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Figure 1: Given a portrait image and a few strokes drawn by the user as input (a), our method generates a strand-based 3D hair model as
shown in (b), where a fraction of reconstructed fibers are highlighted. The hair model can be used to convert the input portrait into a pop-up
model (c) which can be rendered in a novel view (d). It also enables several interesting applications such as transferring the hairstyle of one
subject to another (e). Original images courtesy of Getty Images (a) and Andrew MacPherson (e).

Abstract

Human hair is known to be very difficult to model or reconstruct.
In this paper, we focus on applications related to portrait manip-
ulation and take an application-driven approach to hair modeling.
To enable an average user to achieve interesting portrait manipula-
tion results, we develop a single-view hair modeling technique with
modest user interaction to meet the unique requirements set by por-
trait manipulation. Our method relies on heuristics to generate a
plausible high-resolution strand-based 3D hair model. This is made
possible by an effective high-precision 2D strand tracing algorithm,
which explicitly models uncertainty and local layering during trac-
ing. The depth of the traced strands is solved through an optimiza-
tion, which simultaneously considers depth constraints, layering
constraints as well as regularization terms. Our single-view hair
modeling enables a number of interesting applications that were
previously challenging, including transferring the hairstyle of one
subject to another in a potentially different pose, rendering the orig-
inal portrait in a novel view and image-space hair editing.
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1 Introduction

Images featuring people as their subjects are always of great inter-
est. The urge to synthesize better looking, or simply funnier por-
traits has motivated much successful research in computer graphics
and computer vision in the past decades. For example, studies on
data-driven face geometry and facial element detection can already
robustly recover a 3D face model from a single image [Blanz and
Vetter 1999] or generate an animated face avatar from video [Pighin
and Lewis 2006]. Yet notably, hair, which plays a unique role in de-
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picting a person’s character, has been constantly omitted or replaced
by ad-hoc geometry. However, handling hair in a more careful way
would be beneficial in multiple aspects. It would significantly en-
hance the quality and realism of a synthetically rendered face. It
would also enable a number of applications that involve hair, such
as transferring a person’s hairstyle in one photograph to another
person in a second photograph and generating better looking hair
for virtual avatars in games and interactive programs.

Unlike most other parts of the human body which can be well ap-
proximated locally by a surface, human hair is composed of hun-
dreds of thousands of thin fibers grouped together in widely differ-
ent and possibly very complicated ways to form various hairstyles,
and is known to be very difficult to model or reconstruct [Ward et al.
2007]. It usually requires a number of images taken from a wide
range of viewing angles as well as a significant amount of image
processing and visual computing to reconstruct a complete 3D hair
model. Such a level of complexity prevents widespread adoption of
the underlying technology.

In this paper, we focus on applications related to portrait manip-
ulation and take an application-driven approach to hair modeling.
Portrait manipulation has its unique requirements and restrictions.
The most important requirement is that a re-rendered portrait must
be photorealistic. That is, its quality should be comparable to a
real photograph. An implication is that re-rendered hair should still
maintain its resolution in the original portrait especially when hair
strands are visible there. However, a portrait is typically taken from
a near-frontal view and it is typically unnecessary for the view angle
of any re-rendering to deviate much from such a view. This means
hair visible from a near-frontal view should be modeled more care-
fully than the rest.

To enable an average user to achieve interesting portrait manipu-
lation results, we develop a single-view hair modeling technique
with modest user interaction to meet the aforementioned require-
ments. Without sufficient information to reconstruct a completely
accurate 3D model, our goal is a plausible high-resolution strand-
based 3D hair model adequate for portrait manipulation. Given a
single portrait photo, we first fit a 3D morphable head model [Blanz
and Vetter 1999] to the person in the photo and let the user annotate
the hair region with a few strokes (§ 3.1). Within this region our
method traces a sparse set of 2D hair strands (§ 3.2) using a novel
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high-precision strand tracing algorithm, which explicitly models
uncertainty and local layering at hair intersections. The depth of
the traced strands is solved through an optimization, which simul-
taneously considers depth constraints, layering constraints as well
as regularization terms. To further make the reconstructed strands
denser, we synthesize extra hair strands that are invisible in the orig-
inal image due to occlusion (§ 3.3).

Our single-view hair modeling technique enables a number of inter-
esting portrait manipulation applications that were previously chal-
lenging. With modest user input, we show how to convert a single
image into a “2.5D” portrait pop-up which can be rendered from
novel viewpoints (§ 4.1). The hair model extracted from one image
can be used to replace the hair in another image, even when the two
people have different head poses (§ 4.2), facilitating interesting us-
age such as virtual hairstyle try-ons. We can also edit the geometry
or appearance of the hair model for image-space hairstyling (§ 4.3).

2 Related Work

Portrait manipulation is of great interest to many researchers.
While methods working in the 2D domain have achieved com-
pelling results in face beautification [Leyvand et al. 2008], face
swapping [Bitouk et al. 2008] and face attribute enhancement [Joshi
et al. 2010], there is a trend recently in utilizing 3D shapes for more
complex portrait manipulations, such as reshaping of human bod-
ies [Zhou et al. 2010; Jain et al. 2010], face replacement [Shlizer-
man et al. 2010; Dale et al. 2011], face component transfer [Yang
et al. 2011] and generating face animations from large image col-
lections [Shlizerman et al. 2011]. Image manipulations performed
with respect to these specialized 3D proxy meshes can utilize the
semantic structures contained in the input and better resolve prob-
lems caused by ambiguities and occlusions in a single image. Our
approach also follows this trend and constructs a strand-based 3D
hair model for portrait manipulation.

Hair modeling is an extensively studied problem in computer
graphics (see [Ward et al. 2007] for a comprehensive survey). Our
work is most related to image-based hair capture methods [Paris
et al. 2004; Wei et al. 2005; Paris et al. 2008; Jakob et al. 2009].
Given multiple hair images taken from different viewpoints or un-
der different illuminations, these methods can reconstruct a full 3D
hair model which can be rendered in a CG scene. Our input, how-
ever, is a single image without any knowledge about the geometry
and illumination of the scene. Instead of trying to recover a full
hair model, we generate a plausible high-resolution strand-based
3D hair model from the single input image, which suffices for many
portrait manipulation applications. Bonneel et al. [2009] proposed
a method to construct a parametric hair appearance model from a
single photograph, which is used to render a synthetic hair model
that visually matches the input image in a statistical sense. The
method assumes the photo was taken indoors with a flash on the
camera together with a reference gray card. It is thus not applicable
to most images used in this paper which are downloaded from the
internet. The method also does not recover hair geometry.

Single-view 3D modeling is in general an ill-posed problem. There
exists some work focusing on modeling specific objects and scenes.
Hoiem et al. [2005] generate photo pop-ups for outdoor images con-
taining ground, walls or sky. Rivers et al. [2010] proposed a 2.5D
model for cartoon images which allows a small number of given
views of a 2D cartoon to be smoothly interpolated as if it is a 3D
object. Öztireli et al. [2011] proposed a method that extracts a 2.5D
model of a bilateral symmetric object from a simple user sketch.

3 Single-View Hair Modeling

Without sufficient information to reconstruct a completely accurate
3D hair model, the goal of our single-view hair modeling is a plau-
sible hair model adequate for portrait manipulation. Thus, the es-
timated hair model should possess the following properties: First,
we should be able to reconstruct the hair region in the original im-
age from the hair model. The visual difference (if any) should be
as small as possible. Second, when the hair model is rendered from
a novel viewpoint, it should still look like the original hairstyle.
Third, due to occlusions, most of the actual hair strands are invis-
ible from the single input image (e.g., those behind the head and
beneath the outermost layer). These strands should be hallucinated
in a reasonable way so that there are no annoying holes when the
hair is rendered from a novel viewpoint.

3.1 Preprocessing

User-assisted segmentation: To simplify the task, we assume the
input portrait consists of four basic layers: hair, face, body and
background, which are processed independently for future steps.
Due to their complex appearances, Lazy Snapping [Li et al. 2004]
is adopted to perform image segmentation and extract the visible
regions of these layers with some user interaction. Typically, a few
strokes are sufficient to obtain all these layers.

Hair matting: Since hair is translucent and the hair region in an
image often has a complicated boundary, the segmentation result
obtained from the previous step is approximately correct but not
sufficiently accurate. We further apply matting to improve the ac-
curacy and obtain an alpha channel. We simply expand and shrink
the segmented hair region to compute a trimap automatically. Based
on this trimap, closed-form matting [Levin et al. 2008] is applied to
obtain the final hair region mask and foreground color values.

Head mesh fitting: We assume a weak perspective camera projec-
tion model and fit a 3D head model to the input image using Yang et
al.’s method [2011]. Following the morphable head model [Blanz
and Vetter 1999], we collected a head model database and computed
around 100 principal components for the database using Principal
Component Analysis. The basic idea of the fitting procedure is to
compute a new head shape Snew by calculating a series of coeffi-
cients β for the principal components:

Snew = S + V · β, (1)

where S is the average head shape vector and V is the matrix of
principal components. During fitting, the Active Shape Model [Mil-
borrow and Nicolls 2008] is used to localize about 76 facial fea-
ture points on the original image, including features along the
face boundary and important facial landmarks such as eye corners,
mouth boundary and the nose tip. Then the coefficient vector β is
solved by minimizing an energy function.

3.2 Generating 2D strands

Many existing image-based hair modeling methods (e.g., [Paris
et al. 2004; Wei et al. 2005; Paris et al. 2008]) generate individ-
ual hair strands by first computing a dense 3D orientation field and
then tracing strands within the field. Although this can guarantee
the smoothness of traced hair strands, the underlying assumption
that any tiny volume inside the hair region can be characterized by
a single orientation is not necessarily true because in a real hairstyle
strand segments with different orientations are frequently in contact
with each other. This problem is much worse for a 2D hair image
where it is unavoidable for projected hair strands to overlap.
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Typically a per-pixel orientation is estimated by applying a series
of oriented filters and finding the orientation that gives the maxi-
mum response. Due to the imperfection of the original image, the
resulting orientation map is usually noisy or over-smoothed. We
instead estimate a sparse but accurate orientation map that allows
us to robustly handle hair intersections and occlusions.

3.2.1 Orientation estimation

Similar to previous methods, we filter the input image I with a
bank of oriented filters {Kθ}, where a filter kernel Kθ is de-
signed to detect an orientation at angle θ. Let F (x, y, θ) =
(Kθ ∗ I)(x, y) be the response of Kθ at pixel (x, y), an estimated
local orientation θ̃(x, y) at each pixel is then given by θ̃(x, y) =
arg maxθ(F (x, y, θ)).

Our filter bank is composed of 32 even-symmetric Gabor kernels
[Jain and Farrokhnia 1991] with their orientations evenly spaced
between 0◦ and 180◦:

Kθ(u, v) = exp

(
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ũ2
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ṽ2
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)
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where ũ = u cos θ + v sin θ and ṽ = −u sin θ + v cos θ. Such a
cosine Gabor kernel proves to be a reliable orientation estimator at
image-space ridges [Jakob et al. 2009].

In addition to the orientation θ̃, we also calculate a confidence
w(x, y) at each pixel, which encodes the likelihood of pixel (x, y)
belonging to a hair strand in the image:

w(x, y) =
∑
θ

(
d(θ, θ̃) · (F (θ)− F (θ̃))2

)0.5
, (3)

where d(θ1, θ2) measures the minimum angle between two orien-
tations as in [Paris et al. 2004]. By thresholding the confidence,
we discard unreliable orientation estimations and obtain a sparse
but robust orientation map for prominent hair features in the input
image (Figure 2).

Figure 2: Left: A cropped hair region. Middle: Orientation
estimated at every pixel within the hair region. Right: High-
confidence-only orientation overlaid on the hair region. The ori-
entation angle is represented by color as shown in the inset.

Ideally, the parameters of the Gabor kernel should be proportional
to the size of visible strand features in the image, but for the results
shown in the paper we simply use σu = 1.8, σv = 2.4, and λ = 4.

Iterative refinement: Due to the imperfections in input images,
such as the presence of camera noise and image compression ar-
tifacts, sometimes an unreliably estimated orientation may have a
relatively high confidence value. It is hard to distinguish such false
positives from true strand features by simple thresholding.

We introduce an iterative orientation refinement process based on
an intuitive observation: a high-confidence pixel that belongs to a
hair strand is more likely to have a high-confidence neighborhood
along the estimated orientation than a pixel with false-positive high

confidence. Therefore, after an initial orientation map θ̃ is esti-
mated, we use its corresponding confidence map w as input to the
next iteration and estimate a new orientation map θ̃′ and the cor-
responding confidence map w′ from w, using the same oriented-
filtering method described above. As shown in Figure 3, this sim-
ple process can effectively filter out those high-confidence estima-
tions caused by image artifacts, resulting in a cleaner and more re-
liable orientation map from which we can now extract prominent
hair strands. In practice, 1 to 2 iterations suffice for the inputs we
have tested.

I w w′

θ̃ θ̃′ θ̃′′

Figure 3: Iterative orientation refinement. Given the input image
intensity I , we calculate an orientation map θ̃ and a confidence
map w. The confidence map w is then used as input to calculate a
refined orientation map θ̃′ and a corresponding w′.

3.2.2 Strand tracing

Next we convert the sparse orientation map into a set of geometric
curves that correspond to individual hair strands. Since our input
is a single image under uncontrolled illumination, recovering accu-
rate 3D curves (e.g., from shading [Paris et al. 2004]) is impractical.
Instead, at this stage we trace all curves on the 2D image plane and
wherever two hair strands intersect in the image, we also try to re-
solve the correct topology and store the local layering information
to the corresponding curve vertices.

We first perform non-maximum suppression similar to [Jakob et al.
2009], but on the confidence map instead of the original image. A
pixel p is considered to be a seed pixel if and only if w(p) > whigh
and

w(p)−max{w(pL), w(pR)}
w(p)

> ε, (4)

where w(pL) and w(pR) are bilinearly sampled along the line pass-
ing p and normal to the estimated local orientation θ̃(p). They are
on opposite sides of p. The results in this paper are generated with
whigh = 0.3, wlow = 0.05, ε = 0.2.

Given a seed pixel p, we extend it in both opposite directions along
the estimated orientation θ̃(p) simultaneously. Similar to existing
methods [Paris et al. 2004; Wei et al. 2005; Paris et al. 2008], one
step of tracing proceeds by selecting one of the two possible direc-
tions along the orientation θ̃(p) at the current location, ~v(p), that
minimizes the bending angle, and taking a step forward along that
direction: pi+1 = pi + δ~v(pi), where pi is the location at the i-th
tracing step.

Inspired by the use of hysteresis thresholding in edge detec-
tion [Canny 1983], we maintain a certainty status and a health point
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of the current hair tracing thread: tracing one strand in one direc-
tion starts with a positive health point (5 in our experiments) and
ends when the health point drops to zero. When tracing status is
“certain”, the tracing direction is determined by the local orienta-
tion map and the health point refills to the initial value after every
step; When tracing status is “uncertain”, the tracing direction is
estimated from the previous traced vertices so that the curvature is
approximately maintained, and the health point decreases by 1 after
every step.

At each step i, we update the tracing status according to the follow-
ing rules:

1. Set the status to “certain” if i = 0.

2. Change the status to “uncertain” if w(pi) < wlow.

3. Change the status to “uncertain” if w(pi) ≥ wlow and
arccos (~v(pi) · ~v(pi−1)) > θmax.

4. Change the status to “certain” if w(pi) ≥ wlow and
arccos (~v(pi) · ~v(pi−1)) ≤ θmax.

5. Keep the status unchanged otherwise.

When rule #3 is applicable, we assume the currently traced vertex
and all the succeeding “uncertain” vertices are occluded by another
strand, thus mark them with a special flag indicating their being
occluded.

During the tracing process, we also remove the pixels along the
curve from the list of seed pixels so that each hair strand will be
traced only once. We set the step size δ to 75% of the pixel width
and θmax = π/6 for all the results in this paper. Finally, the “uncer-
tain” vertices at both ends of a strand are trimmed after tracing.

Re-centering correction: Because of error accumulation, a
traced curve can easily drift away from the true center of the curve
in the image. We perform a re-centering correction for each traced
vertex on the curve: For a vertex with 2D location p, we sample the
confidence at p as well as its two nearby locations pL and pR that lie
on a line normal to the current tracing direction (Figure 4 left). A
tent function ∧(t) is fit with ∧(0) = w(p), ∧(−1) = w(pL), and
∧(1) = w(pR), and we translate p by arg max∧(t) along the line
normal to its tracing direction (Figure 4 right).

p 

pL 

pR 

p' 

p pL pR p’  

w(p) 

w(pL) 

w(pR) 

Figure 4: Re-centering for traced strand vertices.

Compared with the previous method of [Paris et al. 2004] that traces
the streamlines of a filtered dense orientation map, our tracing algo-
rithm usually generates a cleaner and more robust result (Figure 5).

Strand color: In addition to geometry, we also sample the color
and alpha value for each strand vertex from the segmented hair re-
gion in the input image.

3.3 Generating 3D strands

Given the head model (§ 3.1) and the sparse 2D hair strands (§ 3.2)
as input, we generate a 3D hair model using a two-step approach:

Input [Paris et al. 2004] Our method

Figure 5: 2D curves traced from a filtered dense orientation map
[Paris et al. 2004] (middle) and from a sparse orientation map us-
ing our method (right).

first, the depth of each strand vertex is estimated through an opti-
mization that takes into account depth constraints, local layering
constraints and regularization terms. We then use the resulting
sparse 3D strands to define a bounding volume around the head,
and generate more strands inside it to fill the part of the hair vol-
ume that is occluded in the original image.

3.3.1 Depth estimation

We use the following simple and effective heuristic rules: hair
strands near the silhouette have a depth of 0, which is also the depth
of the center of the head; hair strands over the forehead have a depth
slightly smaller than that of the head mesh; all other hair strands
have a depth somewhere in between and should observe the local
occlusion relationships estimated earlier.

We incorporate the following types of constraints in our strand
depth optimization:

1. Depth constraints to enforce known depths on strands near the
forehead or silhouette. Such constraints can also be manually
specified via a stroke-based tool.

2. Strand constraints to maintain smoothness and prevent sharp
angles along strands.

3. Neighbor constraints to maintain depth coherence among
nearby strands with similar orientations.

Let pi be the position of the i-th vertex of a strand, z(p) be the
depth (i.e., z coordinate) of p, we formally define the following
energy terms according to the above constraints as:

EZ(pi) = (z(pi)− z̄(pi))2 ,

ES(pi) =

(
z(pi)−

z(pi−1) + z(pi+1)

2

)2

,

EN (pi) =

(
z(pi)−

∑
q∈N (pi)

z(q)

|N (pi)|

)2

,

where z̄(p) is the depth value constraint at p, N (p) contains the
neighbor vertices of p that are not on the same strand of p but have
a similar orientation and the same occlusion flag (§ 3.2.2) as p.

Finally, we solve for the depth of all strand vertices by minimizing
the overall energy:

E = wZEZ + wSES + wNEN (5)

using the biconjugate gradient method. For the results in this paper
we empirically set the weights to wZ = 5, wS = 2 and wN = 1.
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3.3.2 Synthesizing additional strands

Real hair occupies a volumetric region around the head. The hair
strands we have generated so far only include those visible from the
input image. They roughly cover the outmost layer of the frontal
half of the entire hair volume. Due to the complex structures and
widely different styles of real hair, any assumption about what the
invisible part of the hair looks like may not always hold. Therefore,
we aim to define a hair volume that 1) does not add unnecessary
hair strands when rendered from the original viewpoint of the input
image; and 2) transitions smoothly from the frontal (visible) half to
the rear (invisible) half.

Hair volume definition: To start with, we define three depth maps
Dfront, Dmid, and Dback. The first depth map is generated by raster-
izing the computed sparse 3D strands. The depths at pixels covered
by the sparse strands are diffused to the entire hair region using a
procedure similar to that in [Paris et al. 2008].

To calculate the second depth map, we first obtain an extended hair
region that is the union of the original hair region and the projec-
tion of the head model on the image plane. The depths near the
outer silhouette of the original hair region are set as the boundary
condition. They are diffused to the entire extended hair region.

The third depth map is calculated by fixing the depth values at the
region boundary, and pushing the internal depth values smoothly
backward so that the depth map reaches outside the head and covers
the rear half of the head.

The three layers partition the entire 3D region around the head into
two closed halves, i.e., a 3D point p(x, y, z) is inside the volume if
Dfront(x, y) < z ≤ Dmid(x, y) or Dmid(x, y) < z < Dback(x, y).
We again rely on diffusion to propagate the 3D orientations as well
as color and alpha values from the three layers to the internal vox-
els. 3D orientations are first converted to structure tensors before
diffusion as in [Paris et al. 2008]. The color of non-hair regions in
Dmid and Dback is synthesized from surrounding hair regions auto-
matically using PatchMatch [Barnes et al. 2009]. For our specific
purpose, we do not need to fill all the internal voxels, but only those
sufficient to form a thick and seamless outer layer. This saves a
significant amount of time and storage.

3D strand tracing in the volume: Unlike previous work on hair
capture, we do not force 3D hair strands to grow from the scalp as
this may result in unnecessary discrepancies between the input and
any synthetic image rendered from the original view. Instead, we
trace strands from random locations sampled inside the hair vol-
ume. During tracing, we also keep a record of strand density within
each voxel. Tracing terminates at a voxel whose strand density ex-
ceeds a given threshold.

4 Portrait Manipulation

In this section we show several applications of our hair model in
portrait manipulation.

4.1 Portrait pop-ups

Recovering a 3D head avatar from a single image is of great interest
in interactive applications. However, due to the complexity of hair
geometry, most existing work focuses only on the facial region and
optionally add some ad-hoc hair to the fitted head geometry. By
using our strand-based hair model, we are able to generate more
vivid head avatars which we call portrait pop-ups.

A portrait pop-up is composed of a background layer, a body layer,
a head model, and our hair model. Generally, the body and back-

ground layers will be occluded within the overlapped regions, and
when manipulating the portrait such as rotating the view or chang-
ing the hair, some overlapped regions may become visible. To over-
come this problem, we fill the occluded holes in these two lay-
ers with the PatchMatch image completion method [Barnes et al.
2009]. For the body layer, the user may need to draw the body
boundary on the hole region to define the body shape and to con-
strain the completion target region. Furthermore, for layers with
complex structural information, the user may also draw additional
guide strokes to get better results (Figure 6). For the 3D head
model, we construct a 2D parameterization and use it to compute a
texture map. For each triangle of the model, if its projection on the
image is bounded by the head region, the texture colors inside the
triangle can be obtained from the image and stored in the texture
map. Then the image completion method is used to generate colors
for texels that do not obtain colors from the image.

We also allow the user to add depth variations to the body layer
to match the real geometry of the subject’s body. In this case, the
user draws some sparse strokes with predefined depth value on the
body layer, the depth at any other locations is calculated by simply
solving a Laplace equation with Dirichlet boundary conditions.

(a) (b) (c) (d)

Figure 6: (a) The input image overlaid with the strokes the user has
drawn for layer segmentation and completion. (b) The generated
portrait pop-up rendered in the original view. (c)(d) The portrait
rendered in two novel views. Original image courtesy of Mark von
Holden.

4.2 Hairstyle replacement

Replacing an individual’s hair in a photograph allows one to virtu-
ally try on different hairstyles. There exist many commercial soft-
ware products designed exactly for this purpose (e.g., HairMaster,
DailyMakeover.com, taaz.com, etc.). As far as we know none of
these systems utilizes a strand-based 3D hair model as we do.

Given a source portrait Isrc and a target portrait Idst, our goal is to
replace the hair of the subject in Idst by the hair in Isrc. We start
by extracting the 3D hair model and head model from Isrc (§ 3) and
creating a pop-up model from Idst (§ 4.1). Making use of the one-
to-one vertex correspondence between the source and target head
models, we can calculate a transformationMt from the head model
in Isrc to the head model in Idst to compensate for the changes in the
head’s shape and position. Currently Mt consists of two parts, one
is a translation and rotation matrix computed during head fitting and
the other is a scaling matrix that aligns the bounding boxes of the
two head models. Mt is then applied to the hair model generated
from Isrc to transform it to the correct position in Idst.

To increase realism, we can also calculate a mutual ambient occlu-
sion term for the transferred hair geometry and the target subject.
“Mutual” here means that, when calculating the AO term on the hair
model we only consider the target subject (excluding the hair model
itself) as the occluder and vice versa. Self occlusion is ignored to
avoid undesired darkening on the subject. Such mutual AO effects
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often provide useful visual clues about the 3D relationship between
the replaced hair and the subject (Figure 7).

Figure 7: Hair replacement without (left) and with (right) ambient
occlusion. Original image courtesy of Retna Ltd.

It should be noted that hairstyle replacement has dramatically dif-
ferent effects from face replacement. While replacing the facial
features tends to de-identify the subject and results in a “familiar-
looking stranger” [Bitouk et al. 2008], replacing the hairstyle will
usually maintain the subject’s identity well to a human observer.
We believe both techniques have their own unique applications.

4.3 Hairstyle editing

By utilizing the strand-based model generated from the image, we
have also implemented tools that allow the user to manipulate cer-
tain aspects of the hair in real time, such as adjusting the hair’s
color, smoothness, shininess, or adding geometric noises [Yu 2001;
Bonneel et al. 2009; Xu et al. 2011] (Figure 8). When editing specu-
lar highlights, we initialize a single point light located at the camera
(assuming the photograph was shot with a camera-mounted flash-
light) and allow the user to modify its properties in real time.

In our current prototype system, the user can adjust the global hair
color or add per-strand random color variations, both in HLS color
space. The smoothness is controlled by simply filtering the color
along each strand with an adjustable-sized kernel. We further adopt
the real-time implementation of Marschner et al.’s model [2003] for
adding specular highlights to the hair [Nguyen and Donnelly 2004].

Figure 8: Hair editing. Left: original image. Middle: new hair
color with increased smoothness. Right: new hair color with in-
creased shininess and added geometric noise. Original image cour-
tesy of Getty Images.

5 Results and Discussion

We have tested our method on different input images including dig-
ital photographs, paintings, and pencil drawings as shown in Fig-
ure 10. The hair models generated in this paper contain up to 50000

strands each. A single strand is stored as a polyline (Figure 1(b))
with vertex colors sampled from the original image. During ren-
dering, these strands are expanded into screen-aligned quadstrips
in real time by a geometry shader on an NVidia GTX460 graphics
card. We enabled alpha-to-coverage with 8×MSAA which striked
a good balance between visual quality and performance.

Comparisons: We have also compared our 3D strand-based hair
replacement with two alternative approaches. The first one simply
maps the segmented hair region to a flat plane that can be scaled and
rotated (as in some existing hair try-on systems like HairMaster,
HairStyled.com, etc.). The second one first calulates a depth map
for the hair region by applying the algorithm described in § 3.3.1 to
pixels, then use this depth to displace a planar mesh. A flat plane
cannot convey the depth variation of the hair and fails to handle
occlusions when the viewpoint is changed even slightly. While a
displaced planar mesh can reflect the global depth variation, it can-
not represent the local depth order of 3D strands. Moreover, the
hair may look distorted and blurred when rendered in a new view.
In comparison, our hair model consists of a volumetric arrangement
of 3D strands, and thus better handles these problems (Figure 9).

Figure 9: Hair replacement using 2D warping (left), depth-based
warping (middle), and our strand-based model (right). Original
image courtesy of Getty Images.

Amount of interaction: We have invited several users to try our
prototype system. It usually takes a user less than three minutes
to interactively mark up different semantic regions (i.e., hair, body,
background etc.) in the image. For some cases (such as in Figure 1)
when the automatic depth estimation cannot yield a satisfactory re-
sult, the user may need to specify a few more strokes for depth
constraints. The system then takes about 30 seconds to generate the
3D hair model and the portrait pop-up for an image with a hair re-
gion of approximately 500×500 pixels, measured on an Intel Xeon
E5620 CPU with 8GB memory.

Limitations and future work: Our method has several limitations.
The hair model we generate is not a full 3D model of the entire
hair volume. The hair that is originally invisible in the input image
is hallucinated and simply incorrect. When rendered from a new
view which deviates too much from the original (e.g., greater than
45◦), the result may look less realistic (see e.g., Figure 6(d)). Hair
strands in some portraits do not have distinguishable features. In
such cases our method may not be able to recover reliable sparse
strands. Nevertheless, our method will still generate a hair model
that looks the same as the input in the original view, but with less ge-
ometric details when rendered from a novel view. It would be hard
to directly extend our method to the reconstruction of a hair anima-
tion from a video sequence, partly due to the fact that the strands
are not traced from the scalp. During hair replacement, the source
and the target images may have dramatically different illuminations
and thus the transferred hair may look unrealistic. Finding a way to
robustly estimate the light sources in the input images and perform
hair relighting presents many challenges and is worthy of further
investigation.
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(a) (b)

(c) (d)

(e)

(f) (g) (h)

Figure 10: (a)-(d): Hairstyle replacement results. In each group the original image is on the left. In (e), the hairstyles of the five subjects
are swapped. The hair transfer results in (f), (g), and (h) show how our method can be applied to paintings, drawings, as well as historical
photographs. Original images courtesy of Getty Images (a–d), Chrissy Piper (e), and Krzysztof Lukasiewicz (g).
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6 Conclusion

We have presented a single-view hair modeling technique with
modest user interaction. Our goal is a plausible high-resolution
3D hair model adequate for portrait manipulation. This is made
possible by an effective high-precision 2D strand tracing algo-
rithm, which explicitly models uncertainty and local layering, and
a hair depth optimization algorithm, which simultaneously consid-
ers depth constraints, layering constraints as well as regularization
terms. Our single-view hair modeling enables a number of interest-
ing applications that were previously challenging.
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