

http://i2pc.cs.illinois.edu/

Illinois Team of Smiling Professors

3

http://i2pc.cs.illinois.edu/

Focus: Multicore Client Platforms and Applications

• Hard problem:

– Need to parallelize individual app algorithms

– Strict power budget for mobility

– Large community of developers & use of specialized frameworks

– “Killer apps” still unclear

4

http://i2pc.cs.illinois.edu/

The Illinois Vision

Make parallel programming easy

• Easy to write correct programs

• Easy to tune for performance/power

Focus on “easy” parallel programming patterns

• Provide a simple, efficient programming model atop complex HW and SW

Focus on end-goal: Better Applications

5

http://i2pc.cs.illinois.edu/

Four Pronged Approach

6

Applications:

 Compelling client apps that can benefit from parallelism

 Practical frameworks, algorithms and libraries

Safe Parallelism:

 Parallel programming without mysterious bugs

 Reduced debugging and testing time

Easy Tuning:

 Interactive, deep code transformations for performance and power

 Reduced tuning time

Scalable Hardware:

 Architectures that scale to 1K cores and are programable

Technology

Transfer:

Intel & Microsoft

Outreach &

Education:

Broad

Community

Influence on

R&D Community

http://i2pc.cs.illinois.edu/

Some Statistics

• 19 faculty involved at the peak (not all funded)

• 3 engineers

• 30 graduate students per semester (not all funded)

• Nearly 100 papers published

• 4 software publications (Vivid, ReLooper, DPJ, refactoring)

• Weekly seminars at Illinois, broadcasted

• Yearly summer course on parallelism at Illinois

• Encyclopedia of Parallel Computing

• 3 courses at Boeing and 1 in Singapore

• Keynotes, distinguished lectures, best papers, major awards, demos

7

http://i2pc.cs.illinois.edu/

APPLICATIONS

8

http://i2pc.cs.illinois.edu/

AvaScholar: Immersive Virtual Environment for Education

AvaScholar Instructor
Real-Time Deformable Stereo and Shape-from-

Motion Reconstruction of Instructor and Visual Aids

AvaScholar Student
Real-Time Agglomeration of Demographics,

Engagement and Confusion of Remote Students

http://i2pc.cs.illinois.edu/

AvaScholar Instructor

• Real-Time shape-from-motion stereo reconstruction

10

http://i2pc.cs.illinois.edu/

Scan Alignment

• Align multiple scans to refine model, remove noise and fill

gaps

• Scaling up via increased parallelism

to handle deformable models such as faces, hands and

general shape articulation

Single Scan

Aligned Scans

http://i2pc.cs.illinois.edu/

Deformable Alignment

• Segment model into rigid elements

• Use Iterated Closest Point methods to align elements

 energy minimization

• Solve simultaneously for model, segmentation and

motion

http://i2pc.cs.illinois.edu/

AvaScholar Student

13

• Uses ordinary student PC webcams

• Feature vectors based on real-time segmentation & patch fitting

– Use classification by nearest-neighbor (NN), tree-augmented naïve (TAN) Bayes,

hidden Markov model (HMM), Gaussian mixture model (GMM)

http://i2pc.cs.illinois.edu/

Collecting Soft Biometrics

• Age Estimation

• Gender Estimation

Zhou et al., “Image Classification Using Super-Vector

Coding of Local Image Descriptors. ECCV 2010

• Expression Recognition

Le et al., “Expression recognition from 3D dynamic

faces using robust spatio-temporal shape features. FG 2011

• Shrug Detection: Hough parabola transform

Ning et al. A Realtime Shrug Detector, FGR 2006

http://i2pc.cs.illinois.edu/

Expression Recognition

• Six expressions: anger, disgust, happiness, fear,

sadness, surprise

• 101 subjects, 100 frames of 3-D video

• Face represented by iso-depth curves

• Feature vector = distances between iso-depth curves

(chamfer distance)

http://i2pc.cs.illinois.edu/

Where are We Headed?

• Build a robust system for educational purposes

• Apply it to other environments:

– Corporate meetings

– Political speeches: change message on-the-fly?

• Applying computer science technologies

– Scheduling of tasks on a heterogeneous, soft real-time platform

– Annotations and checks for correctness

16

http://i2pc.cs.illinois.edu/

PROGRAMMING PRODUCTIVITY

17

Abstractions

Refactoring

Determinism

http://i2pc.cs.illinois.edu/

Parallel Programming Abstractions

• High-level programming abstractions:

– Facilitate the development of efficient parallel programs

– Enable portability across classes of machines

Tower of Babel

(CACM)

 Many low level parallel notations:

• GPU/SIMD

– CUDA

– OpenCL

• Shared memory

– Cray microtasking

– OpenMP

– BSP

– Linda

– Intel TBB

– Cilk (Intel)

– Java threads

– Pthreads

• Distributed memory

– CSP (Occam)

– PVM

– MPI

– UPC

– Co-array Fortran

http://i2pc.cs.illinois.edu/

Locality

More

Less

 19

Hierarchically Tiled Arrays

• Tile structure gives programmer control over locality, granularity of parallelism, and

communication [PPoPP’06, PPoPP ’08]

for iter = 1:n
 forall i,j =…
 c{i,j}+= matmul(a{i,j},b{i,j});
 a = circshift(a, [0, -1]);
 b = circshift(b, [-1, 0]);
end

http://i2pc.cs.illinois.edu/

Abstractions for Irregular Computations

• Notations to tile sets, trees, graphs [HotPar’09]

• Result: highly efficient & readable programs

Tile 1

2

3

4

http://i2pc.cs.illinois.edu/

TiledSet work_list[# of Tiles]

while (work_list not empty)

 n = SELECT(work_list)

 If (n contains GOAL) break

 work_list = work_list – n

 successors = expand(n)

 update(work_list, successors)

 21

Code looks sequential

Operators can be parallel

Application of Tiled Sets in a Tree Search

http://i2pc.cs.illinois.edu/

expand expand

 22

Application of Tiled Sets in a Tree Search

http://i2pc.cs.illinois.edu/

Interactive Refactoring

• Tools for incremental, interactive parallelization of sequential code

• Approach:

– User focus on key decisions, tool does the tedious code analysis and rewriting

• Refactorings for thread-safety

– Make class immutable [ICSE'11]

– Convert to Atomic* classes [ICSE'09]

– Use concurrent collections [ICSE'09]

– Infer region annotations [ASE'09]

– Privatize shared variables

• Refactorings integrated in official release of Eclipse 4.2.1 this summer

23

http://i2pc.cs.illinois.edu/
24

Deterministic Parallel Java (DPJ)

• Nondeterminism makes parallel programming harder

– Concurrent task interleavings

– Task schedules

• Results in concurrency bugs (races, deadlocks, …)

• This isn’t necessary: Many parallel algorithms are deterministic

– Same input always produces same (visible) result

 Language guarantees determinism as default case

Nondeterminism is explicit and controlled

http://i2pc.cs.illinois.edu/

DPJ: Overview

• Uses Fork-Join model of task parallelism (cobegin, foreach)

• Annotates code with regions and effects to statically describe the dynamic effects of a

program.

– Region annotations group mem locations into hierarchy of sets

– Loads and stores have effects on regions.

• Methods are annotated with effect summaries, which are checked by the compiler.

– Allows modular checking of the code

• Non-interference of tasks derived from region disjointness

http://i2pc.cs.illinois.edu/

Parallelizing AvaScholar with DPJ Annotations

• DPJ annotations to detect and remove bugs

– Variables and fields assigned to regions

– Read and write effects tracked per region

– Each method annotated with effect summary

– Effect summary checked by DPJ

26

http://i2pc.cs.illinois.edu/

Example of FaceExpr Module

double likelihoodClass[] =

 new double[numberLabels];

foreach (int j in 0, numberLabels) {

 record[0] = j;

 double prod = (pfs[0]).get_value(j);

 for (int ii=1; ii<pfs.length; ii++) {

 prod *= (pfs[ii]).evaluate(pvs, record);

 }

 likelihoodClass[j] = prod;

}

27

0th elem. changed in

parallel

get_value, evaluate unknown

effects:

could “write *”

Likelihood output could be in

overlapping area

http://i2pc.cs.illinois.edu/

ARCHITECTURES

28

http://i2pc.cs.illinois.edu/
29

Architecture for Programmability: Bulk Multicore

• Current processors commit in-order one instruction at a time

• Disables many “unsafe” hardware & compiler optimizations

• Most of time, not needed

X = long_expression

Acquire (Lock)

Y = long_expression

Release (Lock)

Stall

Stall

Recompute long_expression

http://i2pc.cs.illinois.edu/
30

Bulk Multicore: a Continuous-Block Architecture

High performance and low power:

• Instructions are reordered by HW inside chunks

• Compiler can aggressively optimize the code inside chunk

• Each chunk is executed atomically and in isolation

• Protocol ensures a total order of chunk commits

P1 P2 P3 PN ...

Mem

Logical picture

st A
st C

ld D
st X

st A
ld C

st D
st C

[CommACM-09]

st D

st A

P1

ld C

st C ld D
st X

st A

P2

st C

• Processors continuously commit chunks of instructions at a time

http://i2pc.cs.illinois.edu/

31

BulkCompiler Transformations [MICRO-09]

• BulkCompiler outperforms conventional multicore with the relaxed Java Memory Model by 37%

(avg 10 Java apps)

http://i2pc.cs.illinois.edu/

DeNovo: Hardware for Disciplined Parallelism

• Idea: Rethink hardware as driven by disciplined software

• Discipline = structured parallel control + explicit effects

• Better simplicity, performance, power

• Reduce complexity of cache coherence:

– Subtle races and numerous transient states in the protocol

– Hard to extend for optimizations

• Eliminate performance and power inefficiencies

– Invalidation, ack messages

– Indirection through directory

– False sharing (cache-line based coherence)

– Cache pollution (cache-line based allocation)

http://i2pc.cs.illinois.edu/

What Have We Accomplished?

• Technical insights and advances that go into nearly 100 papers

– Use of parallelism for compelling tele-immersive env.

– Improvements in programming productivity (abstractions, refactoring,

determinism,etc)

– Developed many tools for parallel code test & debugging

– Architectures that scale to 1K cores and are programmable

• Lot of interaction with sponsor researchers

http://i2pc.cs.illinois.edu/

What Have We Accomplished?

• Educated 800+ participants:

– 4 Summer Schools at Illinois and 1 at Singapore

– 3 one-week training courses at Boeing

• Tutorials at OOPSLA and ICSM and other workshops

• Encyclopedia of Parallel Computing

• Revamping the undergraduate Computer Science Curriculum for parallelism at U of

Illinois

• Refactorings integrated in official release of Eclipse 4.2.1 at the end of this summer

• Graduated many students

http://i2pc.cs.illinois.edu/ 35

Moving Forward

• Goal: Make parallel programming synomymous with programming

• Enable consumer apps with high-perf. computing on mobile devices

• Focus areas:

– The browser as the driving application

– Ecosystem for advanced visual computing

– Very low power and energy substrates

Universal Parallel Computing

Research Center Illinois

Making parallel programming synonymous with programming

Josep Torrellas,

 Vikram Adve, Sarita Adve, Danny Dig, Minh Do, Maria Garzaran, John Hart, Thomas

Huang, Wen-Mei Hwu, Ralph Johnson , Laxmikant Kale, Sam King, Darko Marinov,

Klara Nahrstedt,

David Padua, Madhusudan Parthasarathy, Sanjay Patel,

Marc Snir, Craig Zilles,

http://i2pc.cs.illinois.edu/

Valkyrie OS and Browser: simple and secure

• A new mobile OS and a new mobile browser

• Faster and more secure

http://i2pc.cs.illinois.edu/

Underlying technology

• Type safe kernel written in C

– Compiled using LLVM

• Use formal methods in implementation

– Shows that provable security invariants are possible

• Entire OS is less than 10k LOC

– Exports subset of the Linux syscall interface

• Processing web pages with static and dynamic parallelism

• Hardware architecture for energy efficiency and reliability

http://i2pc.cs.illinois.edu/

Face Tracking

• Patch model of face is fit to image feature points

• Patch model is deformed according to a robust multiresolution optical flow extracted from

image video sequence

http://i2pc.cs.illinois.edu/

Where are We Headed?

A Refactoring Approach to Code Evolution

• Maintain different versions as one object:

– Equivalence established formally, via testing, runtime checks...

– System “knows” what changes occurred, which changes are safe, can undo changes, can
reconcile different versions...

– System can display different views of “same” code

– System can ingest performance data, can trigger automatic transformations, can trigger
autotuning, and can show the results to the user.

40

compilers

source

different implementations of same code

user

source

different code versions

An environment where one can slide between two extremes

http://i2pc.cs.illinois.edu/

Valkyrie OS and browser

• A new mobile OS

– New architecture to achieve high security assurance

• A new mobile browser

– Novel approach to speed up mobile web browsing

• Faster and more secure

– Improved web surfing experience

– Guaranteed end user security and privacy

http://i2pc.cs.illinois.edu/

Outreach Actions

• Yearly summer course on parallelism at UIUC

– One in Singapore

• Various workshops and technical meetings

• Encyclopedia of Parallel Processing

• Revamping the Illinois undergraduate Computer Science Curriculum for

paralrellsims

• Many technocal papers, invited talks

• Many studnets graduated

• Lots of collaboration with Intel and other industial sponsors

Educated 800+ participants:

4 Summer Schools at Illinois and 1 at Singapore

 - 3 one-week training courses at Boeing

 - 2 half-day tutorials at OOPSLA and ICSM

Our refactorings integrated in official release of Eclipse 4.2.1 at the end of this

summer

upcrc.illinois.edu
42

http://i2pc.cs.illinois.edu/

Main Achievements Applications

• We clearly demonstrated that one needs parallelism and one can use parallelism for

compelling tele-immersive environments

– Need all forms of parallelism (messaging, coarse grain shared memory, SIMD);

we learned which applies where

• Developed improved parallel algorithms and libraries to support key components of

the video processing and rendering pipelines

– Using ViVid to drive performance portability work and used the apps to drive

work on DPJ

• Developed browser architecture of major import to Microsoft

43

http://i2pc.cs.illinois.edu/

Main Achievements Software

• Validated and publicized the Illinois approach for concurrency safe, deterministic by

default parallel programming environments

– Promises qualitative improvements in productivity with shared memory parallel

programming

• Pushed data parallelism into new application domains

• Developed an approach for tighter user-compiler synergy for code optimization

• Developed a clear vision for the role of refactoring in parallel programming

• Developed improved techniques for parallel code testing

• Used the software work to improve the application codes

44

http://i2pc.cs.illinois.edu/

Major Achievements Hardware

• Demonstrated multi-core scalability to 1K cores.

• Developed practical mechanisms for improving scalability and programmability of

current architectures

– Use of atomic block execution for compiler optimization

– Hardware support for race detection and deterministic replay

• Developed designs for fundamentally new multi-core architectures

• Architecture and Software were co-designed: tools and programming models are

supported by architectural enhancements; better architectures are enabled by

software enhancements.

45

