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Abstract. Differential Privacy (DP) has emerged as a formal, flexible
framework for privacy protection, with a guarantee that is agnostic to
auxiliary information and that admits simple rules for composition. Ben-
efits notwithstanding, a major drawback of DP is that it provides noisy4

responses to queries, making it unsuitable for many applications. We pro-
pose a new notion called Noiseless Privacy that provides exact answers
to queries, without adding any noise whatsoever. While the form of our
guarantee is similar to DP, where the privacy comes from is very differ-
ent, based on statistical assumptions on the data and on restrictions to
the auxiliary information available to the adversary. We present a first
set of results for Noiseless Privacy of arbitrary Boolean-function queries
and of linear Real-function queries, when data are drawn independently,
from nearly-uniform and Gaussian distributions respectively. We also de-
rive simple rules for composition under models of dynamically changing
data.

1 Introduction

Developing a mathematically sound notion of privacy is a difficult problem. Sev-
eral definitions for database privacy have been proposed over the years, many of
which were subsequently broken. For example, methods like k-anonymity [Swe02]
and `-diversity [MGKV06] are vulnerable to simple, practical attacks that can
breach privacy of individual records [GKS08]. In 2006, Dwork et al. [DMNS06]
made significant strides toward formal specification of privacy guarantees by in-
troducing an information-theoretic notion called Differential Privacy (DP). For
a detailed survey on DP see [Dwo08].

Definition 1 (ε-Differential Privacy [DMNS06]) A randomized algorithm
A is ε-differentially private if for all databases T, T ′ ∈ Dn differing in at most
one record and all events O ⊆ Range(A), Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] .

DP provides a flexible framework for privacy protection based on mecha-
nisms that provide noisy responses to the database queries. The amount of noise

4 By noise we broadly refer to any external randomization introduced in the output
by the privacy mechanism.



introduced in the query-response is: 1) Independent of the actual data entries,
2) Based on the sensitivity of the query to “arbitrary” change of a small number
of entries in the data, and 3) Agnostic to the auxiliary information available to
the adversary. Their benefits notwithstanding, these properties of DP also result
in high levels of noise in the DP output, oftentimes leading to unusable query
responses [MKA+08]. Several applications, in fact, completely breakdown when
even the slightest amount of noise is added to the output (For example, dur-
ing a financial audit, noisy query-responses may reveal inconsistencies that may
be wrongly interpreted as fraud). Besides, when transitioning from a noise-free
regime, to incorporate privacy guarantees, the query-response mechanism must
be re-programmed (to inject a calibrated amount of noise) and the mechanism
consuming the DP output must be re-analyzed for its utility/effectiveness (since
it must now operate on noisy, rather than exact, query-responses). Hence, the
addition of noise to query-responses in the DP framework can be a major barrier
to the adoption of DP in practice. Moreover, it is unclear if the DP guarantee
(or for that matter, if any privacy guarantee) can provide meaningful privacy
protection when the adversary has access to arbitrary auxiliary information. On
the positive side, however, the structure of the DP guarantee makes it easy to
derive simple rules of composition under multiple queries.

Noiseless Privacy: In this paper, we propose a new, also information-
theoretic, notion of privacy called Noiseless Privacy that provides exact answers
to database queries, without adding any noise whatsoever. While the form of
our guarantee is similar to DP, where the privacy comes from is very different,
and is based on: 1) A statistical (generative) model assumption for the database,
2) Restrictions on the kinds of auxiliary information available to the adversary.
Both these assumptions are reasonable in many real-world settings; the former
is, e.g., commonly used in machine learning, while the latter is natural when
data is collected from a diverse network/collection of sources (e.g., from users of
the world-wide web).

Consider an entry ti in the database and two possible values a and b which it
can take. Noiseless Privacy simply requires that the probability of the output (or
the vector of outputs in-case of multiple queries) lying in a certain measurable set
remains similar whether ti takes value a or b. Here, the probability is taken over
the choice of the database (coming from a certain distribution) and is conditioned
on the auxiliary information (present with the adversary) about the database.
See Definition 2 for formal details.

While the DP framework makes no assumptions about the data distribution
or the auxiliary information available to the adversary, it requires the addition
of external noise to query-responses. By contrast, in Noiseless Privacy, we study
the privacy implications of providing noise-free responses to queries, but under
assumptions governing the data distribution and limited auxiliary information.

At this point, we do not know how widely our privacy framework will be
applicable in real systems. However, whenever privacy can be obtained in our
framework (and our work shows there are significant non-trivial cases where
Noiseless Privacy can be achieved) it comes for “free.” Another practical benefit



is that no changes are needed in the query-response or response-consumption
mechanisms, only an analysis to “okay the system” to establish the necessary
privacy guarantees is required. Moving forward, we believe that checking the
feasibility of Noiseless Privacy is a useful first-step when designing privacy-
preserving systems. Only when sufficient intrinsic entropy in the data cannot
be established, do we need external noise-injection in the query-responses. This
way, we would pay for privacy only when strictly necessary.

Our Results: In this work, we study certain types of boolean and real
queries and show natural (and well understood) conditions under which Noise-
less Privacy can be obtained with good parameters. We first focus on the (single)
boolean query setting; i.e., the entries of the database as well as the query output
have one bit of information each, with no auxiliary information available to the
adversary. Our starting assumption is that each bit of the database is indepen-
dently drawn from the uniform distribution (this assumption can be partially
relaxed; see Section 3). We show that functions which are sufficiently “far” away
from both 0-junta and 1-junta functions5 satisfy Noiseless Privacy with “good”
parameters. Note that functions which are close to either 0-junta or 1-junta do
not represent an “aggregate statistic” of the database (which should depend on
a large number of database entries). Hence, in real systems releasing some ag-
gregate information about the database, we do expect such a condition to be
naturally satisfied. Our proof of this theorem is rather intuitive and interestingly
shows that these two (well understood) characteristics of the boolean functions
are the only ones on which the privacy parameter depends. We extend our result
to the case when the adversary has auxiliary information about some records in
the database.

For functions over the reals with real outputs, we study two types of func-
tions: (a) linear functions (i.e., where the output is a linear combination of the
rows of the database), and, (b) sum of arbitrary functions of the database rows.
These functions together cover a large class of aggregation functions that can
support various data mining and machine learning tasks in the real-world. We
show natural conditions on the database distribution for which Noiseless Privacy
can be obtained with good parameters, even when the adversary has auxiliary
information about some constant fraction of the dataset. We refer the reader to
section 4.1 for more details.

Multiple Queries: The above results are for the case where the adversary
is allowed to ask a single query, except for the case of linear real queries, where
we have a result for multiple queries. In general, achieving composition in the
Noiseless Privacy framework is tricky and privacy can completely breakdown
even given a response to two different (carefully crafted) queries. The reason why
such a composition is difficult to obtain in our setting is the lack of independence
between the responses to the queries; the queries operate on the same database
and might have complex interdependence on each other to enable an entry of
the database to be deduced fully given the responses.

5 Roughly, an i-junta function is one which depends only upon i of the total input
variables.



To break such interdependence in our setting, we introduce what we call the
changing database model; we assume that between any two queries, a nontrivial
fraction of the database has been “refreshed”. The newly added entries (which
may either replace some existing entries or be in addition to the existing entries)
are independent of the old entries already present in the database. This helps
us maintain some weak independence between different queries. We note that
the setting of the changing database model is not unrealistic. Consider an or-
ganization that participates in a yearly industry-wide salary survey, where each
organization submits relevant statistics about the salaries of its employees to
some market research firms. A key requirement in such surveys is to maintain
anonymity of its employees (and only give salary statistics based on the depart-
ment, years of experience, etc.). A reasonable assumption in this setting is that
a constant fraction of the employees will change every year (i.e., if the attrition
rate of a firm is five percent, then roughly five percent of the entries can be
expected to be refreshed every year). Apart from the above example, there are
various other scenarios where the changing database model is realistic (i.e., when
one is dealing with streaming data, data with a time window, etc.). Under such
changing database model, we provide generalizations of our boolean as well as
real query theorems to the case of multiple queries.

We also present other interesting results like obtaining Noiseless Privacy for
symmetric boolean functions, “decomposable” functions, etc. In some cases, we
in fact show positive results for Noiseless Privacy under multiple queries even in
the static database model.

Future Work: Our works opens up an interesting direction for research in
the area of database privacy. An obvious line to pursue is to expand the classes of
functions and data distributions for which Noiseless Privacy can be achieved. Re-
laxing the independence assumption that our current results make on database
records is another important topic. There is also scope to explore alternative
ways of specifying the auxiliary information available to the adversary. In gen-
eral, we believe that developing new techniques for analyzing statistical queries
for Noiseless Privacy is an important direction of privacy research, that must
go hand-in-hand with efforts toward new, more clever ways of adding smaller
amounts of noise to achieve Differential Privacy.

Related Works: The line of works most related to ours is that of query au-
diting (see [KMN05] and [NMK+06]) where, given a database T = 〈t1, · · · , tn〉
with real entries, a query auditor makes a decision as to whether or not a par-
ticular query can be answered. If the auditor decides to answer the query, then
the answer is output without adding any noise. Since the decision of whether
to answer a query can itself leak information about the database, the decision
is randomized. This randomization can be viewed as injection of some form of
noise into the query response. However, on the positive side, if a decision is made
to answer the query, the answer never contains any noise, which is in harmony
with the motivation of our present work. See our full version [BBG+11] for a
more detailed comparison of our work to this and other related works.



2 Our privacy notion

In our present work, we investigate the possibility of guaranteeing privacy with-
out adding any external noise. The main idea is to look for (and systematically
categorize) query functions which under certain assumptions on the data gener-
ating distribution are inherently private (under our formal notion of privacy that
we define shortly). Since, the output of the function itself is inherently private,
there is no need to inject external noise. As a result the output of the function
has no utility degradation. Formally, we define our new notion of privacy (called
Noiseless Privacy) as follows:

Definition 2 (ε-Noiseless Privacy) Let D be the domain from which the en-
tries of the database are drawn. A deterministic query function f : Dn → Y is
ε-noiseless private under a distribution D on Dn and some auxiliary information
Aux (which the adversary might have), if for all measurable sets O ⊆ Y, for all
` ∈ [n] and for all a, a′ ∈ D,

Pr
T∼D

[f(T ) ∈ O|t` = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Aux]

where t` is the `-th entry of the database T .

In comparison to Definition 1, the present definition differs at least in the
following aspects, namely:

– unlike in Definition 1, it is possible for a non-trivial deterministic function f
to satisfy Definition 2 with reasonable ε. For e.g., XOR of all the bits of a
boolean database (where each entry of the database is an unbiased random
bit) satisfies Definition 2 with ε = 0 where as Definition 1 is not satisfied for
any finite ε.

– the privacy guarantee of Definition 2 is under a specific distribution D, where
as Definition 1 is agnostic to any distributional assumption on the database.

– the privacy guarantee of Definition 2 is w.r.t. an auxiliary information Aux
whereas differential privacy is oblivious to auxiliary information.

Intuitively, the above definition captures the change in adversary’s belief
about a particular output in the range of f in the presence or absence of a
particular entry in the database. A comparable (and seemingly more direct)
notion is to capture the change in adversary’s belief about a particular entry
before and after seeing the output. Formally,

Definition 3 (ε-Aposteriori Noiseless Privacy) A deterministic query fun-
ction f : Dn → Y is ε-Aposteriori Noiseless Private under a distribution D on
Dn and some auxiliary information Aux, if for all measurable sets O ⊆ Y, for
all ` ∈ [n] and for all a ∈ D,

e−ε ≤ PrT∼D[t`=a|f(T )∈O,Aux]
PrT∼D[t`=a|Aux] ≤ eε

where t` is the `-th entry of the database T .



The following fact shows that Definition 3 implies Definition 2 and vice versa
with at most two times degradation in the privacy parameter ε. See the full
version [BBG+11] for the proof.

Fact 1 A query function f satisfies Definition 3 under a database generating
distribution D and auxiliary information Aux, if and only if it satisfies Defi-
nition 2 under the same distribution D and same auxiliary information Aux.
There is a possible deterioration of the privacy parameter ε by at most a factor
of two in either direction.

Hereafter, we will use Definition 2 as our defintion of Noiseless Privacy. We
also introduce a relaxed notion of Noiseless Privacy called (ε, δ)-Noiseless Pri-
vacy, where with a small probability δ the ε-Noiseless Privacy does not hold.
Here, the probability is taken over the choice of the database and the two pos-
sible values for the database entry in question. While for a strong privacy guar-
antee a negligible δ is desirable, a non-negligible δ may be tolerable in certain
applications. The following definition captures this notion formally.

Definition 4 ((ε, δ)-Noiseless Privacy) Let f : Dn → Y be a deterministic
query function on a database of length n drawn from domain D. Let D be a
distribution on Dn. Let S1 ⊆ Y and S2 ⊆ D be two sets such that for all j ∈ [n],
PrT∼D[f(T ) ∈ S1] + PrT∼D[tj ∈ S2] ≤ δ, where tj is the j-th entry of T .

The function f is said to be (ε, δ)-Noiseless Private under distribution D and
some auxiliary information Aux, if there exists S1, S2 as defined above such that,
for all measurable sets O ⊆ Y −S1, for all a, a′ ∈ D−S2, and for all ` ∈ [n] the
following holds:

Pr
T∼D

[f(T ) ∈ O|t` = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Aux]

One kind of auxiliary information (Aux) that we will consider is partial in-
formation about some subset of entries of the database (i.e. partial disclosure).
But often, it is easier to analyze the privacy when Aux corresponds to a full
disclosure (complete revelation) of a subset of entries rather than partial dis-
closure because it may be difficult to characterize the corresponding conditional
probabilities. The following result shows that the privacy degradation when Aux
corresponds to a partial disclosure of information about a subset of entries can
never be worse than the privacy degradation under full disclosure of the same
set of entries.

Theorem 1 (Auxiliary Information) Consider a database T and a query
function f(·) over T . Let Ap denote some partial information regarding some
fixed (but typically unknown to the mechanism) subset T ′ ⊂ T . Let Af denote the
corresponding full information about the entries of T ′. If f(T ) is (ε, δ)-Noiseless
Private under (every possible value of) the auxiliary information Af (full dis-
closure) provided to the adversary, then it is also (ε, δ)-Noiseless Private under
auxiliary information Ap (partial disclosure).



Sketch of the proof:
The partial information Ap induces a distribution over the space of possible

full disclosures Af . Using the law of total probability, we can write

Pr
T∼D

[f(T ) ∈ O|t` = a,Ap] =

∫
Af

Pr
T∼D

[f(T ) ∈ O|t` = a,Af ] dF (Af |Ap, t` = a)

(1)
where F (Af |Ap, t` = a) denotes the conditional distribution forAf given Ap and
[t` = a]. Since f(T ) is (ε, δ)-Noiseless Private given Af , there exist appropriate
sets S1 and S2 (see Definition 4) with PrT∼D[f(T ) ∈ S1] + PrT∼D[tj ∈ S2] ≤ δ
such that, for all measurable sets O ⊆ Y − S1, for all a, a′ ∈ D − S2, and for all
` ∈ [n] we have

Pr
T∼D

[f(T ) ∈ O|t` = a,Af ] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Af ] (2)

The conditional distribution on F given Ap and t` in (1) is in fact independent
of t` (since we can only argue about the privacy of the `th entry of T if it
has not been already disclosed fully in Af ). Now, since F (Af |Ap, t` = a) =
F (Af |Ap, t` = a′), we can integrate both sides of (2) with respect to the same
distribution and obtain, for the same sets S1 and S2 as in (2):

Pr
T∼D

[f(T ) ∈ O|t` = a,Ap] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Ap] (3)

This completes the proof.

Composability. In many applications, privacy has to be achieved under multi-
ple (partial) disclosures of the database. For instance, in database applications,
several thousand user queries about the database entries are answered in a day.
Thus, a general result which tells how the privacy guarantee changes (typically
degrades) as more and more queries are answered is very useful and is referred
to as composability of privacy under multiple queries. While in some scenarios
(eg. streaming applications) the database can change in between queries (dy-
namic database), in other scenarios it remains the same (static database). Also,
the queries can be of different types or multiple instances of the same type.
As mentioned earlier, in Differential Privacy, the privacy guarantees degrade
exponentially with the number of queries on a static database. The notion of
Noiseless Privacy often fails to compose in the presence of multiple queries on a
static database (an exception to this is given in Section 4.2). But we do present
several composability results for multiple queries under dynamic databases.

Dynamic databases may arise in practical scenarios in several ways: (a) Grow-
ing database model: Here the database keeps growing with time, e.g. database
of all registered cars. Thus, in-between subsequent releases of information, the
database grows by some number k, (b) Streaming model: This is the more com-
monly encountered scenario, where the availability of limited memory/storage
causes the replacement of some old data with new one. Thus, at the time of each
query the database has some k new entries out of the total (fixed) n , and (c)



Random replacement model: A good generalization of the above two models, it
replaces randomly chosen k entries from the database of size n with the new
incoming entries.

In all the above models of dynamic databases, we assume that the number
of new elements form a constant fraction of the database. In particular, if n
is the current database size, then some ρn, (0 ≤ ρ ≤ 1) number of entries are
old and the remaining k = (1 − ρ)n entries are new. Our main result about
composability of Noiseless Privacy holds for any query which has (ε, δ)-Noiseless
Privacy under any auxiliary information about at most ρn, (0 ≤ ρ ≤ 1) elements
of the database. Note that in the growing database model, the size of the largest
database on which the query is made is assumed to be n and the maximum
fraction of old entries is ρ.

Theorem 2 (Composition) Consider a sequence of m queries, fi(·), i ∈ [m],
over dynamically changing data, such that, the ith query operates on the subset
Ti of data elements. For each i ≥ 2, let Ti share no more than a constant fraction
ρ, (0 ≤ ρ ≤ 1) of elements with ∪i′<iTi′ (i.e., all except ρ fraction of the elements
in the database are new). If every query fi(Ti), individually, is (εi, δi)-Noiseless
Private under the release of auxiliary information about a constant fraction ρ
of elements in Ti, then the sequence of queries is (

∑m
i=1 εi,

∑m
i=1 δi)-Noiseless

Private over the entire data.

Sketch of the proof:

To assess the privacy of the `th element t`, we write down the following
probability:

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a] = Pr
T∼D

[f1(T1) ∈ O1 | t` = a]

×
m∏
i=2

Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t` = a] (4)

Since Ti shares at most a constant fraction ρ of elements with ∪i′<iTi′ , the
sequence of query responses 〈f1(T1), . . . , fi−1(Ti−1)〉, can be thought of as re-
vealing auxiliary (possibly partial) information about at most ρ fraction of el-
ements in Ti. Under such auxiliary leakage, we are given that fi(Ti) is (εi, δi)-
Noiseless Private, i.e., there exist appropriate sets Si1 and Si2 (see Definition 4)
with PrT∼D[f(T ) ∈ Si1] + PrT∼D[tj ∈ Si2] ≤ δi such that, for all measurable sets
O ⊆ Y − Si1, for all a, a′ ∈ D − Si2, we have

Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t` = a]

≤ eεi Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t` = a′] (5)

Setting S1 = ∪iSi1 and S2 = ∪iSi2, we have PrT∼D[f(T ) ∈ S1]+PrT∼D[tj ∈ S2]≤∑m
i=1 δi and using (5) for each of the m terms in the RHS of (4) we get, for all



measurable sets Oi ⊆ Y − S1, for all a, a′ ∈ D − S2,

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a]

≤ e
∑m
i=1 εi Pr

T∼D
[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a′] (6)

This completes the proof. See the full version [BBG+11] for other results under
multiple queries.

3 Boolean queries

In this section we study queries of the form f : T → {0, 1}, i.e., the query
function f acts on a database T ∈ Dn, where D is the domain from which the
data entries are drawn.

3.1 The No Auxiliary Information Setting

We first study a simple and clean setting: the database entries are all drawn
independently and the adversary has no auxiliary information about them. We
discuss generalizations later on. Before we get into the details of privacy friendly
functions under our setting, we need some of the terminologies from analysis of
boolean functions literature.

Definition 5 (k-junta [KLM+09]) A function f : {0, 1}n → {0, 1} is said to
be k-junta if it depends only on some subset of the n coordinates of size k .

Definition 6 ((1− τ)-far from k-junta) Let F be the class of all k-junta fun-
ctions f ′ : {0, 1}n → {0, 1} and let D be a distribution on {0, 1}n. A function
f : {0, 1}n → {0, 1} is (1− τ)-far from k-junta under D if

max
f ′∈F

| Pr
T∼D

[f(T ) = f ′(T )]− Pr
T∼D

[f(T ) 6= f ′(T )]| = τ

It is easy to see that when D is a uniform distribution over n-bits, a k-junta is
0-far from the class of k-juntas and the parity function is 1-far from the class of
all 1-juntas.

The theorem below is for the setting where the adversary has no auxiliary
information about the database. Later on in this section, we show how to handle
the case when the adversary may have a subset of the database entries.

Theorem 3 Let D be an arbitrary distribution over {0, 1}n such that the marg-
inal probability of the i − th bit equaling 1 is pi. Let f : {0, 1}n → {0, 1} be a
boolean function which is (1− τ1)-far from 0-junta and (1− τ2)-far from 1-junta
under D. If τ1+τ2

2 ≤ mini∈[n] pi and maxi∈[n] pi ≤ 1− τ1+τ2
2 , then f is(

maxi∈[n] max
{

ln 1+(τ1+τ2)/(2(1−pi))
1−(τ1+τ2)/(2pi) , ln 1+(τ1+τ2)/(2pi)

1−(τ1+τ2)/(2(1−pi))

})
-Noiseless Private.

Proof. Please refer to [BBG+11] for the proof.



Note that in the above theorem we do not assume independence among the
entries in T . As a result we can handle databases with correlated entries. It is
also worth mentioning here that all the other results in this section assume the
entries in the database to be uncorrelated.

To get some more insight into the result let us consider f(T ) to be the XOR
of all the bits of T . Let T be drawn from the uniform distribution. Then f is 1-far
from both a 0-junta and a 1-junta. Hence, f is 0-Noiseless Private. Instead of the
XOR, if we let f be the AND function, then we see that it is just 1− 1

2n−1 -far
from a 0-junta. The ratio in this case becomes∞, which shows AND is not a very
good function for providing ε-Noiseless Privacy for small ε. This is indeed the case
because PrT [f(T ) = 1|ti = 0] = 0 for all i. However, we can capture functions
like AND if we try to guarantee (ε, δ)-Noiseless Privacy. If we fix δ = 1

2n (which
is basically the probability of the AND function yielding 1), we get (0, 1

2n )-
Noiseless Privacy for AND. This property is in fact not specific to AND. In
fact one can easily guarantee (ε, δ)-Noiseless Privacy for any symmetric boolean
functions (i.e., the functions whose output does not change on any permutation
of the input bits). We will discuss this result in a more general setting later.

3.2 Handling Auxiliary Information

We now study the setting where the adversary may have auxiliary information
about a subset of the entries in the database. We study the privacy of the entries
about whom the adversary has no auxiliary information.

Theorem 4 Let D be the distribution over {0, 1}n where the i− th bit is chosen
to be 1 independently with probability pi. Let f : {0, 1}n → {0, 1} be a boolean
function which is (1− 2B)-far away from d+ 1 junta, that is, for any function g
that depends only on a subset S of U = [n] of size d+1, |Pr[f(U) = g(S)]−1/2| <
B. Let T be a database drawn from D and let Γ be any adversarially chosen
subset of variables that has been leaked with |Γ | = d. If B

δ < mini∈[n] pi and

if maxi∈[n] pi ≤ 1 − B
δ , then function f is (maxi∈[n]−Γ

(
max

{
ln

(
1+ B

δ(1−pi)

1− B
δpi

)
,

ln

(
1+ B

δpi

1− B
δ(1−pi)

)})
, 2δ)-Noiseless Private with respect to the bit ti ∈ T , where

i ∈ [n]− Γ .

Proof. We analyze the ratio given that Γ = t is such that |PrR[f(R||t) = 0] −
1/2| < B/δ and |PrR[f(R||t) = ti]− 1/2| < B/δ. This happens with probability
at least 1− δ− δ = 1− 2δ. The proof is as follows. Here the notation R||t refers
to a database formed by combining R and t.

Lemma 1 Let the underlying distribution be an arbitrary D where each bit is
1 independently with probability pi. Under D, let f be far away from d junta,
that is for any function g that depends only on a subset S ( with |S| = d) of
U = [n], |PrD[f(U) = g(S)] − 1/2| < A. Let T be a database drawn from D
and let Γ (with |Γ | = d) be any adversarial subset of entries of T that has been



leaked. Then, with probability at least 1 − δ over the choice of assignments t to
Γ , |PrR[f(R||t) = 0]− 1/2| < A/δ.

Proof. Let Γ ⊂ U = [n], |Γ | = d, be the set of indices leaked. Note that we
use Γ to represent both the indices and the variables itself. Let R = [n] − Γ .
We prove the lemma by contradiction. Suppose the claim is wrong. That is,
with probability at least δ over Γ , |PrR[f(R||t) = 0] − 1/2| > A/δ. Construct
g : {0, 1}d → {0, 1} as follows.

g(t) =

{
0 if PrR[f(R||t) = 0] ≥ 1/2
1 otherwise

Observe that g just depends on d variables. We shall now show predictability
of f using g which contradicts farness from d junta. Let us evaluate Pr[f(U) =
g(Γ )]. To that end, we partition the assignments t to T into three sets, S1, S2

and S3. S1 is the set of t such that PrR[f(R||t) = 0] ≥ 1/2 + A/δ, S2 is the
set of t such that PrR[f(R||t) = 0] ≤ 1/2 − A/δ and S3 is the set of remaining
assignments. Now, from our assumption, we are given that Pr[T ∈ S1 ∪ S2] > δ.
Also, it is easy to observe that for any t, PrR[f(R||t) = g(t)] ≥ 1/2 by the choice
of g. Now, we lower bound Pr[f(U) = g(Γ )].

Pr[f(U) = g(Γ )] = EΓPrR[f(R||Γ ) = g(Γ )]

≥ Pr[Γ ∈ S1](1/2 +A/δ)

+Pr[Γ ∈ S2](1/2 +A/δ) + Pr[Γ ∈ S3](1/2)

≥ 1/2 + (A/δ) Pr[Γ ∈ S1 ∪ S2]

≥ 1/2 +A

This leads to a contradiction.

Lemma 2 Let D be a distribution over {0, 1}n where each bit is 1 indepen-
dently with probability pi. Under D, let f be far away from d junta, that is for
any function g that depends only on a subset S ( with |S| = d) of U = [n],
|PrD[f(U) = g(S)] − 1/2| < B. Let T be a database drawn from D and let Γ
(with |Γ | = d) be any adversarial subset of entries of T that has been leaked.
Then, with probability at least 1 − δ over the choice of assignments t to Γ ,
|PrR[f(R||t) = ti]− 1/2| < B/δ, where ti is the i-th entry of the database T .

Proof. The proof of this lemma is identical to the previous proof. Please see
[BBG+11] for the complete proof.

Following the proof structure of Theorem 3, let N = Pr[f = 0|Γ = t, ti = 0]
and D = Pr[f = 0|Γ = t, ti = 1]. Now,

(1− pi)N + pi(1−D) = 1/2 +Bi, where |Bi| ≤ B/δ
(1− pi)N + piD = A, where |A− 1/2| ≤ B/δ

We now use the argument from the proof of Theorem 3 to upper (lower)
bound N/D. Since the bound holds with probability 1−2δ, we get maxi∈[n] pi ≤



1 − B
δ ; hence f is (maxi∈[n]−Γ

(
max

{
ln

(
1+ B

δ(1−pi)

1− B
δpi

)
, ln

(
1+ B

δpi

1− B
δ(1−pi)

)})
, 2δ)-

Noiseless Private which again makes sense as long as B
δ < mini∈[n] pi and

maxi∈[n] pi ≤ 1− B
δ .

3.3 Handling multiple queries in Adversarial Refreshment Model

Unlike the static model, in this model we assume that every query is run on
a database where some significant part of it is new. We focus on the following
adversarial replacement model.

Definition 7 (d-Adversarial Refreshment Model) Except for d adversar-
ially chosen bits of the database T , the remaining bits are refreshed under the
data generating distribution D before every query fi.

We demonstrate the composability of boolean to boolean queries ( i.e., f :
{0, 1}n → {0, 1}) under this model.

By the reduction shown in Theorem 2, privacy under multiple queries follows
from the privacy in single query under auxiliary information. We use Theorems
2 and 4 to obtain the following composition theorem for boolean functions.

Corollary 1. Let f be far away from d+1 junta ( with d = O(n)), that is for any
function g that depends only on a subset S of U = [n] of size d+ 1, |Pr[f(U) =
g(S)]−1/2| < B. Let the database T be changed as per the d-Adversarial Refresh-
ment Model and let T̂ be the database formed by concatenating the new entries (in
the d-Adversarial Refreshment Model) with the existing entries. Let the number
of times that f has been queried is m. Under the conditions of Theorem 4, f is

(mmaxi∈[n]

(
max

{
ln

(
1+ B

δ(1−pi)

1− B
δpi

)
, ln

(
1+ B

δpi

1− B
δ(1−pi)

)})
, 2mδ)-Noiseless Private,

where n is the size of the database T̂ and pi is the probability of the i-th bit of T̂
being one.

Please refer to the full version of the paper [BBG+11] for results on the
privacy of symmetric functions.

4 Real queries

In this section, we study the privacy of functions which operate on databases
with real entries and compute a real value as output. We view the database
T as a collection of n random variables 〈t1, t2, . . . , tn〉 with the ith random
variable representing the ith database item. First we analyze the privacy of a
query that outputs the sum of functions of database rows, that is, fn(T ) =
1
sn

∑
i∈[n] gi(ti), sn =

∑
i∈[n] E[g2i (ti)] in Section 4.1. We provide a set of as-

sumptions about gi, under which the response of a single such query can be
provided with ( lnn

6
√
n
, 1√

n
)-Noiseless Privacy guarantees in Theorem 5. While The-

orem 5 is for an adversary that has no auxiliary information about the database,



Theorem 6 is for an adversary that may have auxiliary information about some
constant fraction of the database. We note that this query function is important
as many learning algorithms, including principal component analysis, k-means
clustering and any algorithm in the statistical query framework can be captured
by this type of query (see [BDMN05]). Next, in section 4.2, we study the case of
simple linear queries of the form fn(T ) =

∑
i∈[n] aiti, ai ∈ R when ti are drawn

i.i.d. from a normal distribution. We show that we can allow upto 5
√
n query-

responses (on a static database) while still providing (ε, δ)-Noiseless Privacy for
any arbitrary ε and for δ negligible in n. Again, we give a theorem each for an
adversary with no auxiliary information as well as for an adversary who may
have auxiliary information about some constant fraction of the database. We
present several results about the privacy of these two queries under the various
changing databases models in section 4.3.

4.1 Sums of functions of database rows

Let T = 〈t1, · · · , tn〉 be a database where each ti ∈ R is independently chosen
and let gi : R → R,∀i ∈ [n] be a set of one-to-one real valued functions with
the following properties: (i) ∀i ∈ [n],E[gi(ti)] = 0, (ii) ∀i ∈ [n],E[g2i (ti)] = O(1),
(iii) ∀i ∈ [n],E[|gi(ti)|3] = O(1), and (iv) The density function for gi(ti),∀i ∈ [n]
exists and has a bounded derivative. We study the privacy of the following func-
tion on the database T : Yn = 1

sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2i (ti)]. Using

Hertz Theorem [Her69] (see [BBG+11]) we can derive the following uniform
convergence result for the cdf of Yn to the cdf of the standard normal.

Corollary 2 (Uniform Convergence of Fn to Φ). Let Fn be the cdf of
Yn = 1

sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2i (ti)] and let Φ denote the standard

normal cdf. If E[gi(ti)] = 0 and if E[g2i (ti)], E[|gi(ti)|3] ∼ O(1) ∀i ∈ [n], then Yn
converges in distribution uniformly to the standard normal random variable as

follows: |Fn(x)− Φ(x)| ∼ O
(

1√
n

)
If the pdf fn of Yn exists and has a bounded derivative, we can further derive
the convergence rate of the pdf fn to the pdf φ of the standard normal random
variable. This result about pdf convergence is required because we will need to
calculate the conditional probabilities in our privacy definitions over all measur-
able sets O in the range of the query output (see Definitions 2 & 4). The result
is presented in the following Lemma (Please refer to [BBG+11] for the proof).

Lemma 3 (Uniform Convergence of fn to φ) Let fn(·) be the pdf of Yn =
1
sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2i (ti)] and let φ(·) denote the standard normal

pdf. If E[gi(ti)] = 0, E[g2i (ti)], E[|gi(ti)|3] ∼ O(1) ∀i ∈ [n], and if ∀i, the densities
of gi(ti) exist and have bounded derivative then fn converges uniformly to the

standard normal pdf as follows: |fn(x)− φ(x)| ∼ O
(

1
4
√
n

)
Theorem 5 (Privacy) Let T = 〈t1, · · · , tn〉 be a database where each ti ∈ D is
independently chosen. Let gi : R→ R,∀i ∈ [n] be a set of one-to-one real valued



functions and let Yn = 1
sn

∑n
i=1 gi(ti), where s2n = ·

∑n
i=1 E[g2i (ti)] and ∀i ∈ [n],

E[gi(ti)] = 0, E[g2i (ti)], E[|gi(ti)|3] ∼ O(1) and ∀i ∈ [n] the density functions for
gi(ti) exist and have bounded derivative. Let the auxiliary information Aux be

empty. Then, Yn is
(
O
(

lnn
6
√
n

)
, O

(
1√
n

))
-Noiseless Private.

Sketch of the proof: Please see [BBG+11] for the full proof. To analyze the
privacy of the `th entry in the database T , we consider the ratio R = pdf(Yn =
a|t` = α)/pdf(Yn = a|t` = β). Setting Z = 1

sz

∑n
i=1,i6=` gi(ti), where s2z =∑n

i=1,i6=` E[g2i (ti)], we can rewrite this ratio as R = pdf(Z = asn−g`(α)
sz

)/pdf(Z =
asn−g`(β)

sz
). Applying Lemma 3 to the convergence of the pdf of Z to φ, we can

upper-bound R using a ratio of appropriate standard normal pdf evaluations.
For suitable choice of parameters, this leads to lnR ∼ O( lnn

6
√
n

). Using Corollary

2, we can show that the probability of data corresponding to the unsuitable
parameters is O( 1√

n
).

Theorem 6 (Privacy with auxiliary information) Let T = 〈t1, · · · , tn〉 be
a database where each ti ∈ R is independently chosen. Let gi : R → R,∀i ∈ [n]
be a set of one-to-one real valued functions and let Yn = 1

sn

∑n
i=1 gi(ti), where

s2n = ·
∑n
i=1 E[g2i (ti)] and ∀i ∈ [n], E[gi(ti)] = 0, E[g2i (ti)], E[|gi(ti)|3] ∼ O(1)

and ∀i ∈ [n] the density functions for gi(ti) exist and have bounded derivative.
Let the auxiliary information Aux be any subset of T of size ρn. Then, Yn is(
O

(
ln(n(1−ρ))
6
√
n(1−ρ)

)
, O

(
1√

n(1−ρ)

))
-Noiseless Private.

Sketch of the proof: Please see [BBG+11] for the full proof. To analyze the
privacy of the `th entry in the database T , we consider the ratio R = pdf(Yn =
a|t` = α,Aux)/pdf(Yn = a|t` = β,Aux). Setting Z = 1

sz

∑
i∈[n]\I(Aux),i6=` gi(ti),

where s2z =
∑n
i∈[n]\I(Aux),i6=` E[g2i (ti)], we can rewrite this ratio as R = pdf(Z =

z0−g`(α)
sz

)/pdf(Z = z0−g`(β)
sz

), where I(Aux) is the index set of Aux and z0 =
asn−

∑
j∈I(Aux) gj(tj). Thereafter, the proof is similar to the proof of Theorem

5 except that Z is now a sum of n(1− ρ) random variables instead of n− 1.
The above theorem and Theorem 1 together imply privacy of Yn= 1

sn

∑n
i=1

gi(ti) under any auxiliary information about a constant fraction of the database.

4.2 Privacy analysis of f in(T ) =
∑
j∈[n] aijtj

We consider a sequence of linear queries f in(T ), i = 1, 2, . . . with constant and
bounded coefficients for a static database T . For each m = 1, 2, . . ., we ask if the
set {f in(T ) : i = 1, . . . ,m} of queries can have Noiseless Privacy guarantees.

Theorem 7 (Privacy) Consider a database T = 〈t1, . . . , tn〉 where each tj is
drawn i.i.d from N (0, 1). Let f in(T ) =

∑
i∈[n] aijtj, i = 1, 2, . . ., be a sequence of

linear queries (over T ) with constant coefficients aij, |aij | ≤ 1 and at least two
non-zero coefficients in each query. Assume the adversary does not have access



to any auxiliary information. For every m, 1 ≤ m ≤ 5
√
n, the set of queries

{f1n(T ), . . . , fmn (T )} is (ε, negl(n))-Noiseless Private for any constant ε, provided
the following conditions hold: For all i ∈ [m], ` ∈ [n], R(`, i) ≤ 0.99

∑n
j=1,j 6=` a

2
ij,

where R(`, i) =
∑m
k=1,k 6=i |

∑n
j=1,j 6=` aijakj |.

Sketch of the proof: Please refer to [BBG+11] for the complete proof. One can
represent the sequence of queries and their corresponding answers via a system
of linear equations Y = AT , where Y is the output vector and A (called the
the design matrix ) is a m × n matrix. Each row Ai of the matrix A represents
the coefficients of the i-th query. Note that we cannot hope to allow more than
n linearly independent linear queries. Because in that case the adversary can
extract the entire database T from the query responses.

We will prove the privacy of the `th data item, t` for some ` ∈ [n]. Let
Yi =

∑n
j=1 aijtj , where tj are sampled i.i.d. from N (0, 1). For any α, β ∈ R

and any v = (y1, · · · , ym) ∈ Rm the following ratio r needs to be bounded

by eε to guarantee Noiseless Privacy: r = pdf(Y1=y1,··· ,Ym=ym|t`=α)
pdf(Y1=y1,··· ,Ym=ym|t`=β) . If we define

Zi =
∑n
j=1,j 6=` aijtj for i ∈ [m], r = pdf(Z1=y1−a1`α,··· ,Zm=ym−am`α)

pdf(Z1=y1−a1`β,··· ,Zm=ym−am`β) .

Let Ã denote the m × (n − 1) matrix obtained by dropping `th column of
A. We have Zi ∼ N (0,

∑n
j=1,j 6=` a

2
ij) and the vector Z = (Z1, · · · , Zm) fol-

lows the distribution N (0, Σ), where Σ = ÃÃT . The entries of Σ look like
Σik =

∑n
j=1,j 6=` aijakj and dim(Σ) = m×m. The sum of absolute values of non-

diagonal entries in the ith row of Σ is given by R(`, i) and the ith diagonal entry is∑n
j=1,j 6=` a

2
ij (denoted Σii). By Gershgorin Circle Theorem (see [BBG+11]), the

eigenvalues of Σ are lower-bounded by Σii−R(`, i) for some i ∈ [m]. The condi-
tion R(`, i) ≤ 0.99Σii implies that every eigenvalue is at least 0.01×

∑n
j=1,j 6=` a

2
ij .

Since at least two aij ’s per query are strictly non-zero, Σ will have strictly
positive eigenvalues, and since Σ is also real and symmetric, we know Σ is
invertible. Hence, for a given vector z ∈ Rm, we can write pdf(Z = z) =

1
(2π)m/2|Σ|1/2 exp(−

1
2z

TΣ−1z). Then, for zα = y−αA` and zβ = y−βA` where

A` denotes the `th column of A, r = exp
(
− 1

2

(
zα

TΣ−1zα − zβ
TΣ−1zβ

))
Let

Σ−1 = QΛQT be the eigen decomposition and let z′
α = QTzα and z′

β = QTzβ

under the eigen basis. Then, r = exp
(
− 1

2

∑m
i=1 λi

(
(z′α,i)

2 − (z′β,i)
2
))

, where

z′α,i is the i-th entry of z′
α, z′β,i is the i-th entry of z′

β and λi is the i-th eigen

value of Σ−1. Further it can be shown that,

r ≤ exp

mλmax|α− β|
2

√√√√ m∑
i=1

(2yi − ai`(α+ β))2

√√√√ m∑
i=1

a2i`


where λmax = arg maxi λi and we have used the fact that L1 norm ≤

√
m L2

norm and that L2 norms of z′
α and z′

β are equal to L2 norms of zα and zβ
respectively. Thus, this ratio will be less than eε if:√∑m

i=1(2yi − ai`(α+ β))2 ≤ 2ε
m|(α−β)|λmax‖A`‖ (7)



For i ∈ [m] letGi denote the event [|2yi − ai`(α+ β)| ≤ 2ε
m3/2|(α−β)|λmax‖A`‖

]
.

The conjunction of events represented by G = ∧iGi implies the inequality in (7).
Then, in the last step of the proof, we show (see [BBG+11]) that the probability

of the event Gc (compliment of G) is negligible in n for any ε and m ≤ n
1
5 .

The above theorem is also true if the expected value of the database entries is a
non-zero constant. This is our next claim (see [BBG+11] for the proof).

Claim 1 If Y =
∑n
i=1 aiti is (ε, δ)-Noiseless Private for a database

T = 〈t1, · · · , tn〉 such that ∀i,E[ti] = 0, then Y ∗ =
∑n
i=1 ait

∗
i , where t∗i = ti+µi,

is also (ε, δ)-Noiseless Private.

The results of Theorem 7 can be extended to the case when adversary has
access to some auxiliary information, Aux, provided that Aux only contains in-
formation about a constant fraction of entries, albeit with a stricter requirement
on the coefficients of the queries (0 < aij ≤ 1 instead of |aij | ≤ 1).

Theorem 8 (Privacy with auxiliary information) Consider a database T
= 〈t1, . . ., tn〉 where each tj is drawn i.i.d from N (0, 1). Let f in(T ) =

∑
i∈[n] aijtj,

i = 1, 2, . . ., be a sequence of linear queries (over T ) with constant coeficients
aij, 0 < aij ≤ 1 and at least two non-zero coefficients in each query. Let Aux
denote the auxiliary information that the adversary can access. If Aux only
contains information about a constant fraction, ρ, of data entries in T , then, for
every m, 1 ≤ m ≤ 5

√
n, the set of queries {f1n(T ), . . . , fmn (T )} is (ε, negl(n))-

Noiseless Private for any constant ε, provided the following conditions hold: For
all i ∈ [m], ` ∈ [n] and (n− ρn) ≤ r ≤ n

min
Sr

∑
j∈Sr

0.99a2ij −
m∑

k=1,k 6=l

aijakj

 ≥ 0 (8)

where Sr is the collection of all possible (r− 1)-size subsets of [n] \ {`}. The test
in (8) can be performed efficiently in O(n log n) time.

Sketch of the proof: We first give a proof for the case when the auxiliary
information Aux is full disclosure of any r entries of the database. Thereafter,
we use Theorem 1 to get privacy for the case when Aux is any partial information
about at most r entries of the database. Fix a set Î of indices (out of [n]) that
correspond to the elements in Aux (This set is known to the adversary, but not

to the mechanism). Let |Î| = r. The response Yi to the ith query can be written

as Yi = Ŷi +
∑
j∈Î aijtj , where Ŷi =

∑
j∈[n]\Î aijtj . Since the second term in the

above summation is known to the adversary, the ratio R that we need to bound
for Noiseless Privacy is given by

R =
pdf(Y1 = y1, . . . , Ym = ym | t` = α,Aux)

pdf(Y1 = y1, . . . , Ym = ym | t` = β,Aux)
(9)

=
pdf(Ŷi = yi −

∑
j∈Î aijtj , i = 1, . . .m | t` = α)

pdf(Ŷi = yi −
∑
j∈Î aijtj , i = 1, . . . ,m | t` = β)

(10)



Applying Theorem 7 to Ŷi’s we get (ε, negl(n))-Noiseless Privacy for any m ≤
5
√
n, if ∀i ∈ [m], ` ∈ [n]:

∑
j∈[n]\Î,j 6=`

0.99a2ij −
m∑

k=1,k 6=i

∣∣∣∣∣∣
n∑

j∈[n]\Î,j 6=`

aijakj

∣∣∣∣∣∣ ≥ 0 (11)

Theorem 8 uses the stronger condition of 0 < aij ≤ 1 (compared to |aij | ≤ 1 in
Theorem 7). Hence, we can remove the mod signs and change order of summation
to get the following equivalent test: For all i ∈ [m], ` ∈ [n],

∑
j∈[n]\Î,j 6=`

0.99a2ij −
m∑

k=1,k 6=i

aijakj

 ≥ 0 (12)

Since Î is not known to the mechanism, we need to perform this check for all Î
and ensure that even the Î that minimizes the LHS above must be non-negative.
This gives us the test of (8). We can first compute all entries inside the round
braces of (12), and then sort and picking the first (n − r) entries. This takes
O(n log n) time. This completes the proof.

Finally, we point out that although Theorem 8 requires 0 < aij ≤ 1, we can
obtain a very similar result for the |aij | ≤ 1 case as well. This is because (11)
is true even for |aij | ≤ 1. However, unlike for 0 < aij ≤ 1 (when (12) could be

derived), testing (11) for all Î becomes combinatorial and inefficient.

4.3 Privacy under multiple queries on changing databases

Theorems 6 & 8 provide (ε, δ)-privacy guarantees under leakage of constant
fraction of data as auxiliary information. From Theorem 2, this implies com-
position results under dynamically changing databases (e.g., if each query is
(ε, δ)-Noiseless Private, composition of m such queries will be (mε,mδ)-Noiseless
Private). As discussed in Sec. 2, we get composition under growing, streaming
and random replacement models. In addition, both the queries considered in this
section are extendibile (see full version [BBG+11] for details) and thus, one can
answer multiple repeat queries on a dynamic database (under growing data and
streaming models) without degradation in privacy guarantee.
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