Microsoft’

Research

Faculty Summit
2012

Cvolution of Parallel Patterns:
from Design tool to
development too

Tim Mattson
Intel Labs

¥,

Disclaimer
READ THIS ... its very important

e The views expressed in this talk are those of the
speaker and not his employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if I say anything really
stupid, it's my fault ... don’t blame my collaborators.

Slides marked with this symbol were produced by Kurt
Keutzer and myself for CS194 ... A UC Berkeley course on
Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

The many core challenge

m A harsh assessment ...

0 We have turned to multi-core chips not because of the success of
our parallel software but because of our failure to continually
increase CPU frequency.

m Result: a fundamental and dangerous mismatch
0 Parallel hardware is ubiquitous ... Parallel software is rare

m The Many Core challenge ...
0 Parallel software must become as common as parallel hardware

After ~30 years of parallel computing research, we know:
(1) automatic parallelism doesn’t work
(2) an endless quest for the perfect parallel language is counterproductive ...
“worse is better” (Richard Gabriel, 1991)

So how can we address the many core challenge?

Architecting Parallel Software

= We believe the solution to parallel programming starts with
developing a good software architecture

4 |)

.-
=

Architecting Parallel Software

= We believe the solution to parallel programming starts with
developing a good software architecture

o J

* Analogy: the layout of machines/processes in a factory

Architecting Parallel Software

= We believe the solution to parallel programming starts with
developing a good software architecture

Recognition
Network

L

Inference Engine (Graphical)
Model

"'f Dynamic
(‘Active State ﬂ Pipe-and-filter j\ Programmin

Computation Steps v
-__i i MapReduce)
_______-.--_V e [|

-__- - __- Beam
-
v

Search S
Iterations 0s

o e [o | o [o .
Processing > o e Word
\ 4 / Sequence

(Iterator }

 Example: SW Architecture of Large-Vocabulary Continuous Speech Recognition

... and how do we systematically describe software architectures?

Our Pattern Language (orL 2012) }T—\A\

Applications |

u 21
Structural Patterns Model-View-Controller Computational Patterns Unstructured-Grids
Pipe-and-Filter Iterative-Refinement Graph-Algorithms Structured-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming eyl Al
Process-Control Layered-Systems Dense-Linear-Algebra Finite-State-Machines

S Li Aloeb Backtrack-Branch-and-Bound
Event-Based/Implicit-Invocation Puppeteer parse-Linear-Algebra
N-Body-Methods
Arbitrary-Static-Task-Graph Circuits
Finding Concurrency Patterns S re T
Task Decomposition Ordered task groups pectrai=iethods
Data Decomposition I Data sharing Monte-Carlo

Design Evaluation

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Conquer Pipeline Speculation

Implementation Strategy Patterns

Shared-Queue Distributed-Array
SPMD Fork/Join Loop-Par. Shared-Map Shared-Data
Kernel-Par. Actors Workpile Parallel Graph Traversal
Program structure ectorhan Algorithms and Data structure

Parallel Execution Patterns

Coordinating Processes
Stream processing Task Driven Execution

Shared Address Space Threads

Concurrency Foundation constructs (not expressed as patterns)

Thread/proc management Communication Synchronization

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE
MARY SHAW DAVID GARLAN

Researchers from UCB, Intel,
UIUC, and others
collaborated to create “the
grand canonical pattern
language” of parallel
application programming.

Structural Patterns

epository
Pracess Control

A Pattern Language

‘Towns -Buildings - Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

Design Patterns L

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph |ohnson
John Vlissides

Event-Based/Implicit-Invocation Pupy

Arblirary Static Task Graph

Finite State Mach.|
Circuits

Graph Algorithms
Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Dynamic Prog
N-Body

Shared Address Space Threads
Task Driven Execution

f

S HEG I B

(8]
= 2 |Health Image Spucn Music Browser CAD

Grid

13 dwarves

PATTERNS
FOR PARALLEL
PRO RAM“I\G

Pattern Language of
Parallel Programming
(PLPP)

Unstructured Grids

ructural Patterns Model-View-Controller

Pipe and-Filter

Structured Grids
Graphical- Madels

Terative Refmement

Agent and Repository Map Reduce

Process-Control Layered Systems Linear Algebra

Backirack Branch
N-Body-Methods
Circuits

Spestr
Monte Carlo

Event Based/mplicii Invocation Puppeteer car-Algebra

Arbitrary Static Task Graph

Task Decompe
Data Decomy

asition Ordered task groups
; Datasharing

Design Evaluation

Parallel Algorithm Strategy Patterns

Discrete-Event

Task Parallelism Data-Parallel eometric. Decompasition

Divide and Conquer Pipeline Speculation

Implementation Strategy Paterns Shared Queae DistributedArray
Fork/Join Laop-P: Shared-Map Shared Data B

SPMD
Kernel Fa Actors Waorkpile
[o |

Parallel Execution Patterns
Coordinating Processes
Stream processing

Parallel Graph

rsal
Algorithms ay

Shared Address Space Threads
Task Driven Execation

Structural Patterns:

*Pipe-and-Filter

efine the software structure .. Not what is computed

Pattern examples

Iterative refinement

*MapReduce

- B

Structural Patterns A fiew-Control Patterns Unstructured Grids
Pipe-and Filter Tterative-Refinein Graph-Algorithms Structured-Grids
Agent-and-Repository Map-Reduce Dynamic Programuming Graphical-Models

Dense Linear- Algebra Finite State Machines
Backirack Branch-andBound
N-Body Methods
Cireults

Process-Control Layered Systen

vent-Based/Tmplicit- ar-Algebra

woeation Puppeteer

Arbltrary Static Task Graph

Findin;
Task Decomposition
Data Decompasition

Spectral Methods
Mante Cay

Ordered task groups.
n

Design Evalua

Parallel Algorithm Strategy Patterns
Task Parallelism
Divide and Conquer

Discrete Event
Data-Parallelism Geometric Decomposition
ipeline Speculation
Implementation Strategy Patterns

SPMD Forkidoin
Kernel Par. Actars

Program structure UL

Parallel Execution Patterns
Coordinating Pracesses
Stream processing

Shared Quene
Shared Map
Parallel Graph Travers:

Distributed-Array
Shared Data

Shared Address Space Threads
Task Driven Execution

omputational

Patt

«Structured mesh

LLLL

*Graphical Models

erns: Define the computations “inside the boxes”

Computational Patterns Unstructured Grids
Graph-Algorithms

Dynamic-Programming

Structural Patterns Model- View-Controller

Pipe and Filter Structured-Grids

Graphical Models

tate Machines

ck Branch-and Bound
N-Bady-Methods

Iterative Refinement

Agent-and Repository Map-Reduce

Dense Linear Algebra Finit
Backt

Pracess-Control Layered.Systems

Event-Based/Implicit. Sparse]

ar-Algebra

woeation Puppeteer

Arbitrary.Statie- Task-Graph

Cireuits
nding Concurrency Patterns

Spectral Methad:
‘Task Decomposition pectral Methods

Monte-Carlo

Ordered task groups.

Discrete-Event
Data-Parallelisi Geome
Pipeline

sk Parallelism

tric Decompasition
Divide and Conquer

Speculation
Implementation Strategy Patterns

Forkidoin
Acters

P
Program structure Vector-Par

Sharcd-Quene
Shared Map
Parallel Graph Traversal

Algorith

Distributed Array
Shared-Data

Data

‘Shared Address Space Threads
Task Driven Execu

*Fork-join

Parallel Patterns: Defines parallel algorithms

*SPMD

«Data parallel

10

OPL Pattern Language /IN/

Applications
u 21

Structural Patterns Model-View-Controller ional Patterns Unstructured-Grids
Pipe-and-Filter I Iterative-Refinemen ‘ Graph-Algorithms [emmiged-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming Graphical§lodels
Process-Control Layered-Systems Dense-Linear-Algebra Finite-Stat@Machines
Event-Based/Implicit-Invocation Puppeteer » Sparse-Linear-Algebra Backirackgranch-and-Bound

N-Body-Mpthods
Arhitrarv-Static-Task-Granh

Circuits
i / Patterns
Patterns travel together ... informs [Patterns Spectral-Plethods

framework design (a pathway for cactus F=—y=== g;f:gi‘;rtf‘lfg SROURS 1 Monte-drlo

is shown here) gn Evaluation

Parallel Algorithm Strategy Patterns

Task-Parallelism
Divide and G#10

Discrete-Event

| Geometric-Deagfposition

speculation
Shared-Queue Distributed-Array
Fork/Join Shared-Map Shared-Data

Actors
Vector-Par

Parallel Graph Traversal

Algorithms and Data structure

"SMmgg Address Space Threads |

Execution

Distributed memory cluster [expressed as pattern«
and MPP computers commd Multiprocessors (SMP and NUMA)

nd Mattson Intel Technology Journal, 2010

JUUILT, IDNTULLTT

LVCSR Software Architecture

Recognition Network (. .
Pipe-and-filter)
Acoustic Pronunciation Language
Model Model Model
Inference Engine (Graphical Model)
" Voice | Beam Search Iterations _

| oice 1 Dynamic
nput : : i

[Active State Comi)utatlon Steps Programming

(Pipe and Filter)

MapReduce

Speech

Feature
Extractor ’_/‘
Speech Word
Features m Sequence

5 N \) I think

=) I . : therefore

o (Iterative Refinement) \/Iam\/

’\/

LVCSR = Large vocabulary continuous speech recognition.

Speech Recognition Results

= Architecture expressed as a Recagniton Network
composition of design patterns ol | il v
and implemented as a C++ I—— "
Framework. ™ R e e

therefore

Speech

u]

— Input: Speech audio waveform
— Output: Recognized word sequences

= Achieved 11x speedup over sequential version

= Allows 3.5x faster than real time recognition

= Qur technique is being deployed in a hotline call-center data
analytics company

— Used to search content, track service quality and provide early detection
of service issues
Scalable HMM based Inference Engine in Large Vocabulary Continuous Speech Recognition,

Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Wonyong Sung and Kurt
Keutzer, IEEE Signal Processing Magazine, March 2010

Multi-media Speech Recognition

| —_— E CHMM Format

Prof. Dorothea Kolossa i
Speech Application Domain Expert
Technische Universitat Berlin

Extended audio-only speech recognition framework to | C
enable audio-visual speech recognition (lip reading)

Achieved a 20x speedup in application
performance compared to a sequential
version in C++

The application framework enabled a
Matlab/Java programmer to effectively

utilize highly parallel platform
Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore
CHMM Speech Recognition for Audiovisual and Multistream Data”, Interspeech 2010. :l

Output Results ‘

J

Source: K. Keutzer and his research group at UCB, slides from CS194 Spring 2012

Fixed Beam Width

CHMM GPU ObsProb

CHMM Scoring format

Par Lab Research Overview

Easy to write correct software that runs efficiently on manycore

Personal| Image | Hearing, Spe Parallel
‘ a&\o(‘c“' Health | Retrieval| Music Browser
PQQ\\O Design Pattern Language (OPL
Composition & Coordination Language (C&CL) Static
o’i\\‘\“ C&CL Compiler/Interpreter velioson
AV«
Q<© \;a\)e Parallel Parallel Type
Libraries Frameworks Systems
Sketching Dlregted
‘ (\0\3 Testing
6{\0\@ o Autotuners |
o Schedulers Communication & | Dynamic
Synch. Primitives Checking
Efficiency Language Compilers Debugging
S 0S lerarles & Services .
© Legacy OS with Replay
NG\O' Intel Multicore/GPGPU RAMP Manycore

Correctness

15

Par Lab Research Overview

Easy to write correct software that runs efficiently on manycore

Personal| Image | Hearing, Spe Parallel
Health | Retrieval| Music pee Browser
Design Pattern Language (OPL

€ High level, safe, concurrency through Static
high level frameworks Verification

Parallel Type
Frameworks Systems

Parallel
Libraries

Low level, risky, hardware details fully Directed
exposed Testing

Communication & Dynamic
Synch. Primitives Checking

Efficiency Language Compilers Debuadin
0OS lerarles & Services gging

Legacy OS with Replay

| Intel Multicore/GPGPU RAMP Manycore

‘ Schedulers

Correctness

16

framework-based applications?

m SEJITS: Scalable, embedded, just in time specialization

1 Code with a high level language (e.g. Python or Ruby) that is mapped
onto a low level, efficiency language (e.g. OpenMP/C or CUDA).

1 SEJITS system to embed optimized kernels specialized at runtime to
flatten abstraction overhead and map onto hardware features.

/- ™\ A

Productivity Layer Code JIT Specialization

Framework
API

SEJITS comes
from Armando
Fox’s group at UC
Berkeley.

Parallel Platform
-------- > DATA u)

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA

Turning Patterns expressed as Python
code into high performance parallel code

Asp: Who Does What?

App author Specializer author SEJITS 34 party
(PLL) (ELL) team library
Application Specializer Asp core e.g. MKL
_ Python ASP ... a platform to
Kemel = AST : . e
write domain specific
Ta?get Asp Compiled Helps turn design
AST [T—7 Module libraries patterns into code.
Kernel A
call &
Input data
Results
.4 ASP: SEJITS for Python

18

Example Application: Shape Fitting

How do these two shapes
fit together? How do these two shapes fit

together? Not as obvious when dealing
with complex, 3D molecular structures.

Why does it matter how molecules
fit together? Because most biological
processes involve molecular binding.

Pretty obvious.

Source: Henry Gabb, parlab retreat winter 2011 19

Shape Fitting by Cartesian Grid
Correlations

Project molecules A and B onto a grid and assign values to nodes based on
locations of atoms.

N
Z Aijk X Bivaj+p+y
k=1

[_\/2

N
=1

a'-ﬁr

I
[y

i=1j

Translate/rotate molecules to
maximize the correlation.

Inefficient: O(N®), N3 additions and
multiplications for every N3
translations (q, B, v).

u Solve more efficiently using Fourier
correlation: O(N3log N3).

Source: Henry Gabb, parlab retreat winter 2011 20

Application "Box-and-Arrow” Diagram

Molecule A

> Fourier > Complex
‘ > ‘ Transform Conjugate

Molecule B

> Fourier
‘ —_—> 1 Transform

C‘ Sort
Geometries

No Yes
Rotate

Source: Henry Gabb, parlab retreat winter 2011

21

Productivity Programmer Responsibilities

Original loop-based, iterative code:

for a in range(-1.0, 1.0 + del, del):
for b in range(-1.0, 1.0 + del, del):
for g in range(-1.0, 1.0 + del, del):

ftdock algorithm

The productivity programmer knows
the body of this loop-nest is
“embarrassingly parallel” ... but there
is no way a compiler could figure this
out

Source: Henry Gabb, parlab retreat winter 2011

22

Parallel Design Patterns

St]'llfllll'ﬂl Pﬂ“ﬂm.‘i Model- View-Controller Cﬂml!lllltiﬂﬂﬂl Pﬂ“ﬂm.'r Unstractured Grids
‘ Pipe-and-Fiter Tierative-Refinement Graph-Algoriihing Structured-Grids
Miap-Redice DynamicProgramming ~~ Graphical-Models
Stafe-)
il e Dense Linear Algebra Finite-State-Machines
Backtrack-Branch-and-Bound
Event-Based Amplicit-lnvacation Puppeeer SpantLivar-Alehn
N-Hody-Methods
Arbitrary-Static- Task Graph Cirals
Finding Concurrency Patterns ot e
DFT Task Decompsition Onere askgrogps |
Data Decompasiton Data sharlng Monte Carl
Destgn Evaluation
Parallel Algorithm Strategy Patterns Discreie-Even
Task-Parallelsm Daia-Paralllism Geomelric Decomposition
Divide and Conquer Pipeline Speculation
Complex ¥ ¥
Conjugate i -
jJug Implementation Stratesy Patterns Shre Qe Dttt Ay
SPVD Forkdos ~ LoopPar Shared-Map Shared Dats
. KernelPat Atars Workpi Parallel Graph Traversal

To expose the most concurrency in a natural way, it was best to recast
the problem in terms of map-reduce.

i.e. the productivity programmer is responsible for a good design.

Source: Henry Gabb, parlab retreat winter 2011

23

Productivity Programmer Responsibilities

Original loop-based, iterative code:

for a in range(-1.0, 1.0 + del, del):
for b in range(-1.0, 1.0 + del, del):
for g in range(-1.0, 1.0 + del, del):

ftdock algorithm

New Code inspired by the map-reduce pattern:

a =>b =g = list(range(-1.0, 1.0 + del, del))
geometries = AllCombMap([a, b, g], ftdock, *args)

Source: Henry Gabb, parlab retreat winter 2011

24

SEJITS/FTDock Results

« What SEJITS did for FTDock

« Parallelism exploited though a map-reduce module
« Mapped FFTW onto the application ... with no changes to application
code.
« Minimal burden on productivity programmer:
« Pattern-based design of application
Functional programming style
Significantly easier development:
Original version: 4,700 lines of C and Perl
New version: 500 lines of Python
« Caveat: LOC not necessarily a good measure of productivity
« Performance (16-core Xeon):
« Serial: ~24 hours
 Parallel: ~3 hours

Source: Henry Gabb, parlab retreat winter 2011

25

Incorporating new specializers

FTDock — Protein Docking g

-

« Independent dockings in 3D search space FTDock Specializer Core
« Requires one-line change to application. class FtdockMRJob(AspMRJob):

- eu 45 . def mapper(self, coords, ignored):
Achieves 290x speedup on 430 cores s = Sl et rot)

score = ftdock(*coords, *args)
yield 1, score

FTDock Throughput vs. Problem Size

== == Serial (Carver) == == Serial (Amazon) == == Serial (3.20 GHz Core i7)
s Hadoop (Carver, 450 cores) e====Hadoop (Amazon, 120 cores)

89.89

&
)
=
2 5
)
s
2 —-.v—h.—-———l.oxs
0.5
g e == =gy e ()
f o PR 0.305
S I S S S s ()]
8 64 216 729 1331 4096 9261 29791 68921 226981 753571
Problem Size
A i A i Al i

Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat.

26

More Complicated Applications of SEJITS

« Complex interfaces to optimized libraries:
« JITed insertion of FFTW (accommodate APIs, build plans, clean up
when done)
* Interface to auto-tuning:
* Runtime auto-tuning to optimize library routines.
« Cached so subsequent uses avoid auto-tuning overhead.

« Family of specializers to support other computational
patterns:
 Stencill
« Graph algorithms
« Graphical models

... and over time we’ll fill in framework elements for all structural and
computational patterns

27

Conclusion

« Understanding software architecture is how
we will solve the many core programming
challenge.

* An architecture is analogous to a factory ...
a structural arrangement of computational
elements

« We define software architecture in

Siructural Patterns Model-View-Controller te rm S Of a patte rn | a n g u a g e Ca | | ed
Pipe and- Filter Tterative Refinement Graph-Algorithins Structured-Grids
Agent-and-Repository Map-Reduce Dynamic Programming Graphical-Modeks O P L
Process-Conirol Lavered Systems Dense Linear Algebra Finite-State-Machines
B Backtrack-Branch-and-Bound
Eveni-Based/Tmplicii-Invocation Puppeteer Sparse-Lincar-Algebra

——— Architectural patterns:

Cireults
Finding Concurrency Patterns
Speciral- Methods

Data Decompociion ¥ Dalasharing || Monte Carlo o Structural patterns

Design Evaluation

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Daka-Parallelism Geometric Decomposition g C O m p u ta ti O n a | p atte r n S

Divide and Conguer Pipeline

specalation
Implementation Strategy Patterns et e sttt ey Parallel programming patterns (PLPP):
SPMD Fork/Join Loop-Par. Shared-Map Shared-Data
Kernel Par. Actors Workpile Parallel Graph Traversal

Vector-Far

[Aot and Dot srutre | « Algorithm strategy
Parallel Execation Patterns

Shared Address Space Threads
Coordinating Processes

Comiimstng e « Implementation strategy
« Parallel execution Patterns

28

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

