(−a1a2δ), (Gw1
1)ξ1(Gw1

1)ξ2Gβ1) · e(Gr12 , (G
w1
1)χ1(Gw2

1)χ2Gχ3

1) .

Simplifying the left side to

e(Gχ1w1+χ2w2+χ3

2 Gξ1w1+ξ2w2+β
3)r1 , G1) · e(Gξ1w1+ξ2w2+β

3 , Gr21)

=e(G2, G1)(χ1w1+χ2w2+χ3)r1 · e(G3, G1)(ξ1w1+ξ2w2+β)r1 · e(G3, G1)(ξ1w1+ξ2w2+β)r2

=e(G2, G1)(χ1w1+χ2w2+χ3)r1 · e(G3, G1)(ξ1w1+ξ2w2+β)r

and the right side to

e((G−a1a2δr3 G−a1a2γ2)1/(−a1a2δ), Gξ1w1+ξ2w2+β
1) · e(Gr12 , G

χ1w1+χ2w2+χ3

1)

=e(Gr3G
γ/δ
2 , Gξ1w1+ξ2w2+β

1) · e(Gr12 , G
χ1w1+χ2w2+χ3

1)

=e(G2, G1)(χ1w1+χ2w2+χ3)r1 · e(G3, G1)(ξ1w1+ξ2w2+β)r · e(G2, G1)γ/δ(ξ1w1+ξ2w2+β)

and by dividing out all the pairings of the left side we obtain the simplified equation

1 = e(G2, G1)γ/δ(ξ1w1+ξ2w2+β)

which is true if and only if either ξ1w1 + ξ2w2 + β = 0 or γ = 0. Since the only information that the adversary has
on ξ1, ξ2, β is that ξ1wi1 + ξ2wi2 + β = 0, we are guaranteed that ξ1w1 + ξ2w2 + β = 0 happens with negligible
probability. Thus, we conclude that B outputs 1 iff γ = 0 and this was a normal-type signature, and B outputs 0 iff
γ 6= 0 and this was a simulation-type signature.

Proof. (of Lemma 8).
Suppose that there exists an adversary A that outputs normal-type forgeries with non-negligible probability in Game q. Then
we construct an adversary B for the CDH problem as follows:
B is given X = Gx, Y = Gy and must compute Gxy . B will proceed as follows:

Message space setup and key generation: We will implicitly set α = xy and a2 = y. We choose b, a1 at random from Zp.
We need to be able to compute V a22 , so we choose random v2 and set V2 = Gv2 . We also want to know the discrete
logarithm of V1, so we will choose random v1 and set V1 = Gv1 . We choose U1, U2, H, V at random from G. We
compute V V a22 = V Y v2 and Ga2 = Y . We choose random ρ′ and set Gρ = Xρ′ and Gαa1b = Y a1b/ρ

′
. The rest of

the parameters can be constructed honestly.

Signature queries: On a signature query, we pick w1,w2 at random and compute (M1,M2,M3,M4,M5,M6) = (Cw1 ,
Cw2 , Fw1 , Fw2 , Uw1

1 , Uw2
2) and generate a simulation-type signature as follows: Choose random r1, r2, z1, z2, and

random s. Implicitly set γ = (x− s).

Compute S1 = Y sa1V r = Gysa1V r = Gysa1+xya1−xya1V r = Gxya1V rG(s−x)ya1 = Gαa1V rG−γa2a1 , and
S2 = Y −sV r1 G

z1 = G−ysV r1 G
z1 = G−ys+xy−xyV r1 G

z1 = G−xyV r1 G
z1G(x−s)y = G−αV r1 G

z1Gγa2 , and S4 =
V r2 G

z2Xa1G−sa1 = V r2 G
z2Gxa1G−sa1 = V r2 G

z2G(x−s)a1 = V r2 G
z2Ga1γ

The rest of the signature can be computed honestly.

16

Adversary’s forgery: When the adversary outputs a normal-type forgery, there exists r1, r2, z1 such that S2 = G−αV r1+r21 Gz1 ,
S3 = (Gb)−z1 , S6 = Gr2b, and S7 = Gr1 . Thus, we can compute

S−12 · Sv17 S
v1/b
6 S

−1/b
3 = GαV

−(r1+r2)
1 G−z1 · (Gr1)v1(Gr2b)v1/b((Gb)−z1)−1/b

= GαV −r1−r21 G−z1 · (Gv1)r1(Gv1)r2Gz1

= GαV −r1−r21 G−z1 · V r11 V r21 Gz1

= Gα .

B will output this value. By our choice of parameters, α = xy, so Gα = Gxy as desired.

Let MSGGen be an extended random message generator that first chooses aux = (m1,m2) randomly from Z2
p and then

computes msg = (Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2). Note that this is what the reduction algorithm does in the proof of
Theorem 6. Therefore, the same reduction algorithm works for the case of extended random message attacks with respect to
message generator MSGGen. We thus have the following.

Corollary 1. Under the DLIN assumption, the above rSIG scheme is secure against extended random message attacks with
respect to the message generator that provides aux = (m1,m2) for every messagemsg = (Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2).

In particular, for any polynomial-time adversaryA against rSIG that makes at most qs signing queries, there exists polynomial-
time algorithm B such that Advuf-xrma

rSIG,A (λ) ≤ (qs + 2) · Advdlin
G,B(λ).

5.4 Security and efficiency of resulting SIG1
Let SIG1 be the signature scheme obtained from TOS (with mode = extended) and rSIG by following the first generic
construction in Section 4. From Theorem 1, 2, 5, 6, and Lemma 2, the following is immediate.

Theorem 7. SIG1 is a structure-preserving signature scheme that yields constant-size signatures, and is unforgeable against
adaptive chosen message attacks under the DLIN assumption. In particular, for any polynomial-time adversary A for SIG1
making at most qs signing queries, there exists polynomial-time algorithm B such that Advuf-cma

SIG1,A(λ) ≤ (qs+3)·Advdlin
G,B(λ)+

1/p.

The efficiency is summarised in Table 1 and compared to the scheme in [4]. We measure efficiency by counting the
number of group elements and the number of pairing product equations for verifying a singature. The figures do not count
default generator G in gk.

Table 1: Efficiency of SIG1.
Scheme |msg| |gk|+ |vk| |σ| #(PPE) Assmp.
AHO10 k 2k + 12 7 2 q-SFP
SIG1 k 2k + 25 17 9 DLIN

6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction to obtain our second SPS scheme.
Here we choose the Type-III bilinear group setting. The resulting SIG2 scheme is an efficient structure-preserving signature
scheme based on SXDH and XDLIN.

6.1 Setup for Type-III groups
The following setup procedure is common for all building blocks in this section. The global parameter gk is given to all
functions implicitly.

• Setup(1λ): Run Λ = (p,G1,G2,GT , e) ← G(1λ) and choose generators G ∈ G∗1 and Ĝ ∈ G∗2. Also choose u, f2,
f3 randomly from Z∗p and compute F2 := Gf2 , F3 := Gf3 , F̂2 := Ĝf2 , F̂3 := Ĝf3 , U := Gu, and Û := Ĝu. Output
gk := (Λ, G, Ĝ, F2, F3, F̂2, F̂3, U, Û).

A gk defines a message spaceMx = {(F̂m2 , F̂m3 , Ûm) ∈ G∗2 | m ∈ Zp} for the signature scheme in Section 6.4. For our
generic construction to work, the partial one-time signature scheme should have the same key space.

17

6.2 Partial one-time signatures for uniliteral messages
We construct a partial one-time signature scheme POSu2 for messages in Gk2 for k > 0. The suffix ”u2” indicates that the
scheme is uniliteral and messages are taken from G2. Correspondingly, POSu1 refers to the scheme whose messages belong
to G1, which is obtained by swapping G2 and G1 in the following description. Our POSu2 scheme is a minor refinement of
the one-time signature scheme introduced in [4]. It comes, however, with a security proof for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base group G1 that is the opposite of the
group G2 messages belong to. This property is very useful to construct a POS scheme for signing bilateral messages. As well
as tags of TOS in Section 5.2, the one-time public-keys of POS will have to be in an extended form to meet the constraint
from xSIG presented in the sequel. We use mode ∈ {normal,extended} for this purpose again.

[Scheme POSu2]

• POSu2.Key(gk): Take generators U and Û from gk . Choose wr randomly from Z∗p and compute Gr := Uwr .
For i = 1, . . . , k, uniformly choose χi and γi from Zp and compute Gi := UχiGγir . Output pk := (Gr, G1, . . . ,
Gk) ∈ Gk+1

1 and sk := (χ1, γ1, . . . , χk, γk, wr).

• POSu2.Update(mode): Take F2, F3, U from gk . Choose a← Zp and output opk := Ua ∈ G1 if mode = normal or
opk := (F a2 , F

a
3 , U

a) ∈ G3
1 if mode = extended. Also output osk := a.

• POSu2.Sign(sk ,msg, osk): Parse msg into (M̂1, . . . , M̂k) ∈ Gk2 . Take a and wr from osk and sk , respectively.
Choose ρ randomly from Zp and compute ζ := a − ρwr mod p. Then compute and output σ := (Ẑ, R̂) ∈ G2

2 as the
signature, where

Ẑ := Ûζ
k∏
i=1

M̂−χii and R̂ := Ûρ
k∏
i=1

M̂−γii . (13)

• POSu2.Vrf(pk , σ,msg, opk): Parse σ as (Ẑ, R̂) ∈ G2
2, msg as (M̂1, . . . , M̂k) ∈ Gk2 , and opk as (A2, A3, A) or A

depending on mode. Return 1, if e(A, Û) = e(U, Ẑ) e(Gr, R̂)
∏k
i=1 e(Gi, M̂i) holds. Return 0, otherwise.

Scheme POSu2 is structure-preserving and has uniform one-time public-key property from the construction. It is correct
as the following relation holds for the verification equation and the computed signatures:

e(U, Ẑ) e(Gr, R̂)

k∏
i=1

e(Gi, M̂i) = e(U, Ûζ
k∏
i=1

M̂−χii) e(Gr, Û
ρ

k∏
i=1

M̂−γii)

k∏
i=1

e(UχiGγir , M̂i)

= e(U, Ûζ) e(Uwr , Ûρ) = e(Uζ+wrρ, Û) = e(A, Û) .

Theorem 8. POSu2 is strongly unforgeable against one-time adaptive chosen message attacks (OT-CMA) if DBP1 holds.
In particular, Advsot-cma

POSu2,A(λ) ≤ Advdbp1
G,B (λ) + 1/p.

Proof. Making use of successful forgerA against POSu2 as a black-box, we construct B that is successful in breaking DBP1.
We consider the case mode = extended in the following. The other case, mode = normal can be automatically obtained by
dropping A2 and A3. Given instance Idbp1 = (Λ, Gz, Gr) of DBP1, algorithm B simulates the attack game against POSu2
as follows. It first build gk by U := Gz , Û ← G∗2, and gk := (Λ, Ug, Ûg, Uf2 , Uf3 , Ûf2 , Ûf3 , U, Û) for g, f2, f3 ← Z∗p.
This yields a gk from the same distribution as produced by Setup. Next B simulates POSu2.Key by following the original
prescription except that Λ and Gr are taken from Idbp1. Note that wr = logU Gr is not known to the simulator but it is not
needed in the original POSu2.Key. On receiving one-time key query, algorithm B simulates POSu2.Update by returning
A := UζGρr , A2 := Af2 , A3 := Af3 for ζ, ρ← Zp, and f2 and f3 generated in Setup.

On receiving signing query msg(j) from A, algorithm B simulates Osig by simulating POSu2.Sign without having
wr. It is done by using ζ and ρ used in POSu2.Update instead of computing ζ from a. For each signing, transcript
(opk , σ,msg) is recorded. When A outputs a forgery (opk†, σ†,msg†), algorithm B searches the records for (opk , σ,msg)
such that opk† = opk and (msg†, σ†) 6= (msg, σ). If no such entry exists, B aborts. Otherwise, B computes

Ẑ? :=
Ẑ†

Ẑ

k∏
i=1

(
M̂†i
M̂i

)χi
, and R̂? :=

R̂†

R̂

k∏
i=1

(
M̂†i
M̂i

)γi
, (14)

where (Ẑ, R̂, M̂1, . . . , M̂k) and its dagger counterpart are taken from (σ,msg) and (σ†,msg†), respectively. B finally outputs
(Ẑ?, R̂?). This completes the description of B.

18

We first claim that the simulation by B is perfect; the parameters and keys generated in Setup and POSu2.Key due to
the uniform choice of Idbp1 = (Λ, Gz, Gr), and the distribution of (a, ζ, ρ) is uniform over Z3

p under constraint a = ζ + ρwr
as well as the original procedure. Accordingly, A outputs successful forgery with noticeable probability and B finds a
corresponding record (opk , σ,msg).

We next claim that each χi is independent of the view of A. Concretely, we show that, if coins χ1, . . . , χk distribute
uniformly over (Zp)k, other coins γ1, . . . , γk, ζ(1), ρ(1), . . . , ζ(qs), ρ(qs) distribute uniformly as well retaining consistency
with the view of A. Observe that the view of A making q signing queries consists of independent group elements (U, Û),
(G,F2, F3), (Gr, G1, . . . , Gk) and (A(j), Ẑ(j), M̂

(j)
1 , . . . , M̂

(j)
k) for j = 1, . . . , qs. (Note that Ĝ, F̂2, F̂3, and A(j)

1 , A(j)
2 ,

and R̂(j) for all j are uniquely determined from other group elements.) We represent the view by the discrete-logarithms
of these group elements with respect to bases U and Û in each group. Namely, the view is (g, f2, f3, wr, w1, . . . , wk) and
(a(j), z(j),m

(j)
1 , . . . ,m

(j)
k) for j = 1, . . . , qs. To be consistent, the view and the coins satisfy relations

wi = χi + wrγi for i = 1, . . . , k, and (15)

a(j) = ζ(j) + wrρ
(j), and z(j) = ζ(j) −

k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (16)

From relation (15), (γ1, . . . , γk) distributes uniformly according to the uniform distribution of (χ1, . . . , χk). From the
second relation in (16) for every j, if (m1, . . . ,mk) 6= (0, . . . , 0) then ζ(j) distributes uniformly according to the uniform
distribution of (χ1, . . . , χk). Then, from first relation of (16), ρ(j) distributes uniformly, too. If (m1, . . . ,mk) = (0, . . . , 0),
then ζ(j) and ρ(j) are independent of (χ1, . . . , χk) and can be uniformly assigned by following the first relation in (16).

Finally, we claim that (Ẑ?, R̂?) is a valid solution to the given instance of DBP1. Since both forged and recorded
signatures fulfill the verification equation,

dividing the equations results in

1 = e

(
U,
Ẑ†

Ẑ

)
e

(
Gr,

R̂†

R̂

)
k∏
i=1

e

(
UχiGγir ,

M̂†i
M̂i

)

= e

(
U,
Ẑ†

Ẑ

k∏
i=1

(
M̂†i
Mi

)χi)
e

(
Gr,

R̂†

R̂

k∏
i=1

(
M̂†i
Mi

)γi)

= e
(
U, Ẑ?

)
e
(
Gr, R̂

?
)
.

What remains is to prove that Ẑ? 6= 1. If msg† 6= msg(j), there exists ` ∈ {1, . . . , k} such that M̂†`
M`
6= 1. As already

proven, χ` is independent of the view of A. Thus
(
M†`
M`

)χ`
distributes uniformly over G2 and so does Ẑ?. Accordingly,

Z? = 1 holds only if Z† = Ẑ
∏

(M†i /Mi)
−χi , which happens only with probability 1/p over the choice of χ`. Otherwise, if

msg† = msg(j) and (Z†, R†) 6= (Z,R), then, we have Z† = Z to fulfil Z? = 1. However, if Z† = Z, then R† = R holds
since the verification equation uniquely determine such R† and R. Thus msg† = msg(j) and (Z†, R†) 6= (Z,R) can never
happen. We thus have Advsot-cma

POSu2,A(λ) ≤ Advdbp1
G,B (λ) + 1/p as stated.

6.3 Partial one-time signatures for bilateral messages
Using POSu1 for msg ∈ Gk1+1

1 and POSu2 for msg ∈ Gk22 , we construct a POSb scheme for signing bilateral messages
(msg1,msg2) ∈ Gk11 ×Gk22 . The scheme is a simple two-story construction where msg2 is signed by POSu2 with one-time
secret-key osk2 ∈ G1 and then the one-time public-key opk2 is attached to msg1 and signed by POSu1. Public-key opk2 is
included in the signature, and opk1 is output as a one-time public-key for POSb.

[Scheme POSb]

• POSb.Key(gk): Run (pk1, sk1) ← POSu1.Key(gk) and (pk2, sk2) ← POSu2.Key(gk). Set pk := (pk1, pk2) and
sk := (sk1, sk2), and output (pk , sk).

• POSb.Update(mode): Run (opk , osk)← POSu1(mode) and output (opk , osk).

• POSb.Sign(sk ,msg, osk): Parse msg into (msg1,msg2) ∈ Gk11 × Gk22 , and sk accordingly. Run (opk2, osk2) ←
POSu2.Update(normal), and compute signatures σ2 ← POSu2.Sign(sk2,msg2, osk2) and σ1 ← POSu1.Sign(sk1,
(msg1, opk2), osk). Output σ := (σ1, σ2, opk2).

19

• POSb.Vrf(pk , opk , σ,msg): Parse msg into (msg1,msg2) ∈ Gk11 × Gk22 , and σ into (σ1, σ2, opk2). If 1 =
POSu1.Vrf(pk1, opk , σ1, (msg1, opk2)) = POSu2.Vrf(pk2, opk2, σ2,msg2), output 1. Otherwise, output 0.

For a message in Gk11 × Gk22 , the above POSb uses a public-key of size (k + 2, k + 1), yields a one-time public-key
of size (0, 1) (for mode = normal) or (0, 3) (for mode = extended), and a signature of size (3, 2). Verification requires 2
pairing product equations. A one-time public-key in extended mode, which is treated as a message to xSIG in Section 6.4,
is of the form opk = (F̂ a2 , F̂

a
3 , Û

a) ∈ G3
2. Structure-preservance and uniform public-key property are taken over from the

underlying POSu1 and POSu2.

Theorem 9. Scheme POSb is unforgeable against one-time adaptive chosen message attacks if SXDH holds. In particular,
Advot-cma

POSb,A(λ) ≤ Advsxdh
G,B (λ)+2/p.

Proof. Suppose an adversary A outputs a forgery (opk†, σ†,msg†). Then there exists a triple (σ, opk ,msg) observed by
the signing oracle such that opk† = opk and msg† 6= msg. Let msg† = (msg†1,msg

†
2) and σ† = (σ†1, σ

†
2, opk

†
2). Simi-

larly, let msg = (msg1,msg2) and σ = (σ1, σ2, opk2). Then there are two cases; either (msg1, opk2) 6= (msg†1, opk
†
2), or

(msg1, opk2) = (msg†1, opk
†
2) andmsg2 6= msg†2. In the first case we have 1 = POSu1.Vrf(pk1, opk , σ1, (msg1, opk2)) =

POSu1.Vrf(pk1, opk , σ
†
1, (msg

†
1, opk

†
2)), which breaks the unforgeability of POSu1 and contradicts the DBP2 assumption.

In the second case we have 1 = POSu2.Vrf(pk2, opk2, σ2,msg2) = POSu2.Vrf(pk2, opk2, σ2,msg
†
2), which breaks the

unforgeability of POSu2 and contradicts the DBP1 assumption. Accordingly, we have Advot-cma
POSb,A(λ) ≤ Advdbp1

G,A (λ)+1/p+

Advdbp2
G,B (λ) + 1/p ≤ Advsxdh

G,B (λ) + 2/p.

6.4 XRMA-secure signature scheme
Our construction bases on a variant of Waters’ dual system encryption proposed by Ramanna, Chatterjee, and Sarkar [34].
Recall that gk = (Λ, G, Ĝ, F2, F3, F̂2, F̂3, U, Û) with Λ = (p,G1,G2,GT , e) is generated by Setup(1λ) in advance.

[Scheme xSIG]

xSIG.Gen(gk): On input gk, select generators V, V ′, H ← G1, V̂ , V̂ ′, Ĥ ∈ G2 such that V ∼ V̂ , V ′ ∼ V̂ ′, H ∼ Ĥ, F2 ∼
F̂2, F3 ∼ F̂3 and exponent a, b, α← Zp and ρ← Z∗p, compute R := V (V ′)a, R̂ := V̂ (V̂ ′)a, and set

vk := (gk, Ĝb, Ĝa, Ĝba, R̂, R̂b, H, Ĥ, V, V̂ , V ′, V̂ ′, Gρ, Ĝαb/ρ)

sk := (V K,Gα, Ga, Gb) .

xSIG.Sign(sk,msg): On input message msg = (M̂1, M̂2, M̂0) = (F̂m2 , F̂
m
3 , Û

m) ∈ G3
2 (m ∈ Zp), select r1, r2 ← Zp, set

r := r1 + r2, compute σ0 := (M̂0Ĥ)r1 , σ1 := GαV r, σ2 := (V ′)rG−z , σ3 := (Gb)z , σ4 := (Gb)r2 , and σ5 := Gr1 ,
and output σ := (σ0, σ1, . . . , σ5) ∈ G2 ×G5

1.

xSIG.Vrfy(vk, σ,msg): On input vk,msg = (M̂1, M̂2, M̂0), and signature σ, compute

e(σ5, M̂0Ĥ) = e(G, σ0)

e(σ1, Ĝ
b)e(σ2, Ĝ

ba)e(σ3, Ĝ
a) = e(σ4, R̂)e(σ5, R̂

b)e(Gρ, Ĝαb/ρ)

e(F2, M̂0) = e(U, M̂1)

e(F3, M̂0) = e(U, M̂2) .

The scheme is structure-preserving due to the construction. It is correct as the following relations hold for the verification
equation and the computed signatures.

e(σ1, Ĝ
b) e(σ2, Ĝ

ba) e(σ3, Ĝ
a) = e(GαV r, Ĝb) e((V ′)rĜ−z, Ĝba) e(Gbz, Ĝa)

= e(G, Ĝ)αb e(V, Ĝ)br e(V ′, Ĝ)abr

= e(G, Ĝ)αb e(V (V ′)a, Ĝ)br

e(σ4, R̂) e(σ5, R̂
b) e(Gρ, Ĝαb/ρ) = e(Gbr2 , V̂ (V̂ ′)a) e(Gr1 , V̂ b(V̂ ′)ba) e(G, Ĝ)αb

= e(G, V̂ (V̂ ′)a)br2 e(G, V̂ (V̂ ′)a)br1 e(G, Ĝ)αb

= e(G, Ĝ)αb e(G, V̂ (V̂ ′)a)br

20

Thus, the second euqation holds since G ∼ Ĝ, V ∼ V̂ , V ′ ∼ V̂ ′, and r = r1 + r2. The first, third, fourth equations are easily
verified.

Theorem 10. If the DDH2 and XDLIN1 assumptions hold, then above xSIG scheme is unforgeable against extended ran-
dom chosen message attacks with respect to the message generator that returns aux = m for every random message
msg = (F̂m2 , F̂

m
3 , Û

m). In particular for any p.p.t. adversary A for xSIG making at most q signing queries, there exist
p.p.t. algorithms B1,B2,B3 such that Advuf-xrma

xSIG,A(λ) < Advddh2
G,B1

(λ) + qAdvxdlin1
G,B2

(λ) + Advco-cdh
G,B3

(λ).

Proof. The outline of the proof follows that of Water’s dual signature scheme and quite similar to the proof of Theorem 6.
We start with the following lemma.

Lemma 9. Any accepted signature by the verification algorithm must be formed either as a normal-type signature or a
simulation-type signature.

Proof. (of Lemma 9) For a signature element σ5, there exists some r1 ∈ Zp such that σ5 = Gr1 , so the first verification
equation implies that σ0 = (ÛmĤ)r1 . For fixed b ∈ Zp (Ĝb is included in vk), there exists r2, z ∈ Zp such that σ3 = Gbz ,
σ4 = Gbr2 . If we fix σ1 = GαV rG−aγ , then a remaining unknown value is σ2. The verification equation is

e(σ1, Ĝ
b)e(σ2, Ĝ

ba)e(σ3, Ĝ
a) = e(σ4, R̂)e(σ5, R̂

b)e(G, Ĝ)αb

so we can fix σ2 = (V ′)rG−zGγ .

Based on the notion of simulation-type signatures, we consider a sequence of games. Let pi be the probability that the
adversary succeeds in Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively simulation-type

forgery. Then by Lemma 9, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Extended Random Message Attacks game.

Lemma 10. In Game 0, the adversary produces a valid forgery which is a simulation-type signature only with neg-
ligible probability psim

0 (λ) under the DDH2 assumption. More concretely, there exists an adversary B1 such that
psim
0 (λ) ≤ Advddh2

G,B1
(λ).

Game i: The real security game except that the first i signing queries are answered with simulation-type signatures.

Lemma 11. The probability that A outputs a normal-type forgery is the same (up to a negligible amount) in Game
i − 1 as in Game i: pnorm

i−1 (λ) ≤ pnorm
i (λ) + ∆i(λ) for some negligible ∆i(λ) under the XDLIN1 assumption. More

concretely, there exists an adversary B2 such that |pnorm
i−1 (λ)− pnorm

i (λ)| ≤ Advxdlin1
G,B (λ).

Game q: All private key queries are answered with simulation-type signatures.

Lemma 12. In Game q, A outputs a normal-type forgery with at most negligible probability pnorm
q (λ) under the co-

CDH assumption. More concretely, there exists an adversary B2 such that pnorm
q (λ) ≤ Advco-cdh

G,B2
(λ).

We have shown that in Game q, A can output a normal-type forgery with at most negligible probability. Thus, by Lemma 11
we can conclude that the same is true in Game 0. Since we have already shown that in Game 0 the adversary can output
simulation-type forgeries only with negligible probability, and that any signature that is accepted by the verification algo-
rithm is either normal or simulation-type, we conclude that the adversary can produce valid forgeries with only negligible
probability

Advuf-xrma
xSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) = psim

0 (λ) +

q∑
i=1

|pnorm
i−1 (λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ Advco-cdh
G,B2

(λ) + qAdvxdlin1
G,B (λ) + Advddh2

G,B1
(λ)

as stated.

Proof. (of Lemma 10) We show that, if adversary outputs a simulation-type forgery, then we can construct algorithm B1 that
solves the DDH2 problem. Algorithm B1 is given instance (Λ, Ĝ, Ĝs, Ĝa, Ẑ ∈ G2) of DDH2, and simulates the verification
key and the signing oracle for the signature scheme (B1 does not have value a, s).

21

B1 generates gk and vk as follows. It selects G ← G1, and selects exponents b, α, v, v′, u, h, f2, f3 ← Zp and ρ ← Z∗p,
computes Ĝa := Ĝa, Ĝb := Ĝb, Ĝba := (Ĝa)b, V := Gv , V ′ := Gv

′
, V̂ := Ĝv , V̂ ′ := Ĝv

′
, R̂ := V̂ (V̂ ′)a = Ĝv(Ĝa)v ,

U := Gu, H := Gh, Û := Ĝu, Ĥ := Ĝh, F̂2 := Ĝf2 , F̂3 := Ĝf3 , Gρ := Gρ, Ĝαb/ρ := Ĝαb/ρ, and sets

gk := (Λ, G, Ĝ, F2, F̂2, F3, F̂3, U, Û),

vk := (Ĝb, Ĝa, Ĝab, ĜvĜva, ĜvbĜvab, H, Ĥ, V, V̂ , V ′, V̂ ′, Gρ, Ĝαb/ρ),

sk := (V K,Gα, Ga, Gb).

B1 can generate normal-type signatures by using the (normal) signing algorithm since B1 has α, b and V, V ′.
If adversary A outputs a simulation-type forgery σ1 := (GαV r) ·G−aγ , σ2 := ((V ′)rG−z) ·Gγ , σ3 := (Gb)−z , σ4 :=

(Gb)r2 , σ5 := Gr1 , and σ0 := (M̂0Ĥ)r1 , for some r1, r2, z, γ ∈ Zp (r = r1 + r2) for message F (m) = (F̂m2 , F̂
m
3 , Û

m),
then B1 can compute (Gaγ , Gγ) from σ1, σ2 respectively. The reason is as follows:
B1 has b, so can compute Gz , Gr1 , Gr2 from σ3 = Gbz , σ5 = Gr1 , σ4 = Gbr2 , respectively and obtains Gr = Gr1+r2 ,

V r = Grv, (V ′)r = Grv
′

(B1 has v, v′). Thus, B1 can extract (G−aγ , Gγ) from σ1 and σ2. B1 can solve the DDH2 problem
by checking whether

e(Gγ , Ẑ) = e(Gaγ , Ĝs)

or not because e(Gaγ , Ĝs) = e(G, Ĝ)asγ = e(Gγ , Ĝas). If Ẑ = Ĝas (DDH tuple), then the equation holds. Thus, B1 solves
the DDH2 problem whenever the adversary outputs a valid simulation-type forgery, i.e., psim

0 (λ) ≤ Advddh2
G,B1

(λ) as claimed.

Proof. (of Lemma 11) Given access to A playing pnorm
i−1 (λ) and pnorm

i (λ), we construct algorithm B2 that solves the XDLIN1

problem with advantage |pnorm
i−1 (λ)− pnorm

i (λ)|.
B2 is given instance (Λ, G1, G2, G3, Ĝ1, Ĝ2, Ĝ3, X, Y, X̂, Ŷ , Z ∈ G1) of the XDLIN1 problem. It implicitly holds

that G1 = Gb3, Ĝ1 = Ĝb3, X = Gx1 , Y = Gy2, X̂ = Ĝx1 , Ŷ = Ĝy2 . B2 generates the group elements in gk and vk as
follows: It selects exponents α, a, v′, u, h, ξ, β, χ1, χ2, δ ← Zp and ρ ← Z∗p, such that ξm + β = 0 where m ∈ Zp is the
exponent of the i-th random message and will be used to answer i-th signature, computes G := G2, Ĝ := Ĝ2, Ĝb := Ĝ1,
Ĝba := Ĝa1 , V := G−aδ3 , V̂ := Ĝ−aδ3 , V ′ := Gδ3G

v′

2 , V̂ ′ := Ĝδ3Ĝ
v′

2 , Gρ := Gρ2, Ĝαb/ρ := (Ĝ1)α/ρ, R := V (V ′)a = Gv
′a

2 ,
R̂ := V̂ (V̂ ′)a = Ĝv

′a
2 , Rb := (V (V ′)a)b = Gv

′a
1 , R̂b := (V̂ (V̂ ′)a)b = Ĝv

′a
1 , U := Gχ1

2 Gξ3, Û := Ĝχ1

2 Ĝξ3, H := Gχ2

2 Gβ3 ,
Ĥ := Ĝχ2

2 Ĝβ3 .
If ξm+β = 0, then it holds that (ÛmĤ) = Ĝmχ1+χ2

2 Ĝξm+β
3 = Ĝmχ1+χ2

2 . Note that ξ and β are information theoretically
hidden even givenm, so the adversary has only negligible chance of producing another message Ûm

∗
such that ξm∗+β = 0.

We choose ϕ← Zp, set F2 := Gϕ1 , F3 := G3, F̂2 := Ĝϕ1 , F̂3 := Ĝ3.
B2 sets

gk := (Λ, G2, Ĝ2, G
ϕ
1 , Ĝ

ϕ
1 , G3, Ĝ3, G

χ1

2 Gξ3, Ĝ
χ1

2 Ĝξ3),

vk := (Ĝ1, Ĝ
a, Ĝa1 , G

v′a
2 , Gv

′a
1 , Ĝv

′a
2 , Ĝv

′a
1 , Gχ2

2 Gβ3 , Ĝ
χ2

2 Ĝβ3 , G
−aδ
3 , Ĝ−aδ3 , Gδ3G

v′

2 , Ĝ
δ
3Ĝ

v′

2 , G
ρ
2, (Ĝ1)α/ρ),

sk := (V K,Gα, Gb = G1).

B2 hasGa since it has a, thus B2 can generate simulation-type signatures. B2 gives signatures as follows: For the j-th random
message,

Case j > i: Returns normal-type signature by using SK = (V K,Gα2 , G
b
2).

Case j < i: Returns simulation-type signature by using SK and Ga2 .

Case j = i: Embeds the instance as follows. For i-th randomly chosen messagem by B2, B2 implicitly sets r1 := y, r2 := x
and computes σ4 := Gbr2 = Gx1 , σ5 := Gr1 = Gy2 . B2 can compute σ0 := (Ĝy2)mχ1+χ2 = (ÛmĤ)r1 . Next,
in order to compute V r and (V ′)r, B2 computes (Gr1+r23)−aδ as Z−aδ . If Z = Gx+y3 , then this will be correct.
If Z = Gζ3 for ζ ← Zp, then we let Gγ := G

δ(ζ−(x+y))
3 and this will be a simulation-type signature. B2 chooses

s ← Zp and implicitly sets G−z := G−v
′r2+s

2 . These value are not computable but B2 can compute Gzb = Gxv
′−s

1 .
σ2 := (Gy2)v

′
ZδGs2 = Gr1v

′+r2v
′

2 ZδGs−r2v
′

2 = Grv
′

2 ZδG−z . B2 generates a signature as follows:

σ0 := (Gy2)mχ1+χ2 σ1 := Gα2Z
−aδ σ2 := (Gy2)v

′
ZδGs2

σ3 := (Gx1)v
′
G−s1 σ4 := Gx1 σ5 := Gy2

B2 can generate σ0 correctly since B2 set ξm+ β = 0.

22

• If Z = Gx+y3 ∈ G1, the above signature is a normal-type with Z = Gr3, σ1 = Gα2G
−aδr
3 = Gα2V

r, and
σ2 = (Gv

′

2 G
δ
3)rG−z = (V ′)rG−z .

• If Z ← G1, the above signature is a simulation-type since Z = Gz3 for some z ← Zp, σ1 = Gα2G
−aδr
3 G−aδζ3

Gaδr3 = Gα2V
rG
−aδ(ζ−(x+y))
3 = GαV rG−aγ since Gδ(ζ−(x+y))3 = Gγ , and σ2 = Grv

′

2 Grδ3 G
δ(ζ−(x+y))
3 G−z

= (V ′)rGγG−z .

That is, if Z = Gx+y3 (linear), thenA is in pnorm
i−1 (λ), otherwiseA is in pnorm

i (λ). For all messages, B2 can return µ(Mi) = mi.
At some point, A outputs forgery (σ∗1 , . . . , σ

∗
7 , σ
∗
0) and message F (m) = (Q̂1, Q̂2, Q̂0) = (F̂m2 , F̂

m
3 , Û

m). B2 outputs 1
if and only if

e(G1, σ0) · e(σ6, Q̂ξ2Ĝ
β
3) = e((σ1G

−αa1
2)1/(−aδ), (Q̂

1/ϕ
1)ξĜβ1) · e(σ7, (Q̂1/ϕ

1)χ1Ĝχ2

1).

By the lemma, there exist m∗, r∗1 , r
∗
2 , γ
∗, r∗ = r∗1 + r∗2 such that σ0 = (Ûm

∗
Ĥ)r

∗
1 , σ1 = Gα2V

r∗G−aγ
∗

2 , σ4 = G
r∗2
1 ,

σ5 = G
r∗1
2 , Q̂1 = (Ĝϕ1)m

∗
, Q̂2 = Ĝm

∗

3 . Since σ0 = (Ĝmχ1+χ2

2 Ĝξx+β3)r
∗
1 , σ1 = Gα2G3

−aδr∗G−aγ
∗

2 , σ4 = G1
r∗2 , σ5 = G

r∗1
2 ,

we have

e(G1, σ0) · e(σ4, Q̂ξ2Ĝ
β
3) = e(G1, (Ĝ

m∗χ1+χ2

2 Ĝξm
∗+β

3)r
∗
1) · e(Gr

∗
2

1 , (Ĝ
m∗

3)ξĜβ3)

= e(G1, Ĝ2)(m
∗χ1+χ2)r

∗
1 e(G1, Ĝ3)(ξm

∗+β)r∗1 e(G1, Ĝ3)(ξm
∗+β)r∗2

and

e((σ1G
−α
2)1/(−aδ),(Q̂

1/ϕ
1)ξĜβ1) · e(σ5, (Q̂1/ϕ

1)χ1Ĝχ2

1)

= e(Gr
∗

3 G
γ∗/δ
2 , Ĝξm

∗+β
1) · e(Gr

∗
1

2 , Ĝ
m∗χ1+χ2

1)

= e(G3, Ĝ1)(ξm
∗+β)r∗e(G2, Ĝ1)γ

∗/δ(ξm∗+β)e(G2, Ĝ1)(m
∗χ1+χ2)r

∗
1 .

A simplified equation is 1 = e(G2, Ĝ1)γ
∗/δ(ξm∗+β).

Thus, the difference of A’s advantage in two games gives the advantage of B2 in solving the XDLIN1 problem as stated.

Proof. (of Lemma 12) Observe that, in pnorm
q (λ), A is given simulation-type signatures only. We show that if A outputs a

normal-type forgery in pnorm
q (λ) then we can construct algorithm B3 that solves the co-CDH problem.

B3 is given instance (Λ, G, Ĝ,Gx, Gy, Ĝx, Ĝy) of the co-CDH problem. B3 generates the verification key as follows:
Selects exponents b, v, v′, u, h, f2, f3 ← Zp and ρ′ ← Z∗p, computes Ĝb := Ĝb, Ga := Gy , Ĝy := Ĝa, Ĝba := (Ĝy)b,
V := Gv , V̂ := Ĝv , V ′ := Gv

′
, V̂ ′ := Ĝv

′
, u := Gu, Û := Ĝu, H := Gh, Ĥ := Ĝh, F2 := Gf2 , F̂2 := Ĝf2 , F3 := Gf3 ,

F̂3 := Ĝf3 , Gρ := (Gx)ρ
′
, Ĝαb/ρ := (Ĝy)b/ρ

′
where ρ = ρ′x (it implicitly holds α = xy though B3 does not have α),

R := V (Gy)v
′
, Rb, R̂ := V̂ (Ĝy)v

′
, and R̂b, and sets

gk := (Λ, G, Ĝ, F2, F̂2, F3, F̂3, U, Û),

vk := (Ĝb, Ĝy, (Ĝy)b, V (Gy)v
′
, V b(Gy)bv

′
, V̂ (Ĝy)v

′
, V̂ b(Ĝy)bv

′
, H, Ĥ, V, V̂ , V ′, V̂ ′, (Gx)ρ

′
, (Ĝy)b/ρ

′
).

Note that B3 does not have Gα = Gxy , so B3 cannot compute normal-type signature. B3 outputs simulation-type signatures
for i-th random message m as follows:

Selects r1, r2, z, γ′ ← Zp, sets r := r1 + r2 (we want to set γ := x+ γ′), and computes:

σ1 := (Gy)−γ
′
· V r = (GαV r) ·G−aγ (a = y, xy = α)

σ2 := Gγ
′
Gx(V ′)rG−z = ((V ′)rG−z) ·Gγ

σ3 := (Gb)z σ4 := Gr2b σ5 := Gr1 σ0 := (ÛmĤ)r1

Outputs signature (σ0, σ1, . . . , σ5) for F (m) = (M̂1, M̂2, M̂0) = (F̂m2 , F̂
m
3 , Û

m).
At some point, A outputs a normal-type forgery, σ∗1 = GαV r

∗
, σ∗2 = (V ′)r

∗
G−z

∗
, σ∗3 = (Gb)z

∗
, σ∗4 = Gr

∗
2b, σ∗5 = Gr

∗
1 ,

and σ∗0 = (Ûm
∗
Ĥ)r

∗
1 , for some r∗1 , r

∗
2 , z
∗,∈ Zp for message F (m∗) = (F̂m

∗

2 , F̂m
∗

3 , Ûm
∗
).

By using these values, B3 can compute Gr
∗
2 = (σ∗4)1/b, Gr

∗
1 = σ∗5 , Gz

∗
= (σ∗3)1/b, V r

∗
= (Gr

∗
1 · Gr∗2)v since

V = Gv . Thus, B3 can compute σ∗1/V
r∗ = Gα = Gxy . That is, B3 can solve the co-CDH problem and it holds

pnorm
q (λ) ≤ Advco-cdh

G,B3
(λ) as claimed.

23

6.5 Security and efficiency of resulting SIG2
Let SIG2 be the scheme obtained from POSb (with mode = extended) and xSIG. SIG2 is structure-preserving as vk, σ,
and msg consist of group elements from G1 and G2, and SIG2.Vrf evaluates pairing product equations. From Theorem 3, 9,
and 10, we obtain the following theorem.

Theorem 11. SIG2 is a structure-preserving signature scheme that is unforgeable against adaptive chosen message attacks
if SXDH and XDLIN1 hold for G.

Table 2 summarises the efficiency of SIG2 for both uniliteral and biliteral messages. We count the number of group
elements excluding a default generator for each group in gk, and distinguish between G1 and G2 and use k1 and k2 for the
number of message elements in G1 and G2, respectively. For comparison, we include the efficiency of the schemes in [4] and
[2]. For bilateral messages, AHO10 is combined with POSb from Section 6.3.

Table 2: Efficiency of SIG2 and comparison to other schemes with constant-size signatures. Upper half is for unilateral
messages and the lower half is for bilateral messages. Notation (x, y) represents x elements in G1 and y in G2.

Scheme |msg| |gk|+ |vk| |σ| #(PPE) Assumptions
AHO10 (k1, 0) (4, 2k1 + 8) (5, 2) 2 q-SFP
AGHO11 (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (7, k1 + 13) (7, 4) 4 SXDH, XDLIN1

POSb + AHO10 (k1, k2) (k2 + 5, k1 + 12) (10, 3) 3 q-SFP
AGHO11 (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 8, k1 + 14) (8, 6) 5 SXDH, XDLIN1

7 Applications and Open Questions

Structure-preserving signatures (SPS) have become a mainstay in cryptographic protocol design in recent years. From the
many applications that benefit from efficient SPS bases on simple assumptions, we list only a few recent examples. Using our
SIG1 scheme from Section 5 both the construction of a group signature scheme with efficient revocation by Libert, Peters
and Yung [31] and the construction of compact verifiable shuffles by Chase et al. [14] can be proven purely under the DLIN
assumption. All other building blocks already have efficient instantiations based on DLIN.

Hofheinz and Jager [29] construct a structure-preserving one-time signature scheme and use it to build a tree-based SPS
scheme, say tSIG. Instead, we propose to use our partial one-time scheme to construct tSIG. As the resulting tSIG is secure
against non-adaptive chosen message attacks, it is secure against extended random message attacks as well. We then combine
the POSb scheme and the new tSIG scheme according to our second generic construction. As confirmed with the authors
of [29], the resulting signature scheme is significantly more efficient than [29] and is a SPS scheme with a tight security
reduction to SXDH. One can do the same in Type-I groups by using the tagged one-time signature scheme in Section 5.2
whose security tightly reduced to DLIN.

As also shown by [29], SPS schemes allow to implement simulation-sound NIZK proof systems based on the Groth-Sahai
proof system. Following the Naor-Yung-Sahai [33, 36] paradigm, one obtains structure-preserving CCA-secure public-key
encryption in a modular fashion.

Open Questions. 1) Can we have RMA or XRMA-secure schemes with a message space that is a simple Cartesian product
of groups without sacrificing on efficiency? 2) The RMA-secure signature schemes developed in this paper are in fact XRMA-
secure. Can we have more efficient schemes by resorting to RMA-security? 3) What is the exact lower bound for the size of
signatures under simple assumptions? Is it indeed possible to show such a bound?

References

[1] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signatures and commitments
to group elements. In Advances in Cryptology - CRYPTO ’10, LNCS, pages 209–237. Springer-Verlag, 2010. (Cited on
page 1.)

[2] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-prserving signatures in asymmetric bilinear
groups. In Advances in Cryptology — CRYPTO ’11, LNCS. Springer-Verlag, 2011. (Cited on page 1, 24.)

24

[3] M. Abe, J. Groth, and M. Ohkubo. Separating short structure preserving signatures from non-interactive assumptions.
In Advances in Cryptology – Asiacrypt 2011, LNCS. Springer-Verlag, 2011. (Cited on page 2.)

[4] M. Abe, K. Haralambiev, and M. Ohkubo. Signing on group elements for modular protocol designs. IACR ePrint
Archive, Report 2010/133, 2010. http://eprint.iacr.org. (Cited on page 1, 3, 17, 18, 24.)

[5] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind signatures. IJACT, 2(3):229–
249, 2012. (Cited on page 1.)

[6] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable proofs and
delegatable anonymous credentials. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2009. (Cited on page 1.)

[7] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions, simplified require-
ments and a construction based on general assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRPYT
’03, volume 2656 of LNCS, pages 614–629. Springer-Verlag, 2003. (Cited on page 1.)

[8] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. IACR e-print
2004/077, 2004. (Cited on page 1.)

[9] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles.
In Proceedings of the 10th International Conference on Theory and Practice of Public-Key Cryptography - PKC 2007,
volume 4450 of LNCS, pages 201–216. Springer-Verlag, 2007. (Cited on page 1, 5.)

[10] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances in Cryptology —
CRYPTO ’04, volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004. (Cited on page 3.)

[11] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear maps.
In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer-
Verlag, 2003. (Cited on page 1.)

[12] J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization in the standard model. In M. Matsui,
editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of LNCS, pages 179–196. Springer-Verlag, 2009.
(Cited on page 4.)

[13] M. Chase and M. Kohlweiss. A domain transformation for structure-preserving signatures on group elements. IACR
ePrint Archive, Report 2011/342, 2011. (Cited on page 1, 2.)

[14] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
281–300. Springer, 2012. (Cited on page 1, 24.)

[15] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–437, 2000. (Cited on
page 1.)

[16] C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its applications. J. Cryptology,
11(3):187–208, 1998. (Cited on page 1.)

[17] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology, 9(1):35–67, 1996. (Cited on
page 2, 5.)

[18] M. Fischlin. Round-optimal composable blind signatures in the common reference model. In C. Dwork, editor, Advances
in Cryptology — CRYPTO ’06, volume 4117 of LNCS, pages 60–77. Springer-Verlag, 2006. (Cited on page 1.)

[19] G. Fuchsbauer. Commuting signatures and verifiable encryption. In Advances in Cryptology — Eurocrypt ’11, LNCS,
pages 224–245. Springer-Verlag, 2011. (Cited on page 1.)

[20] G. Fuchsbauer and D. Pointcheval. Anonymous proxy signatures. In R. Ostrovsky, R. D. Prisco, and I. Visconti, editors,
SCN, volume 5229 of Lecture Notes in Computer Science, pages 201–217. Springer, 2008. (Cited on page 1.)

[21] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable constant-size fair e-cash. In J. A. Garay, A. Miyaji, and
A. Otsuka, editors, CANS, volume 5888 of Lecture Notes in Computer Science, pages 226–247. Springer, 2009. (Cited
on page 1.)

25

http://eprint.iacr.org

[22] G. Fuchsbauer and D. Vergnaud. Fair blind signatures without random oracles. In D. J. Bernstein and T. Lange, editors,
AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages 16–33. Springer, 2010. (Cited on page 1.)

[23] S. D. Galbraith, K. G. Peterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics,
156(16):3113–3121, 12008. (Cited on page 2.)

[24] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks.
SIAM Journal on Computing, 17(2):281–308, April 1988. (Cited on page 1, 2.)

[25] M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer. In J. Pieprzyk, editor, Advances in
Cryptology - ASIACRYPT 2008, volume 5350 of LNCS, pages 179–197. Springer-Verlag, 2008. Preliminary version:
IACR ePrint Archive 2008/163. (Cited on page 1.)

[26] M. Green and S. Hohenberger. Practical adaptive oblivious transfer from simple assumptions. In Y. Ishai, editor, TCC,
volume 6597 of Lecture Notes in Computer Science, pages 347–363. Springer, 2011. (Cited on page 1.)

[27] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures. In X. Lai and
K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer-Verlag,
2006. (Cited on page 1, 2.)

[28] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances in Cryptology —
Eurocrypt ’08, volume 4965 of LNCS, pages 415–432. Springer-Verlag, 2008. Full version available: IACR ePrint
Archive 2007/155. (Cited on page 1.)

[29] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In CRYPTO. Springer, 2012. (Cited on
page 1, 2, 24.)

[30] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in Cryptology – Eurocrypt 2005,
volume 3494 of LNCS, pages 198–214. Springer-Verlag, 2005. (Cited on page 1.)

[31] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation. In Advances in Cryptology – Eurocrypt
2012, LNCS. Springer-Verlag, 2012. (Cited on page 24.)

[32] Y. Lindell. A simpler construction of cca2-secure public-keyencryption under general assumptions. J. Cryptology,
19(3):359–377, 2006. (Cited on page 1.)

[33] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In Proceedings of
the 22nd Annual ACM Symposium on the Theory of Computing, pages 427–437, 1990. (Cited on page 1, 24.)

[34] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of waters’ dual system primitives using asymmetric pairings -
(extended abstract). In M. Fischlin, J. Buchmann, and M. Manulis, editors, Public Key Cryptography, volume 7293 of
Lecture Notes in Computer Science, pages 298–315. Springer, 2012. (Cited on page 20.)

[35] M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a construction without random oracles. In
H. Shacham and B. Waters, editors, Pairing, volume 5671 of Lecture Notes in Computer Science, pages 17–34. Springer,
2009. (Cited on page 1.)

[36] A. Sahai. Non-malleable non-interactive zero-knowledge and chosen-ciphertext security. In Proceedings of the 40th
IEEE Annual Symposium on Foundations of Computer Science, pages 543–553, 1999. (Cited on page 1, 24.)

[37] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero knowledge. In
J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer, 2001. (Cited
on page 1.)

[38] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Advances in Cryptology —
EUROCRYPT ’97, volume 1233 of LNCS, pages 256–266. Springer-Verlag, 1997. (Cited on page 3.)

[39] B. Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In Advances in
Cryptology - CRYPTO 2009, pages 619–636. Springer-Verlag, 2009. (Cited on page 2, 11.)

26

A Tagged one-time signature scheme (Obsolete)
The following construction of tagged one-time signature scheme was introduced in the early versions of this paper. We
included it here for reference. Compared to the latest construction in Section 5.2, it offers less efficient (factor of 1/qs)
reduction in the security proof.

[Scheme TOS]

TOS.Key(gk): Parse gk = (Λ, G,C, F, U1, U2). Pick random xr, yr, xs, ys, xt, yt, x1, y1, . . . , xk, yk in Zp such that
such that xrys 6= xsyr and compute Gr :=Gxr , Hr := Gyr , Gs := Gxs , Hs := Gys , Gt := Gxt , Ht := Gyt , G0 :=
Gx0 , H0 := Gy0 , . . . , Gk := Gxk , Hk := Gyk . Output pk := (Gr, Gs, Gt, Hr, Hs, Ht, G0, . . . , Gk, H0, . . . ,Hk) and
sk := (xr, xs, xt, yr, ys, yt, x0, . . . , xk, y0, . . . , yk)

TOS.Tag(): Take generators G,C, F, U1, U2 from gk. Choose w1, w2 ← Z∗p and compute tag := (Cw1 , Cw2 , Fw1 , Fw2 ,
Uw1
1 , Uw2

2). Output tag .

TOS.Sign(sk ,msg, tag): Parsemsg to (M1, . . . ,Mk) and tag to (T1, T2, . . .). Parse sk accordingly. Choose randomm←
Zp and let valueM0 := Gm

∏k
i=1M

−1
i . (Note that this is uniformly distributed.) ComputeA := G−xtT−m1

∏k
i=0M

−xi
i

and B := G−ytT−m2

∏k
i=0M

−yi
i . Since xrys 6= xsyr we can compute

(
α β
γ δ

)
= (xr xsyr ys)

−1. (The determinant is

nonzero.) Compute Z := AαBβ and W := AγBδ . Output σ := (Z,W,M0).

TOS.Vrf(pk , tag ,msg, σ): Parse the input accordingly. Accept if the following two equalities hold:

e(Gr, Z) · e(Gs,W) · e(Gt, G)

k∏
i=0

e(GiT1,Mi) = 1

e(Hr, Z) · e(Hs,W) · e(Ht, G)

k∏
i=0

e(HiT2,Mi) = 1

We remark that the correctness of the extended tag (T3, . . . , T6) is not examined within this scheme. (We only need
to show that the extended part is simulatable in the security proof.) Since the tag is given to SIGr as a message, it is the
verification function of SIGr that verifies the correctness with respect to its message space, which is the same as the tag
space.

The scheme is obviously structure-preserving and the correctness is verified by inspecting the following relations. First,
observe that

e(Gr, Z) · e(Gs,W) = e(Gxr , AαBβ) · e(Gxs , AγBδ)

= e(G,Axrα+xsγ)e(G,Bxrβ+xsδ)

= e(G,A).

Second, observe that
k∏
i=0

e(GiT1,Mi) = e(T1,

k∏
i=0

Mi)

k∏
i=0

e(Gi,Mi)

= e(T1, G
m

k∏
i=1

M−1i

k∏
i=1

Mi)

k∏
i=0

e(Gi,Mi)

= e(T1, G
m)

k∏
i=0

e(Gi,Mi).

Third, observe that

e(G,A) = e(G,G−xtT−m1

k∏
i=0

M−xii)

= e(Gt, G
−1)e(T1, G

−m)

k∏
i=0

e(Gi,M
−1
i).

27

Using these three observations, one can check that

e(Gr, Z) · e(Gs,W) · e(Gt, G)

k∏
i=0

e(GiT1,Mi)

= e(G,A) · e(Gt, G)

k∏
i=0

e(GiT1,Mi)

= e(G,A) · e(Gt, G)e(T1, G
m)

k∏
i=0

e(Gi,Mi)

= e(Gt, G
−1)e(T1, G

−m)

k∏
i=0

e(Gi,M
−1
i) · e(Gt, G)e(T1, G

m)

k∏
i=0

e(Gi,Mi)

= 1 .

The second verification equation is checked analogously.

Theorem 12. The above TOS scheme is unforgeable against one-time adaptive chosen message attacks under the simul-
taneous double pairing assumption. In particular, for any A that makes at most qs signing queries, Advot-cma

TOS,A(λ) ≤
qs · Advsdp

G,B(λ) + 1/p holds.

Proof. We show a reduction algorithm that simulates the one-time adaptive chosen message attack game for the adversary.
The reduction gets an instance of simultaneous double pairing assumption, Λ, Gr, Gs, Hr, Hs, and proceeds as follows.

Setup and Key Generation It chooses ξ, η, µ and sets Gt := GξrG
η
s , and Ht := Hξ

rH
µ
s . It chooses G ∈ G and

random ω, ν, ν1, ν2, and computes gk = (Λ, C, F, U1, U2) = (Λ, Gω, Gων , Gων1 , Gων2). It chooses random ρi, σi, τi,
computes Gi = Gρir G

σi
s G

τi
t = Gρi+ξτir Gσi+ητis and Hi = Hρi

r H
σi
s H

τi
t = Hρi+ξτi

r Hσi+µτi
s for i = 0 . . . k, and sets

pk = (G,Gr, Gs, Gt, Hr, Hs, Ht, G0, . . . Gk, H0, . . . ,Hk). (Note that Gi, Hi are correctly distributed and give no informa-
tion about τi.) It sends pk , gk to the adversary. The reduction will pick a random session j∗, and assume that the adversary
will try to reuse tag from that session.

Queries to oracle Ot When the adversary makes a query to the tag oracle Ot, choose the next new session index j.

• For session j 6= j∗: Pick random values ρ, σ, τ ← Zp. Compute (T1, T2) = (GρrG
σ
sG

τ
t , H

ρ
rH

σ
sH

τ
t) = (Gρ+ξτr

Gσ+ητs , Hρ+ξτ
r Hσ+µτ

s), and set T = (T1, T2, T
ν
1 , T

ν
2 , T

ν1
1 , T ν22). Store (j, ρ, σ, τ), and return T to the adversary.

• For session j∗. Pick random values ρ, σ ← Zp. Compute (T1, T2) = (GρrG
σ
s , H

ρ
rH

σ
s). Let T = (T1, T2, T

ν
1 , T

ν
2 ,

T ν11 , T ν22). Store (j∗, ρ, σ), and return T to the adversary.

Queries to oracle Osig When the adversary queries Osig for message M = (M1, . . . ,Mk) ∈ Gk and session j, proceed
as follows.

• If the Ot has not yet produced a tag for session j, or Osig has already been queried for session j, return ⊥.

• For session j 6= j∗: Look up the stored tuple (j, ρ, σ, τ). Compute M0 = (G
∏k
i=1M

τ+τi
i)−

1
τ0+τ . Note that for this

choice of M0, it will be the case that

e(Gt, G)

k∏
i=0

e(Gτi+τt ,Mi) = e(Gt,M
τ0+τ
0 G

k∏
i=1

Mτi+τ
i) = e(Gt,M

τ0+τ
0 G

k∏
i=1

Mτi+τ
i) = 1

and similarly

e(Ht, G)

k∏
i=0

e(Hτi+τ
t ,Mi) = e(Ht,M

τ0+τ
0 G

k∏
i=1

Mτi+τ
i) = 1.

Note also that the tag is independent of τ , and since τ is uniformly distributed, then M0 is independent of τ0, . . . , τk
even given tag . (To see this, let m0, . . . ,mk be the discrete logarithms of M0, . . . ,Mk respectively and note that for

28

any choice of m1, . . . ,mk, τ0, . . . , τk and for any m0 such that m0 6= −
∑k
i=1mi, there is a 1

q chance that we will

choose τ =
−1−

∑k
i=0miτi∑k

i=0mi
which will yield M0 = (G

∏k
i=1M

τi+τ
i)−

1
τ0+τ .) Now compute

Z =

k∏
i=0

M−ρi−ρi and W =

k∏
i=0

M−σi−σi

and output the signature (Z,W,M0).

Note that these are the unique values such that

e(Gr, Z) · e(Gs,W) · e(Gt, G)

k∏
i=0

e(GiT1,Mi) = 1 and

e(Hr, Z) · e(Hs,W) · e(Ht, G)

k∏
i=0

e(HiT2,Mi) = 1.

Thus, Z,W are uniquely determined by M0,M1, . . . ,Mk, tag , and pk . M1, . . . ,Mk are provided by the adversary
and, as we have argued, M0, tag , pk are statistically independent of τ0, . . . , τk. We conclude that Z,W reveal no
additional information about τ0, . . . , τk even given the rest of the adversary’s view.

• For session j∗: Look up the stored tuple (j, ρ, σ). Let M0 = (G
∏k
i=1M

τi
i)−

1
τ0). Note that for this choice of M0, it

will be the case that

e(Gt, G)

k∏
i=0

e(Gτit ,Mi) = e(Gt,M
τ0
0 G

k∏
i=1

Mτi
i) = 1

and

e(Ht, G)

k∏
i=0

e(Hτi
t ,Mi) = e(Ht,M

τ0
0 G

k∏
i=1

Mτi
i) = 1.

Note that T1, T2 are correctly distributed, thatM0 is statistically close to uniform since τ0, . . . , τk are chosen at random,
and furthermore that the only information revealed about τ0, . . . , τk is that G

∏k
i=0M

τi
i = 1. Now, compute

Z =

k∏
i=0

M−ρi−ρi and W =

k∏
i=0

M−σi−σi ,

and output the signature (Z,W,M0). Again all values are independent of τ0, . . . , τk with the exception now of M0,
which is chosen so G

∏k
i=0M

τi
i = 1.

Processing the adversary’s forgery Now, suppose that the adversary produces (M†1 , . . .M
†
k) and (Z†,W †,M†0 , T) for

T = (T1, T2, . . .) used in the j∗th query. Look up the stored tuple (j∗, ρ, σ). Then with non-negligible probability (whenever
the adversary succeeds) we have TOS.Vrf(pk , T, (M†1 , . . . ,M

†
k), (Z†,W †,M†0)) = 1. This means

1 = e(Gr, Z
†) e(Gs,W

†) e(Gt, G)

k∏
i=0

e(GiT1,M
†
i)

= e(Gr, Z
†) e(Gs,W

†) e(GξrG
η
s , G)

k∏
i=0

e(Gρi+ρ+ξτir Gσi+σ+ητis ,M†i)

= e(Gr, Z
†Gξ

k∏
i=0

(M†i)ρi+ρ+ξτi)e(Gs,W
†Gη

k∏
i=0

(M†i)σi+σ+ητi),

29

and

1 = e(Hr, Z
†) e(Hs,W

†) e(Ht, G)

k∏
i=0

e(HiT2,M
†
i)

= e(Hr, Z
†) e(Hs,W

†) e(Hξ
rH

µ
s , G)

k∏
i=0

e(Hρi+ρ+ξτi
r Hσi+σ+µτi

s ,M†i)

= e(Hr, Z
†Gξ

k∏
i=0

(M†i)ρi+ρ+ξτi)e(Hs,W
†Gµ

k∏
i=0

(M†i)σi+σ+µτi).

So if Z†Gξ
∏k
i=0(M†i)ρi+ρ+ξτi 6= 1, then

(Z?, R?, S?) := (Z†Gξ
k∏
i=0

(M†i)ρi+ρ+ξτi ,W †Gη
k∏
i=0

(M†i)σi+σ+ητi ,W †Gµ
k∏
i=0

(M†i)σi+σ+µτi)

is a valid solution for the simultaneous double pairing assumption.
Z†Gξ

∏k
i=0(M†i)ρi+ρ+ξτi = Z†

∏k
i=0(M†i)ρi+ρ(G

∏k
i=0(M†i)τi)ξ, and a part of Z†

∏k
i=0(M†i)ρi+ρ is information the-

oretically hiding. Note that the only information that the adversary has about τ0, . . . , τ1 is that in the j∗th session M0 was
chosen so that G

∏k
i=0M

τi
i = 1 (where M = (M1, . . . ,Mk) is the message signed in the j∗th session). If M†i 6= Mi for at

least one i, then the probability that G
∏k
i=0(M†i)τi = 1 conditioned on the fact that G

∏k
i=0M

τi
i = 1 is 1/p. As a result,

the probability that Z†Gξ
∏k
i=0(M†i)ρi+ρ+ξτi = 1 is 1/p.

Thus, if the guess for j∗ is right, we succeed with all but probability 1/pwheneverA does. We therefore have Advot-cma
TOS,A(λ) ≤

qs · Advsdp
G,B(λ) + 1/p.

30

	Introduction
	Our contribution
	Related Works

	Preliminaries
	Notation
	Bilinear groups
	Assumptions

	Definitions
	Common setup
	Signature schemes
	Partial one-time and tagged one-time signatures
	Structure-preserving signatures

	Generic Constructions
	SIG1: Combining tagged one-time and RMA-secure signatures
	SIG2: Combining partial one-time and XRMA-secure signatures

	Instantiating SIG1
	Setup for Type-I groups
	Tagged one-time signature scheme
	RMA-secure signature scheme
	Security and efficiency of resulting SIG1

	Instantiating SIG2
	Setup for Type-III groups
	Partial one-time signatures for uniliteral messages
	Partial one-time signatures for bilateral messages
	XRMA-secure signature scheme
	Security and efficiency of resulting SIG2

	Applications and Open Questions
	Tagged one-time signature scheme (Obsolete)

