

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speaker and not his employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if I say anything really
stupid, it’s my fault … don’t blame my collaborators.

Slides marked with this symbol were produced by Kurt

Keutzer and myself for CS194 … A UC Berkeley course on

Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

4

The many core challenge

 Result: a fundamental and dangerous mismatch

 Parallel hardware is ubiquitous … Parallel software is rare

 The Many Core challenge …

 Parallel software must become as common as parallel hardware

After ~30 years of parallel computing research, we know:

(1) automatic parallelism doesn’t work

(2) an endless quest for the perfect parallel language is counterproductive ...

“worse is better” (Richard Gabriel, 1991)

So how can we address the many core challenge?

 A harsh assessment …

 We have turned to multi-core chips not because of the success of
our parallel software but because of our failure to continually
increase CPU frequency.

Architecting Parallel Software

 We believe the solution to parallel programming starts with
developing a good software architecture

Architecting Parallel Software

 We believe the solution to parallel programming starts with
developing a good software architecture

• Analogy: the layout of machines/processes in a factory

Architecting Parallel Software

 We believe the solution to parallel programming starts with
developing a good software architecture

• Example: SW Architecture of Large-Vocabulary Continuous Speech Recognition

… and how do we systematically describe software architectures?

8

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Our Pattern Language (OPL 2012)

9 13 dwarves

Researchers from UCB, Intel,
UIUC, and others
collaborated to create “the
grand canonical pattern
language” of parallel
application programming.

“Our Pattern Language” (OPL)

Pattern Language of
Parallel Programming
(PLPP)

•Graphical Models

•MapReduce

10

•Pipe-and-Filter

Pattern examples

Structural Patterns: Define the software structure .. Not what is computed

•Iterative refinement

Computational Patterns: Define the computations “inside the boxes”

•Structured mesh

Parallel Patterns: Defines parallel algorithms

•Fork-join •SPMD •Data parallel

11

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL Pattern Language

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Source: Keutzer and Mattson Intel Technology Journal, 2010

Patterns travel together … informs

framework design (a pathway for cactus

is shown here)

Distributed memory cluster

and MPP computers Multiprocessors (SMP and NUMA)

Inference Engine

Beam Search Iterations

LVCSR Software Architecture

Pipe-and-filter

Graphical Model

Dynamic
Programming

Iterative Refinement

Pipe and Filter

Speech
Feature

Extractor

Voice
Input

Speech
Features

…

Recognition Network

Acoustic
Model

Pronunciation
Model

Language
Model

MapReduce

Word
Sequence

I think

therefore

I am

Active State Computation Steps

LVCSR = Large vocabulary continuous speech recognition.

Speech Recognition Results

 Architecture expressed as a
composition of design patterns
and implemented as a C++
Framework.
‒ Input: Speech audio waveform

‒ Output: Recognized word sequences

Scalable HMM based Inference Engine in Large Vocabulary Continuous Speech Recognition,

Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Wonyong Sung and Kurt

Keutzer, IEEE Signal Processing Magazine, March 2010

 Achieved 11x speedup over sequential version

 Allows 3.5x faster than real time recognition

 Our technique is being deployed in a hotline call-center data
analytics company
‒ Used to search content, track service quality and provide early detection

of service issues

Multi-media Speech Recognition

Read Files

Initialize data

structures

CPU

GPU

Backtrack

Output Results

Phase 0

Phase 1

Compute Observation

Probability

Phase 2

Graph Traversal

Save

Backtrack Log

Collect

Backtrack Info

Prepare ActiveSet

Iteration Control Fixed Beam Width

CHMM GPU ObsProb

CHMM Format

CHMM Scoring format

Prof. Dorothea Kolossa

Speech Application Domain Expert

Technische Universität Berlin

Extended audio-only speech recognition framework to

enable audio-visual speech recognition (lip reading)

Achieved a 20x speedup in application

performance compared to a sequential

version in C++

The application framework enabled a

Matlab/Java programmer to effectively

utilize highly parallel platform

 Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore

CHMM Speech Recognition for Audiovisual and Multistream Data”, Interspeech 2010.

Source: K. Keutzer and his research group at UCB, slides from CS194 Spring 2012

15

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Pattern Language (OPL)

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct software that runs efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type

Systems

16

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Pattern Language (OPL)

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct software that runs efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type

Systems

High level, safe, concurrency through
high level frameworks

Low level, risky, hardware details fully
exposed

How do we squeeze high performance from

framework-based applications?

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA

 SEJITS: Scalable, embedded, just in time specialization

 Code with a high level language (e.g. Python or Ruby) that is mapped

onto a low level, efficiency language (e.g. OpenMP/C or CUDA).

 SEJITS system to embed optimized kernels specialized at runtime to

flatten abstraction overhead and map onto hardware features.

SEJITS comes
from Armando
Fox’s group at UC
Berkeley.

Framework
API

Turning Patterns expressed as Python

code into high performance parallel code

18

ASP … a platform to
write domain specific

frameworks.

Helps turn design
patterns into code.

ASP: SEJITS for Python

How do these two shapes
fit together?

Pretty obvious.

How do these two shapes fit
together? Not as obvious when dealing
with complex, 3D molecular structures.

Why does it matter how molecules
fit together? Because most biological
processes involve molecular binding.

Example Application: Shape Fitting

19 Source: Henry Gabb, parlab retreat winter 2011

Shape Fitting by Cartesian Grid
Correlations

20

Translate/rotate molecules to
maximize the correlation.

Inefficient: O(N6), N3 additions and
multiplications for every N3
translations (α, β, γ).

Solve more efficiently using Fourier
correlation: O(N3 log N3).

Source: Henry Gabb, parlab retreat winter 2011

Project molecules A and B onto a grid and assign values to nodes based on
locations of atoms.

B
A

Application “Box-and-Arrow” Diagram

Fourier

Transform

Fourier

Transform

Molecule A

Molecule B

Complex

Conjugate

Fourier Correlation

Done
Sort

Geometries
Yes No

21

Rotate

Source: Henry Gabb, parlab retreat winter 2011

Productivity Programmer Responsibilities

22

 for a in range(-1.0, 1.0 + del, del):

 for b in range(-1.0, 1.0 + del, del):

 for g in range(-1.0, 1.0 + del, del):

 # ftdock algorithm

Original loop-based, iterative code:

The productivity programmer knows

the body of this loop-nest is

“embarrassingly parallel” … but there

is no way a compiler could figure this

out

Source: Henry Gabb, parlab retreat winter 2011

Parallel Design Patterns

DFT

Complex

Conjugate

Sort

DFT

23

To expose the most concurrency in a natural way, it was best to recast

the problem in terms of map-reduce.

i.e. the productivity programmer is responsible for a good design.

Source: Henry Gabb, parlab retreat winter 2011

Productivity Programmer Responsibilities

24

 for a in range(-1.0, 1.0 + del, del):

 for b in range(-1.0, 1.0 + del, del):

 for g in range(-1.0, 1.0 + del, del):

 # ftdock algorithm

 a = b = g = list(range(-1.0, 1.0 + del, del))

 geometries = AllCombMap([a, b, g], ftdock, *args)

Original loop-based, iterative code:

New Code inspired by the map-reduce pattern:

Source: Henry Gabb, parlab retreat winter 2011

SEJITS/FTDock Results

 25

• What SEJITS did for FTDock

• Parallelism exploited though a map-reduce module

• Mapped FFTW onto the application … with no changes to application

code.

• Minimal burden on productivity programmer:

• Pattern-based design of application

• Functional programming style

• Significantly easier development:

• Original version: 4,700 lines of C and Perl

• New version: 500 lines of Python

• Caveat: LOC not necessarily a good measure of productivity

• Performance (16-core Xeon):

• Serial: ~24 hours

• Parallel: ~3 hours

Source: Henry Gabb, parlab retreat winter 2011

Incorporating new specializers

26 Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat.

More Complicated Applications of SEJITS

 27

• Complex interfaces to optimized libraries:

• JIT’ed insertion of FFTW (accommodate APIs, build plans, clean up

when done)

• Interface to auto-tuning:

• Runtime auto-tuning to optimize library routines.

• Cached so subsequent uses avoid auto-tuning overhead.

• Family of specializers to support other computational

patterns:

• Stencil

• Graph algorithms

• Graphical models

• … and over time we’ll fill in framework elements for all structural and

computational patterns

Conclusion
• Understanding software architecture is how

we will solve the many core programming

challenge.

• An architecture is analogous to a factory …

a structural arrangement of computational

elements

28

• We define software architecture in

terms of a pattern language called

OPL.

• Architectural patterns:

• Structural patterns

• Computational patterns

• Parallel programming patterns (PLPP):

• Algorithm strategy

• Implementation strategy

• Parallel execution Patterns

