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Abstract

This paper presents the Credo architecture to enable
trustworthy virtualization based cloud computing platforms.
A key feature of Credo is a small platform Trusted Comput-
ing Base (TCB) for a customer VM that consists only of a
securely launched hypervisor and minimal hardware com-
ponents, without any privileged partitions and their admin-
istrators. Credo achieves this reduction in TCB via emanci-
pation, a mechanism that provides VMs enhanced secrecy
and integrity protection guarantees from privileged parti-
tions. Trust in an emancipated VM is established via its mea-
sured launch by the hypervisor and an attestation of a dy-
namically established trust chain rooted in the Trusted Plat-
form Module (TPM). Experimental results from a prototype
implementation based on Hyper-V demonstrate that Credo
provides enhanced security guarantees to emancipated VMs
at a modest cost, most of which is a one-time startup cost
from a VM’s perspective, while adding only a small amount
of code to a VM’s TCB.

1 Introduction

A key issue related to security properties of a virtual ma-
chine in virtualized environments is a large TCB due to com-
ponents external to the VM, including hardware, firmware,
hypervisor, and one or more privileged partitions, e.g., the
root partition [25] and dom0 [3]. These privileged partitions
usually run a large, full featured OS, and are managed by ad-
ministrators who can arbitrarily extend these partitions with
privileged code. Since these partitions are part of a VM’s
TCB by design, privileged code in these partitions can mali-
ciously observe and modify a guest VM’s virtual resources,
such as memory and virtual device state, in an untrusted
manner. This makes it very hard to provide meaningful se-
curity and trust guarantees to VMs when hosted in virtual-
ization based third-party cloud computing environments that
are not owned/controlled by VM’s owners (also referred to
as clients or customers). Such large and dynamic nature of
external components in a VM’s TCB makes it hard to trust
a VM’s state even if a hardware root of trust such as TPM
is used. The recorded trust chain may be either too small to
be meaningful, e.g., limited to just the BIOS and the boot-
loader [23], or arbitrarily long [32] to be of practical use.
Also, a VM in cloud must trust in the security management
policies of the infrastructure provider [13], since the phys-
ical machines belong to a different administrative domain.
Trust in these policies is not easy to quantify, since these are

hard to write and verify, and mostly kept opaque from the
clients. We argue that such lack of trustworthiness is a key
challenge facing wider adoption of cloud computing and is
the chief contributor to security being the primary concern
[11].

The Credo architecture presented in this paper addresses
these issues in two ways - 1) by reducing a VM’s exter-
nal TCB to the hypervisor and minimal platform hardware/-
firmware using isolation and cryptography based protection
mechanisms, and 2) by providing a small and measurable
hardware rooted trust chain that a client may trust, which in-
cludes trusted launch of the hypervisor using Intel’s Trusted
eXecution Technology (TXT) [16]. We demonstrate how a
client of the infrastructure can remotely attest this trust chain
while a VM is running in the cloud infrastructure, and pro-
vision resources to a VM, such as cryptographic keys, that
can only be used in the presence of a valid trust chain.

This paper makes several novel contributions. First, it
presents mechanisms to provide enhanced security guaran-
tees to general purpose virtual machines. Other approaches
that use hypervisor as the TCB fall short in that they either
a) don’t provide security guarantees at the right level of ab-
straction and require application level re-programming [21],
or b) have large TCB that includes privileged VMs and their
administrators [27, 9]. We argue that Credo’s isolation and
cryptography based approach is less costly and more prac-
tical compared to these other approaches. Second, Credo
enables “on demand” security for guest VMs, with a trust
model that is more representative of today’s third party vir-
tualization based cloud environments where clients has no
control over the infrastructure. This trust model differs sig-
nificantly from that of virtualized platforms [2], where a
VM’s TCB includes privileged VMs and their administra-
tors. Third, Credo implements practical use cases of trusted
computing technologies to provide a platform suitable for
hosting security sensitive services inside a development and
deployment friendly VM model. Examples of such services
include a financial computation service employing propri-
etary code and secret data in a cloud and an out-of-partition
OS health agent for VMs. We build a prototype of one such
service termed Isolated Crypto Service (ICS) that manages
cryptographic keys inside a VM and is used to perform cryp-
tographic operations such as message signing and generation
of session keys.

Experimental results from a prototype implementation
based on Hyper-V [25] demonstrate that Credo enables a
trustworthy virtualized platform at a low cost. In particular,
there is negligible runtime cost imposed by Credo on com-



putational workloads inside a VM. Cryptographic mecha-
nisms for protection of storage impose overheads of ~ 33%,
and are comparable to existing encryption based data pro-
tection techniques [4]. Most of the overhead is a fixed setup
cost - applicable only at the platform boot time and at the
VM startup time. Our prototype adds only ~ 11K lines of
code to core hypervisor, and ~ 4K lines of code to VM’s
runtime to provide enhanced security guarantees.

2 Credo Architecture
2.1 Threat Model

We motivate the need for Credo via security related sce-
narios pertinent to today’s virtualized platforms. Since
Credo is based on Hyper-V [25], we use Hyper-V architec-
ture as the background for discussion, although these sce-
narios are generalizable to other fype-I1 [12] virtualization
systems such as Xen [3].

Key components of the Hyper-V architecture are a micro-
kernel hypervisor and a privileged management partition,
called the root partition. The hypervisor virtualizes core
platform resources (e.g. CPU and memory) while the root
partition owns all I/O devices and does I/O virtualization.
Hyper-V supports two forms of virtualized I/O — emulation
based I/0, where a guest VM performs memory mapped
or port-based I/O that is intercepted by the hypervisor and
forwarded to the the root partition; and enlightened I/0,
where the root partition and a guest VM communicate over
a shared-memory channel using the vmbus protocol. The
root partition provides memory pages to back a guest VM’s
address space. These pages, as well as a guest VM’s CPU
state, are accessible to the root partition to aid in the VM’s
execution.

In Credo, we address two types of threats: originating
from the hypervisor and originating from the root partition.
First, a malicious administrator can boot the system into a
rogue version of the hypervisor [17], or can modify the hy-
pervisor binary before it is started. Second, a compromise
of the root partition may use the interface between the root
partition and a guest VM to attack a guest VM. In particular,
a kernel level exploit of the root partition can use the im-
plicit trust in the root partition by the hypervisor to read and
manipulate a guest VM’s memory, virtual register state, and
virtual I/O state. Alternatively, a user-mode component on
the root partition may perform a privilege escalation attack
to gain administrative rights, and then either use a kernel
level malware as described above, or map guest VM mem-
ory pages in its own address space to read/modify guest data.
This threat model of misusing the trust between the hyper-
visor and a privileged partition is akin to a malicious moth-
erboard, that can snoop the buses and modify memory and
CPU state willy nilly. A special case of “malicious mother-
board” model is a rogue device, where the malware com-
promises the virtualization stack in the root partition that
provides virtual device and firmware like functionality (e.g.,

virtual BIOS) to a guest VM. These “rogue” virtual devices
can then compromise online and offline VM I/O state, and
online VM memory state via illegal reads and writes to guest
VM memory.

Compromise of the root partition may be the result of
an exploit through the large surface area of the OS kernel
and system services, or a deliberate act from an adversar-
ial administrator. The administrator may be genuinely mal-
intentioned, or “honest but curious”, or simply ignorant of
threats posed by malware.

The Credo threat model does not consider certain types
of attacks. First, we assume that a VM (privileged or oth-
erwise) cannot compromise the hypervisor via the hypercall
interface, and the hypervisor itself doesn’t have any secu-
rity bugs. There are steps towards formally verifying an OS
kernel that mat be applied to hypervisors [18, 19], although
there is no formal proof of the correctness for any commer-
cial hypervisors yet. Second, we do not consider denial of
service (DoS) attack by not allowing a guest VM to run, any
side-channel attacks [31], or certain hardware attacks. This
includes Cold boot attacks [14] on system RAM to read se-
cret data from it; DMA attacks using a bad peripheral with
the pre-boot environment to compromise the hypervisor or
a privileged partition [5]; and DMA attacks on guest VM
memory through physical devices that a privileged partition
may control. Most of the DMA based attacks can be de-
fended against using a capable IOMMU, as demonstrated
by TrustVisor [21] and NOVA [34].

2.2 Design Goals

1. Strong Isolation from Privileged VM(s) . In par-
ticular, provide secrecy and/or integrity protection of
a VM’s virtualized state from the root partition. From
a cloud customer’s point of view, this removes the need
for trust in the software environment and administrators
of the root partition on provider’s infrastructure.

2. Trust, but Verify. Establish a small, measurable TCB
for a VM as well as a measure of VM’s trustworthi-
ness, and enable mechanisms to verify this at runtime.
This requires specific hardware support, such as trusted
launch capability, TPM, and IOMMU, components that
are becoming commonplace on today’s server class
systems. We believe that any additional cost, if so
needed, is worth the investment for the cloud infras-
tructure provider, given the benefits it provides to the
clients.

3. Enable “on demand” security model. Cost of secu-
rity should be imposed only if security is required by a
VM. Since performance is the key requirement in any
cloud computing environment, any such cost should be
low.

To meet these goals, the Credo hypervisor provides a se-
cure execution environment for a guest VM using a set of
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Figure 1. High Level View of Credo Architecture. Com-
ponents inside the hypervisor highlight the additions
made by Credo to Hyper-V hypervisor. Bold lines
around emancipated guest VM denotes the secure exe-
cution environment.

mechanisms collectively referred to as emancipation. Eman-
cipation enables the VM to execute without taking any se-
curity dependency on the root partition, thereby effectively
removing the root partition from the guest VM’s TCB, in
particular its OS kernel, device drivers, and administrators.
Further, Credo reduces the overall platform TCB to a small
hypervisor and minimal hardware/firmware components by
using trusted launch of the hypervisor based on Intel’s TXT
technology [16]. Trusted launch of the hypervisor estab-
lishes a Dynamic Root of Trust for Measurement (DRTM).
Hereafter, we use the term DRTM launch and TXT based
trusted launch interchangeably.

Using measured launch of a VM with a trust chain
recorded in the TPM, Credo enables TPM-based local and
remote attestation for an emancipated VM. The client who
owns this VM may use this attestation to verify the trustwor-
thiness of the VM and the physical platform. These compo-
nents are shown in Figure 1, and are described in detail in
following sections.

Together, these aspects of Credo enable an alternative
trust model for guest VMs running in the secure execution
environment, where the external TCB of a guest VM is re-
stricted to the platform TCB only. This TCB is denoted in
Figure 2(b), which is much smaller as compared to Hyper-
V’s TCB denoted in Figure 2(a).

3 Emancipation

The Credo architecture provides a way to execute guest
virtual machines in a secure and trustworthy environment
without taking a trust dependency on the root partition us-
ing a mechanism similar to DRTM launch. The hypervisor
provides a hypercall to trigger a v(irtual)DRTM event for a
guest VM. When this event is triggered (either by the guest
VM or by the the root partition on its behalf), the hypervisor
suspends the VM, creates the secure execution environment
for the VM using the emancipation procedure, measures and
records the “execution state” of the VM. As the last step, the
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Figure 2. TCB comparison in Hyper-V and Credo.
Shaded components denote the platform TCB.

hypervisor resumes the execution of the guest VM inside the
secure execution environment.

The “execution image” of the guest VM is produced on
a separate trusted system, which is necessarily outside the
control of the infrastructure where the VM runs later under
Credo. This trusted system is owned and managed by the
owner of the guest VM, who is responsible for maintaining
its security and trustworthiness via other mechanisms out-
side of scope for this paper. We defer the details of the “ex-
ecution image” — how it is created, and how it is used - to
Section 5.

Emancipation collectively refers to mechanisms em-
ployed by the hypervisor and the guest VM to safeguard the
VM from a potentially malicious privileged partition. Eman-
cipation affords the guest VM a secure execution environ-
ment where it can protect secrecy and integrity of its infor-
mation from the components that otherwise form its exter-
nal TCB on commodity virtualization environments. Notice
that ultimately it is a guest VM’s responsibility to make use
of this execution environment to enforce these security guar-
antees for its information. Stated other way, a guest VM can
always choose to divulge its secrets to other VMs using I/O
channels, or as in the case with Credo, can disable emanci-
pation protection entirely.

We distinguish between emancipation mechanisms that
protect a guest VM’s memory and virtual CPU state versus
those protecting its I/O. The former set of mechanisms are
provided by the hypervisor, since those virtual resources are
directly controlled by the hypervisor. In most commodity
virtualization platforms, I/O virtualization is the responsi-
bility of the root partition or a driver VM. The guest VM
directly controls the mechanisms for emancipating I/O with
assistance from the hypervisor.

3.1 Emancipating memory and virtual CPU state

To emancipate a guest VM’s memory, the hypervisor re-
moves root partition’s access from its page tables for all sys-
tem memory pages backing a guest VM’s physical address
space. Both reads and writes to these pages are intercepted



by the hypervisor - reads return all Oz F'F's, while writes are
silently thrown away. After the VM is emancipated, the
hypervisor disallows creation of any new mappings in an
emancipated VMs physical space. This implies that that a
guest VM’s address space must be completely populated be-
fore the VM is emancipated. However, this does not pre-
clude dynamic memory management (e.g. via a balloon
driver [36]) where the VM can unemancipate memory pages
before returning them to the root partition.

Because an emancipated VM has exclusive control over
memory, it must explicitly release control of the memory
pages backing its physical space in order for the resources to
be reclaimed by the root partition after the VM shuts down.
This step is accomplished using the “unemancipate parti-
tion” hypercall, which resets the root partition’s access to its
original state for all memory pages backing the guest VM.
It is imperative that the guest VM must explicitly remove
any secret information from pages explicitly before calling
the unemancipate partition hypercall in order to maintain the
secrecy and integrity guarantees.

A guest VM’s vCPU state may be modified outside the
control of the guest VM as a result of intercepts. These in-
tercepts are either caused by guest VM itself, e.g., by access-
ing some virtual resource such as MSR or I/O port, or by
external events, such as a virtual interrupt associated with a
virtual device.

Most intercepts related to a virtual resource maintained
by the hypervisor, e.g., a Model Specific Register (MSR),
are handled by the hypervisor, thus any guest VM’s vCPU
state change in that path is trusted. Of concern are intercepts
that are not handled by hypervisor and are forwarded to the
root partition. For example, the OS in guest VM may try
to access virtual devices that cause an intercept to be gen-
erated, which the hypervisor forwards to the root partition.
In order to service this intercept, the root partition needs to
access the guest VM’s vCPU state and its memory. Guest
VM’s memory is safeguarded using page tables as described
earlier. However, the vCPU state is still vulnerable to attack
by a malicious the root partition.

Our approach to vCPU state emancipation is two
pronged: limit the number of intercepts that are forwarded
to the root partition, and enhance access controls on virtual
registers that intercepts may need to access.

The former approach implies that a guest VM must limit
its use of intercept or emulation based I/O. We enforce this
in the hypervisor — the root partition is not allowed to add
any new memory areas in an emancipated guest VM’s GPA
which could cause an intercept to occur. Only a limited num-
ber of I/O ports are allowed to cause intercepts, currently
only those belonging to the timer, keyboard, and serial 1/O.
On the intercept path for these ports, the hypervisor enforces
that the root partition only accesses the appropriate vCPU
registers. For example, for serial I/O the root partition needs
to access only the EAX register and access to any other reg-
ister is denied. Note that this kind of specialized handling in

the hypervisor can be enabled only for a handful of simple,
well known emulated devices.

We do not find these restrictions on emulated device us-
age burdensome for a guest VM. Most commodity virtual-
ized platforms already discourage the use of intercept and
emulation based I/O due to high performance overheads and
provide enlightened or para-virtualized I/O devices. Para-
virtualization uses shared memory channels to perform I/O,
a much faster mechanism than the slow hypervisor driven in-
tercept path. Further, emancipating I/O for legacy emulated
devices requires changes to their proprietary device drivers,
which is not possible for third party closed-source drivers.

3.2 Emancipating I/O

In Credo, it is the responsibility of the guest VM to use
cryptographic measures for I/O emancipation as the hyper-
visor is not involved in the para-virtualized I/O path. Making
the guest VM aware of I/O emancipation is compatible with
the para-virtualized I/O model.

Emancipated para-virtualized I/O from a guest VM in-
volves two steps: first, a shared memory based channel is
established between an emancipated guest VM and the un-
trusted root partition; and second, a guest VM uses secrecy
and/or integrity protection techniques to read or write data
to or from this shared memory channel.

For the root partition to use shared memory for communi-
cation it needs to be able to access guest memory which is by
default protected by memory emancipation. We provide the
“unemancipate page” hypercall to selectively remove pro-
tection for the pages used by the shared memory channel.
One such channel is created for each para-virtualized de-
vice. Messages sent over the channel may contain pointers
to buffers on data pages that must also be unemancipated. As
an optimization, instead of calling the “unemancipate page”
hypercall for every page, the vmbus keeps a pool of uneman-
cipated pages that are setup at VM startup. Drivers allocate
and free memory pages to and from this pool. The vmbus
driver in the guest VM can grow/shrink this pool on demand
as needed.

This encryption based approach to emancipating 1/O
works in a cloud environment since the guest VM mostly
requires just storage and network based I/O to execute in
such an environment. In fact, Credo explicitly disallows any
emulation based I/0O, and all VM management should be per-
formed using a network based remote access connection.

As a concrete example, we have implemented a Secure
Disk (SDisk) driver by modifying the enlightened, SCSI-
based, virtual hard disk (VHD) driver. SDisk encrypts ev-
ery block of data stored on the VHD. The encryption key is
stored in a protected manner that prevents malware in the
root partition from accessing it. Exact details on how this is
accomplished is deferred to Section 5. A similar encryption
based approach for protection can be applied to networking
via an emancipation aware network card driver, by using an
IPsec channel, transport layer security such as SSL/TLS [6],



or application level encryption of data. To facilitate commu-
nication with the root VM (which also forwards communica-
tion from the outside world to the guest VM), we currently
provide an emancipation aware vmbus based communica-
tion channel called vmbus pipe. This channel is used, e.g.,
to exchange the remote attestation that a VM obtains from
the Credo hypervisor, and by services such as the shutdown
indicator service and the time synchronization service pro-
vided to a guest VM by Hyper-V.

4 Building Trust in Credo
4.1 Trusted Computing Overview

We briefly recapitulate some of the trusted computing
technologies we leverage in this work. A more detailed
description is provided by [28]. Trusted computing tech-
nologies include hardware protection of cryptographic keys,
non-repuditable platform state recording and reporting, and
strong machine identityA key hardware component that pro-
vides much of these functionalities is a Trusted Platform
Module (TPM).

A TPM is similar to a smartcard tied to the motherboard
of a platform. Each TPM is equipped with a unique Endorse-
ment Key (EK), which provides a strong platform identity
and a Storage Root Key (SRK) is the root key for the TPM
key hierarchy. The EK is rarely ever used — rather an AIK
is used as an alias for the EK due to security and privacy
concerns. A TPM has multiple 20-byte sized Platform Con-
figuration Registers (PCRs) that can be used to record the
measurements of various software components on the plat-
form. Most of these PCRs are non-resettable by software,
and can only be extended providing the basis for maintain-
ing platform integrity.

The recording of platform integrity is used to create a
chain of trust starting from the CPU itself. This chain of
trust, or Root of Trust for Measurement (RTM), is estab-
lished either statically (SRTM), or dynamically (DRTM). In
SRTM the trust chain starts in the processor at the system
reboot, and is built by previous software component mea-
suring and extending the next component into PCRs. One
example use of SRTM is the Microsoft BitLocker full vol-
ume disk encryption technology [23]. One key weakness of
SRTM process is that the trust chain is brittle in the face of
hardware and software environments where changes to plat-
form configuration and initial software execution frequently
occur.

To address the fragility of the SRTM process, TCG is de-
veloping a new standard called the Dynamic Root of Trust
for Measurement (DRTM), provided by Intel’s TXT [16]
and AMD’s SVM [1] technologies. The fundamental tech-
nique is to allow untrusted code to establish the state of a
platform, reset the platform with the DRTM event using a
special CPU instruction (GETSEC[SENTER] on TXT) into
a trusted environment. This removes a host of pre-boot soft-
ware, such as bootloaders, and firmware from the platform

TCB. DRTM launch starts a trusted environment that mea-
sures and records a Dynamically Launched Measured Envi-
ronment (DLME). Measurements of DLME in a specific set
of PCRs also form the evidence of the DRTM event. The
DLME has a very small TCB (minimal hardware and TXT
firmware) and runs in a secure environment that provides
memory isolation from DMA, among other protections. The
DLME is responsible for TCB management for the rest of
the software environment.

4.2 Establishing Minimal Platform TCB: DRTM
Launch of the Hypervisor

The platform TCB for commodity virtualization plat-
forms is quite large. Besides dynamic privileged partitions,
it includes a number of hardware and firmware components,
such as option ROMs, and the pre-boot environment, which
itself can be extensible. Credo uses TXT technology to es-
tablish a minimal platform TCB, composed of the hyper-
visor and a small number of other hardware and firmware
components, including the TPM and the TXT firmware.

DRTM launch process of the Credo hypervisor involves
two phases:

e In the first phase potentially untrusted code configures
the platform, loads a small hypervisor specific boot-
loader called HYDLME, and the hypervisor into mem-
ory, and asserts the DRTM event.

e In response to the DRTM event the platform measures
and launches HvDLME, which in turn measures and
launches the hypervisor. The hypervisor takes control
of the resources necessary to protect itself (e.g., MMU)
and the TPM, and establishes itself as part of the plat-
form TCB.

At each step the measurements are recorded in a subset
of TPM’s resettable PCRs (17-23). Access to these PCRs
is controlled via the notion of a locality. The platform uses
locality 4 not available to the software to record the mea-
surement of HYDLME in PCRs 17 and 18 in response to
the DRTM event. HvDLME uses locality 2 and PCR 22
to record the measurement of the hypervisor. As described
later in Section 4.3, the hypervisor only exports locality 0
through a para-virtualized interface which cannot reset any
of these PCRs. Hence, measurements reflected in PCRs 17,
18, and 22 after the hypervisor startup reflect the trustwor-
thiness of the platform TCB. Finally the hypervisor starts
the privileged root partition which sets up the rest of the ma-
chine to make it available for hosting virtual machines.

4.3 Para-virtualized TPM Access

In Credo architecture, the hypervisor owns and controls
the TPM, as TPM records the trust chain and forms the ba-
sis for trustworthiness of the platform TCB. We leverage
prior work by [7] to enable para-virtualized TPM access for
guest VMs. The hypervisor implements a software imple-
mentation of PCR registers, called virtual PCR registers or
vPCRs, for each VM. One such vPCR, called details vPCR,



is initialized by the hypervisor at the emancipated start of a
VM using the measurement of VM’s execution state. This
vPCR forms the code identity for the VM, and is reset only
when the VM leaves the secure execution environment. Oth-
ers hardware resources, such as TPM contexts and keys, are
shared among VMs. Guest VMs use the hypercall interface
to communicate with the TPM, which is very similar to the
physical TPM interface. The hypercall includes additional
header information for vPCR specific commands (e.g., ex-
tend and reset) and a virtual TPM context. The virtual TPM
context includes vPCR information if any vPCR are needed
by the command. Hypervisor, then, loads a representation
of these VPCRs and their contents into the hardware PCR
23. Guest VMs are free to select any combination of phys-
ical and virtual PCRs to suit their needs. For example, to
authenticate DRTM launch of the hypervisor, a guest VM
may select physical PCRs 17, 18, and 22 for Credo in the
TPM_Quote command. If the guest VM wishes to authenti-
cate itself and the hypervisor, it selects the details vPCR as
part of the virtual TPM context, and then calls TPM_Quote
via hypercall with PCRs 17, 18, 22, and 23.

5 Emancipated VM Lifecycle
5.1 Preparing a VM for Emancipated Execution

The secure execution environment provided by the eman-
cipation process poses certain restrictions on the guest VM.
In particular, it requires that: 1. The guest VM starts execu-
tion from a memory and vCPU state that does not have any
security dependency on the root partition; 2. In order to be
used as the code identity, the state must be repeatable, with a
measurement that is unique; and 3. The execution state must
be self-sufficient to start the enlightened I/O.

These requirements are a significant departure from the
traditional model of VM startup. In current virtualization en-
vironments, a VM’s startup is prepared by the virtual BIOS,
untrusted in the Credo model, and relies heavily on emu-
lated, non-enlightened I/O from the root partition. Addition-
ally, in order for the measurement based approach to work, it
is imperative that the vDRTM event is asserted at a point in
time where not only the execution image meets the criterion
1 and 3, but also it is predictably same for repeated execu-
tion. Assuring that execution state of the VM at the point
when VDRTM is asserted remains fixed presents a practi-
cal challenge, since OS boot process usually performs many
asynchronous startup steps. Said differently, initiating the
secure execution environment via VDRTM event with tra-
ditional model of VM boot may not result in a repeatable
measurement.

One possible approach for building an execution state
with required properties is to enlighten the boot process of
the OS itself. In particular, the bootstrap code of the ker-
nel needs to be modified. This kernel is loaded in VM’s
address space via a separate bootloader inside the root parti-
tion. This approach is possible for an open source OS such
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Figure 3. Running VMs emancipated in Credo

as Linux [3]. However, this approach has a high engineering
cost as it requires major modifications to the OS kernel.

We overcome this issue of repeatability via VM save/re-
store functionality. Based on the invariant that the execution
state of a VM is the same each time it is started from the
same saved state, Credo creates an “execution image” to be
later executed inside the secure execution environment using
steps outlined in Figure 3. This process involves a trusted
system running a Hyper-V environment where the root par-
tition is trusted. As described earlier, this trusted system
belongs to the client — VM’s owner — and is outside the con-
trol of the cloud infrastructure, where the VM executes later.
In step 1, the trusted server boots up the required VM to a
quiesced state where the OS does not need emulation based
I/O any more. The para-virtualized emancipated I/O drivers,
including vmbus are loaded in memory, but aren’t started
yet. This state meets criterion 1 and 3 for vDRTM event as-
sertion outlined earlier. In step 2, a VM save operation by
the root partition at the trusted server produces a snapshot
of VM’s memory contents and vCPU register state. The
root partition discards any virtual device state (except for
the state that Credo doesn’t emancipate, such as contents of
video RAM). This saved state needs to be persisted for later
emancipated runs of the VM. The trusted server produces a
measurement of the saved state. Currently, this is accom-
plished via a emancipated restore of the VM on the trusted
server, which results in the hypervisor populating the details
vPCR with the desired measurement. In step 4, we use VM
export/import functionality in Hyper-V to transfer the saved
VM state to the target machine. Once the saved VM state
arrives at the target machine, it may use this state to restore
the VM emancipated as many times for desired duration of
activity (between steps 5 and 6) as needed.



5.2 Provisioning Emancipated VMs

Emancipation provides the necessary protection guaran-
tees to a guest VM from the privileged root partition. How-
ever some key questions still remain, e.g., how does a VM
know (or convince an external machine on the network) that
it is running emancipated? Since the environment is virtu-
alized, a VM cannot trust any response it receives from the
root partition or the hypervisor, as these components may
be compromised. Additionally, a long-lived customer VM
would need to maintain some persistent storage that survives
across VM restarts. A VM may use encryption to preserve
the confidentiality of data on this persistent storage. But how
deos the VM obtain this key and safeguard it from a mali-
cious root partition?

We leverage TPM-based attestation to solve these prob-
lems. In order to establish trustworthiness, a VM either per-
forms a remote attestation using TPM Quote as part of com-
munication setup with the outside world, and/or local attes-
tation using TPM Seal/Unseal to safeguard the encryption
key for offline storage [35]. Protection of a key when it is
VM’s memory during VM'’s execution is provided by eman-
cipation, as described earlier. Next we describe two scenar-
ios that detail the use of TPM-base attestation to establish
the required trustworthiness in the VM.

5.2.1 Remote Attestation of an Emancipated VM

Assume that a machine owned by the client Mc; ;¢ Wants
to assess the trustworthiness of a VM, VMcjent, running
on machine Miarget. Additionally, Mcijent Wants to pro-
vide VM¢1ient @ secret S only if VMc1ient IS trustworthy. We
assume the presence of an Attestation Identity Key (AIK)
available for use by the TPM on M;,rger Which is trusted
by Mciient- The process of setting up an AIK is described
elsewhere[30].

In this scenario, VM.1ent creates a new random RSA key-
pair K during initialization, and creates a VPCR keyhash ex-
tended with the hash of Kyup. Mciient challenges VMcijent
with a random nonce N (to guarantee freshness). In response,
VMc1ient Uses the para-virtualized TPM interface to send a
TPM_Quote command over N to associate the public key
with the environment in which it is running by including the
physical PCRs 17, 18, 22, and 23, and details and keyhash
vPCRs. The hypervisor resets the PCR 23 and extends it
with desired vPCRs, and then forwards the TPM_Quote re-
quest to the TPM. The TPM prepares a quote blob including
a signature over N using AIK;, and the desired PCRs. This
quote is then sent back t0 Mc1ient along with Kpup. Mciient
examines the quote blob, and if it meets policy, encrypts the
secret S with Koy, and sends it t0 VMcijens. In particular,
Mc1ient €nsures that:

® Miarger has a valid physical TPM (association between

the AIK and a specific TPM).

® Miarget 1 running a good known version of the hyper-

visor launched with DRTM (captured in PCRs 17, 18,
and 22),

® VMc1ient 1S running emancipated (captured in details
vPCR),
® VM1 ;ent 1s indeed the VM that it intends to attest (cap-
tured in details vPCR)
VMciient Can then use Kp;;y to recover the secret S.

5.2.2 Managing the SDisk Encryption Key

If there is an online connection between an emancipated
VM and the trusted server outside the infrastructure where
VM is running where the secure disk for this VM is initial-
ized and encrypted with, say, a symmetric key Kgp, the quote
based mechanism described in previous section can be used
to provide the VM with this key. The provisioning protocol
we have implemented works without an online connection
between the emancipated guest VM, and the trusted server.
Steps for this protocol are described next.

1. The trusted server creates a random symmetric key X,
and “remote-seals” it to the target machine with the
TPM containing the AIK above, running a known good
version of DRTM launched hypervisor, and running the
intended guest VM. This results in an activation blob.
The remote sealing process is described later.

2. The trusted server encrypts Ksp with K. Encrypted Kgp
and the activation blob are sent to the root partition on
the target machine.

3. The root partition stores encrypted Ksp and the activa-
tion blob as part of SDisk’s metadata. It also changes
SDisk state to “activate”. It then starts the emancipated
guest VM and attaches SDisk to it.

4. Emancipated guest VM calls
TPM_ActivateIdentity command with the
activation blob using para-virtualized TPM interface.
The TPM reveals K to the guest if all the PCR mea-
surements establishing the trustworthiness of platform
and guest VM are valid, and AIK is loaded and is a
valid identity key.

5. Emancipated guest VM decrypts Kgp with K. Next it
mounts SDisk using Kgp.

6. Emancipated guest VM Seals Kgp using TPM_Seal
command [35] to the platform configuration, its details
vPCR, and TPM’s Storage Root Key (SRK). It stores
the sealed blob on the SDisk as metadata, and changes
the SDisk state to “initialized”.

7. From this point onwards, the emancipated guest VM
can use TPM_Unseal command [35] to obtain Kgp on
further restarts.

Remote Sealing

We perform remote sealing of provisioning data using
the Endorsement Key (EK) of target machine’s TPM as an



Component SLOC
DRTM Launch of Hv 3183
vDRTM Launch of VM 875
ParaVirt. TPM Access 8505
vmbus enhancements 323
SDisk 1890
TPM driver 961
Total 15737

Table 1. SLOC metric for Credo modifications to Hyper-
\Y

asymmetric encryption key. The trusted server prepares
a TPM_EK_BLOB_ACTIVATE [35] data structure. This
structure contains a TPM_PCR_INFO_SHORT describing
the expected and demanded PCR configuration on the tar-
get machine. The data structure is then encrypted with the
E K,y of the target machine’s TPM. This approach is simi-
lar to certifying AIK as described in [30].

We establish a simple server-side database of public EKs
out-of-band. We expect that a VM’s owner would obtain
EK certificates for set of machines the cloud infrastructure
would use to run her VM(s).

6 Implementation Details

Credo infrastructure requires modification to the hyper-
visor and the vmbus interface in order to provide the secure
execution environment to a guest VM. Table 1 lists the spe-
cific components and source lines of code (SLOC) required
for these modifications. In all, Credo adds ~ 15K SLOC to
aVM’s TCB — ~ 12K of which are added to the hypervisor
and ~ 3K are added to the OS runtime for I/O emancipation
and para-virtualized TPM access. Next, we provide imple-
mentation specific details of some of the components that
were omitted from the architectural description.
Emancipated VM startup: The saved VM state that forms
the “execution image”, captured via VM save operation in
step 2 of Figure 3, cannot be using any non-enlightened, em-
ulation based I/O.

In order to build such an image on the trusted server us-
ing traditional Windows boot process, we use a bootable
RAMDISK stored on a virtual IDE disk. Here, the IDE disk
is only used by the bootloader on the trusted server. By dis-
abling the IDE disk driver (disk.sys) from this RAMDISK
installation, we ensure that once Windows finishes booting,
the OS does not use the IDE disk with which the VM started
executing. We save the memory image and CPU state using
Hyper-V’s save mechanisms after Windows finishes boot-
ing. A similar approach can be taken for Linux as well using
initrd image.

Although limited by the size of RAM allocated to the
VM, we find this method adequate for running completely
functional versions of Windows, e.g., Windows Preinstall
Environment [26]. This minimal environment provides
enough functionality for building special purpose VMs.

Once the saved image is started emancipated on an un-
trusted machine in the cloud infrastructure, a startup script
loads the modified vmbus driver (which also starts the vimbus
pipe communication channel), and the SDisk driver (both are
part of the RAMDISK image). Any futher setup operations
must be run from SDisk.

In Hyper-V, start from saved state by default deletes the

saved state. This adds an extra copy step to save the image
to another file to emancipated start of VM. This copy op-
eration takes time proportional to the size of the saved VM
image. In a future optimized implementation, this cost can
be removed by changing the default Hyper-V action to not
delete the saved state.
SDisk is implemented as a filter driver in the virtual storage
stack that sits right above the virtual SCSI driver. It mainly
interposes itself on the read/write path, and performs data
encryption/decryption before passing it down to virtual En-
cryption mechanism used is AES with 256-bit key as Kgp.
SCSI driver, which then sends emancipated I/O data on un-
trusted vmbus communication channel. SDisk driver stores
metadata related to SDisk on the last IMB of vhd. Block
containing metadata are kept hidden from upper layers in the
storage stack of the guest VM, thereby reducing the available
storage capacity by 1 MB.

An optimization used by SDisk driver is to use unemanci-
pated pages as target for encrypted data. Similarly, the data
to decrypt is directly targeted to upper layer buffers, rather
than first copying then decrypting. This ensures less over-
head, if any, than doing encryption/decryption of data pages
in place and then copying the content to/from unemanci-
pated pages. As shown by experimental results for SDisk,
the cost of copying (aka bouncing) buffer to/from uneman-
cipated pages is minimal - most of the cost is attributed to
actual encryption/decryption operations.

One limitation of virtual SCSI implementation in Hyper-

V is that it can’t be used for booting the VM. This restricts
our SDisk implementation as well, which uses virtual SCSI
driver underneath. Hence, the current SDisk prototype can
only be used for data storage after VM is already running
emancipated.
DRTM launch of hypervisor: TXT architecture puts cer-
tain restrictions on the DLME that make it difficult to di-
rectly launch the hypervisor as a DLME. Instead a small
Hyper-V aware DLME (HvDLME) that understands the
specifics of Hyper-V hypervisor is used as DLME. We ex-
tend Windows bootloader (winload.exe) to load HYDLME
and the actual hypervisor binary in the memory, and perform
a small amount of DRTM specific configuration to estab-
lish the required memory mappings, e.g., to allow TPM ac-
cess. Next, the boot loader launches HyDLME using DRTM
launch as described earlier. As a result of DRTM opera-
tion, PCRs 17 and 18 are set with measurements related to
HvDLME.

The HvDLME uses the signatures and code of the hy-
pervisor loaded by the boot loader to record the hypervi-



sor’s identity in PCR 22, and validates that it was loaded
correctly. Lastly it transfers control to the hypervisor estab-
lishing a robust platform TCB with a trust chain based on
DRTM launch.

7 Evaluation
7.1 Security Analysis

In this section, we revisit threat scenarios introduced in
Section 2.1, and illustrate how Credo counters them via
mechanisms introduced in this paper.

DRTM launch of the Credo hypervisor removes the pos-
sibility of an administrator starting the platform in an un-
trusted state without getting detected, e.g., by starting a
rogue hypervisor. Similarly, any malicious modifications to
the execution image before it is started to launch the eman-
cipated VM would get recorded in details vPCR. Unseal
and remote attestation mechanisms will protect emancipated
guest VMs from leaking any secret data, and facilitate detec-
tion of the fact that the platform is untrusted, or the execution
image was modified in an untrusted manner.

Secure execution environment established by Credo af-
fords runtime immunity to emancipated VMs from malware
in the root partition, which may potentially be installed by a
malicious administrator. Further, cryptography based mech-
anisms enforce protection of sensitive data from the same at
rest or during I/O.

7.2 Performance

Experiments are performed on a machine with dual core
Core 2 CPU at 2.53 GHz, 2GB RAM, and a 7200 RPM ATA
hard disk. This machine also has the TXT trusted launch
capability and a TPM v1.2. In stock configuration, machine
runs 64-bit Server 2008 R2 Enterprise version of Windows
in the root partition and the Hyper-V hypervisor. The other
configuration is running the Credo environment, which runs
our version of the hypervisor, and a corresponding private
build of 64-bit Server 2008 R2 Enterprise version of Win-
dows in the root partition. The guest VM is configured with
a single core and 1GB RAM, and runs a minimal Windows
PE environment, that is also based on 64-bit Server 2008
R2 Enterprise version of Windows. When booted, ~ 40%
of the memory is dedicated to RAMDISK, of which 32MB
is free for temporary storage. The corresponding .wim file
is ~ 330M B in size on disk and contains the base Win-
dows PE environment, utilities required to load drivers via
command line, Credo specific drivers for vmbus, SDisk,
and para-virtualized TPM, and PassMark Performance Test
benchmarking suite v6.1 [29]. The vhd used by SDisk is
2GB in size.

Microbenchmarks DRTM launch of hypervisor adds no
noticeable latency to machine boot up from power-on re-
set compared to the research prototype version of Hyper-
V (~ 160 seconds till windows logon screen for both the
cases). Emancipated VM startup takes ~ 35 seconds longer

than an unemancipated startup, most of which is spent in
hashing the guest GPA and generating the details vVPCR. The
extra copy step required to start VM in emancipated state
also adds ~ 25 seconds. Extra ~ 20 seconds are taken
by the script that starts emancipated I/O drivers. The un-
seal operation by SDisk driver to obtain Kgp takes ~ 2.5
seconds, while the quote operation to generate remote attes-
tation takes ~ 1 second. Note that most of these are setup
costs and are applicable only once per execution of an eman-
cipated guest VM.

PassMark We use the PassMark Performance Test bench-
mark suite [29] for benchmarking the performance of vari-
ous tests inside the guest VM. The benchmark is run in three
scenarios:

e With stock Hyper-V configuration.

e With Credo but without the secure execution environ-
ment. This measures the impact of Credo on non-
security sensitive VMs.

e With Credo within the secure execution environment.
This measures the impact of Credo and secure execu-
tion environment on security sensitive VMSs.

We report performance results for scenario 2 and 3 rel-
ative to scenario 1. These results are broadly categorized
as CPU, memory, and I/O, based on the subsystem being
stressed by the benchmark. All tests were executed for a 30
second duration, and we use the average of 20 runs to com-
pute relative performance.

PassMark’s CPU tests include integer math, floating point
math, prime number finding, SSE instructions, compression,
and string sorting. Memory tests include allocation, read
cached, read uncached, write, and Large RAM. Results are
depicted in Figure 4(a). For brevity, we omit results for
some of these cases, but the trends are similar to ones that
are shown. These results demonstrate that the Credo does
not have appreciable impact on CPU and memory intensive
workloads in a guest VM, whether using a secure execution
environment or not. This is as expected, since Credo does
not impose any runtime cost for these workloads. Any mi-
nor variation in performance compared to stock Hyper-V is
due to the fact that our research prototype version is com-
piled without optimizations and with debugging features.

For disk based tests, we use the Hyper-V virtual SCSI
driver for scenarios 1 and 2. For scenario 3, we sub-divide
results in two categories: one, using a version of SDisk
driver that does just data copying to unemancipated mem-
ory and doesn’t perform any encryption or integrity protec-
tion (passthrough disk); and two, a version of SDisk driver
that does encryption (Encrypted disk). This identifies the
cost imposed by two steps of I/O emancipation - data copy-
ing and encryption, respectively. Disk tests include sequen-
tial read, sequential write, and random seek + read/write.
These results are presented in Figure 4(b). These results
show that impact of data copying in/out of unemancipated
pages on overall I/O throughput is negligible. Encryption
adds ~ 33% overhead on average, which is similar to other



similar technologies [4].

M GuestVM M Emancipated Guest VM

Integer Math Floating Point Find Prime ~ Read Cached
Math Numbers

Read
Uncached

Write

Performance Relative to Stock Hyper-

(a) CPU and Memory (first 3 tests are CPU, last 3 tests
are memory)

= Guest VM = Emancipated Guest VM + Passthrough SDisk
Emancipated Guest VM + Encryption SDisk

1

kkl

Random Seek + RW

Sequential Read Sequential Write

Performance relative to Stock Hyper-V/

(b) Disk

Figure 4. PassMark benchmark results. Guest VM and
Emancipated VM denote a VM running in Credo without
and within secure execution environment, respectively.

In summary, experimental results show that Credo im-
poses mostly one time setup cost. Credo does not impact
performance for virtual machines that do not require the
security benefits when compared to a stock Hyper-V envi-
ronment, while only imposing modest cost on emancipated
VMs.

Isolated Crypto Service

This section provides a qualitative evaluation of Credo,
by showing how Credo enables security sensitive functional-
ity in a cloud environment. In particular, we present the im-
plementation of Isolated Cryptographic Service (ICS). ICS
acts as a headless virtual security appliance and offers a sub-
set of the standard Microsoft Cryptography Next Genera-
tion library (CNG) [24], including secure key generation and
asymmetric cryptography. By leveraging the secure execu-
tion environment provided by Credo, ICS provides strong
protection of cryptographic keys in memory, isolated execu-
tion of cryptographic operations, and secure generation and
storage of keys. These properties are of utmost importance
for many services, such as Certificate Authorities, secure
data storage, and security sensitive applications in finance
and health care industries.

The operating environment running in the ICS is a min-
imal, enlightened version of Windows based on Windows
Preinstall Environment (WinPE). Startup of ICS is per-
formed using mechanisms described in Section 3. The con-
fidentiality and integrity of the executing ICS instance and
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the confidentiality of stored data are ensured via emancipa-
tion and SDisk, respectively. ICS provides a vmbus based
pipe communication channel to other VMs to communicate
with the CNG service running inside ICS.

We used a micro-benchmark user application running in
the root partition to sign a 16KB message using a 1024-bit
RSA key using ICS. The latency for this operation is ~ .95
ms. Latency for the same operation without ICS, i.e., when
using a CNG service running locally in the root partition,
is ~ .88 ms. The micro-benchmark result shows that ICS
provides the added isolation benefits at a modest cost.

8 Limitations

This section describes some limitations of the Credo ar-
chitecture and its prototype implementation, and proposes
possible solutions.

e No direct save/restore. An emancipated VM can not
be saved/restored and migrated live during execution.
Saving a VM requires access to memory and vCPU
state from the root partition, which is explicitly disal-
lowed by emancipation. However, a limited version
of save and migration can be implemented using ap-
plication specific knowledge. In particular, the applica-
tions should serialize their state onto SDisk, and eman-
cipated VM should be shutdown. This state can be de-
serialized at next emancipated start of the VM.

No live migration. Related to the issue above, an eman-
cipated VM can not be migrated live since it requires
access to guest VM’s memory from the root partition.
However, a model of application specific save/restore
based migration is still possible. After the guest VM is
safely shutdown, it needs to be re-provisioned for the
target machine where it needs to be migrated to. Steps
for those are similar to the initial provisioning steps,
and require mediation from the trusted server. Note that
the trusted server only needs to provision a new activa-
tion blob specific to the target machine. VM execution
image and SDisk can be directly transferred to the tar-
get machine.

No emancipation support for networking and no in-
tegrity protection for storage. These limitations of
our prototype implementation are currently work-in-
progress.

Related Work

Past research has proposed many approaches for build-
ing secure execution environments on commodity platforms.
Flicker [22] uses AMD SVM [1] technology to execute a se-
curity sensitive code fragment, called PAL, inside a hardware
based minimal secure execution environment. However, on
demand setup of this execution environment is costly and it
cannot execute concurrently with the untrusted environment.
TrustVisor [21] provides a hypervisor based secure execu-
tion environment for executing PALs that provides better



performance and eases certain constraints. TrustVisor uses
mechanisms similar to that of Credo, namely trusted launch
of hypervisor, page-table based memory protection from hy-
pervisor, and a hypervisor based virtual TPM to record in-
tegrity measurements. However, an application partitioning
based solution, such as Flicker and TrustVisor, does not lend
itself easily to a virtualization based cloud environment that
requires execution of full fledged VMs, some of which might
be security sensitive. We argue that Credo provides a practi-
cal, more flexible, approach to security in a cloud since the
VM based secure execution environment runs a full featured
OS, and services don’t need to be rewritten in order to run in
this environment.

Credo shares many of its design goals with Terra [10],
which provides a trusted virtual machine monitor TVMM
that enables security for isolated closed box VMs, similar
to emancipated VMs provided by Credo. However, the sys-
tem has a large platform TCB which includes the VMM and
the host OS. Disaggregation based approaches for security in
virtualized systems [27, 9, 34] do not reduce the size of plat-
form TCB. However, they do improve the overall security of
the system by making it harder for compromise of one com-
ponent to impact the whole TCB of the VM. Disaggregation
presents engineering and management challenges - function-
ality of virtualization stack must be torn apart, dependen-
cies may need to be replicated, new interfaces must be cre-
ated and maintained for inter-partition communication, and
all of these privileged component must now be managed to
keep them up-to-date. Credo avoids these costs by leverag-
ing DRTM principles to reduce the runtime platform TCB of
a VM just to the hypervisor.

Trust in virtual machines, and cloud computing infras-
tructures in general, is a matter of active ongoing debate. In
certain specific scenarios, such as storage [20], group col-
laboration [8], and detecting tampering with online gaming
state [15], it is possible to relax trust requirements from the
infrastructure. However for security sensitive general pur-
pose computation, it is required that the infrastructure pro-
vide strong trust guarantees. Credo provides such an envi-
ronment with minimal TCB based on the hypervisor that is
easy to attest to, compared to other virtualization based ap-
proaches to maintaining VM integrity that have large TCBs
that includes privileged partitions, their administrators, and
complex policies [33].

10 Conclusions and Future Work

This paper presents the design and prototype implemen-
tation of the Credo architecture. Credo provides a small plat-
form TCB based on minimal hardware, firmware, and hyper-
visor to emancipated VMs. This results in a huge reduction
of dynamic and extensible components that are otherwise in
the TCB of a VM on commodity virtualization platforms.
Although we don’t have authoritative numbers, general pur-
pose OSes are usually tens of millions of lines of code [37].
Credo removes these from VM’s TCB, while adding only
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~ 15K lines of code overall to Hyper-V virtualized envi-
ronment. In particular, Credo protects guest VMs against
threats from a malicious administrator and malware in the
root partition by removing it from the platform TCB. Us-
ing isolation, supplemented with cryptographic and trusted
computing based mechanisms, such as TPM-based sealing
of information and remote attestation, Credo provides se-
crecy and integrity guarantees to an emancipated guest VM
against the privileged root partition.

As part of future work, we plan to extend the current de-
tails only model of guest measurement to include authorities
model as well. In this model, the trusted server preparing
the VM image will also sign the details vPCR with a cer-
tificate. The public key from this certificate will form the
basis for the authorities vPCR. This will enable further at-
testation scenarios based on “who” provided the VM, as well
as “what” runs inside them. We also plan to extend Credo
with mechanisms for runtime integrity management of guest
VMs. This will enable the attestation of not only the load
time integrity state of VMs as provided by Credo today, but
also of the dynamic runtime state.
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