Microsoft

Research

Faculty Summit
2012

Reconsidering Strongly Typed
Programming for the Information-
Rich World

F# and Open Source

2.0 compiler+library open source

http://github.com/fsharp/fsharp

Apache 2.0 license
Runs on Mac, Linux, Windows, Browsers
Free Open-Source IDE Tooling with MonoDevelop

F# 3.0 open source in preparation

Part o

A quick retrospective

Time Warp...

1908 t0 2010...

.NET Generics
PLDI 2001
POPL 2004
ECMA 2005

C#/VB Generics
PLDI 2001
C#20

F# Metaprog

ECMA 2005

C# Async
C#5.0

F# Core Lang
ML 2004
F# 1.0

F# Async/Parallel/

Agents
F# 2.0
PADL 2010

ML 2006
F#~ " :
F# Active
‘ Patterns

ICFP 2007

F# Units of
Measure

POPL 2009
F# 2.0

19938 to 2010...

Part 1

Introducing F# and F# 3.0

Today’s talk is very simple

Proposition 1
The world is information-rich

The Information Revolution

- - q
progmmmame% Open API Timeline —

‘ v me

&Muﬂ‘ktlnl’ TESCO

Tlickr —————— s
b amazoncom Jorce YaHoO! Verscasiesporas BED gmrmem lAzacks

2000 2002 2003 2005 2006 2007 2008 2009 2010 2011

105 APIs 601 1,116 1,628 2,647 4,678

Proposition 2
Our languages are information-sparse

Proposition 3
This is a big problem

(especially for strongly typed languages)

Proposition 4
F# 3.0 starts to fix this

Today
(1) Demonstrate F# 3.0

(2) Themes in Information Rich
Programming

Paradigm Locator

Statically Dynamically

Typed Typed

Paradigm Locator

Statically Dynamically
Tyned Tvbed

A major search is on!
make statically typed langs more dynamic
make dynamically typed langs more static

moderate static typing in limited ways

But first, F# 1.0/2.0...

(Visual Studio 2008 & 2010)

F#is...

...a productive, supported, interoperable,
functional language that allows you to write

simple code to solve complex problems.

C#

Tuple<U,T> Swap<T,U>(Tuple<T,U> t)

{
return new Tuple<U,T>(t.Item2, t.Iteml)

ReadOnlyCollection<Tuple<T,T,T>> Rotations<T>(Tuple<T,T,T>
{
new ReadOnlyCollection<int>
(new Tuple<T,T,T>[]
{new Tuple<T,T,T>(t.Iteml,t.Item2,t.Item3);
new Tuple<T,T,T>(t.Item3,t.Iteml,t.Item2);
new Tuple<T,T,T>(t.Item2,t.Item3,t.Iteml); });

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t)
{

return f(t.Iteml)+f(t.Item2)+f(t.Item3);

Example (power company)

| have written an application to balance the national power
generation schedule for a portfolio of power stations to a
trading position for an energy company. ...the calculation
engine was written in F#.

The use of F# to address the complexity at the heart of this
application clearly demonstrates a sweet spot for the
language within enterprise software, namely
algorithmically complex analysis of large data sets.

Simon Cousins (bower company)

language taster

Fundamentals - Whitespace Matters

let computeDerivative f x =
let p1 = f (x - 0.05)

let p2 = f (x + 0.05)

(p2 - p1) / 0.1

Offside (bad indentation)

Fundamentals - Whitespace Matters

let computeDerivative f x =
let p1 = f (x - 0.05)

let p2 = f (x + 0.05)

(p2 - p1) / 0.1

F# - Objects + Functional

type Vector2D (dx:double, dy:double) =

let d2

member

member

member

member

V.

V.

\"/

\"/

Inputs to object
dx*dx+dy*dy

construction
DX = dx | Object internals
DY = dy Exported properties

.Length = sqrt d2

.Scale(k) = Vector2D (dx*k,dy*k) Exported method

Fundamentals - Queries

letiavatarTitles =
query { for t in netflix.Titles do
where (t.Name.Contains "Avatar")

select t } |
LINQ Queries

Now, F# 3.0...

(now available from www.fsharp.net!)

A Challenge!

Task #1: A Chemistry Elements Class Library
Task #2: A Biology Class Library

Task #3: Repeat for all fields of human knowledge and
endeavour...

Language Integrated Web
Data

Jemo

Exploring Your World with
Language Integrated
World Bank Data

Jemo

F# Data Scripting for
Hadoop and Hive

Jemo

A Type Provider is....

““Just like a library”

“A design-time component that computes a space of types and
methods..."”

““An adaptor between data/services and the .NET type system...”

“Staged, on-demand type macros...”

Note: Language still contains no data

Open architecture

You can write your own type provider

Part2

Themes in Information Rich
Programming

Recap: the problem...

Languages do not integrate
information

O Non-intuitive
O Not simple
O Disorganised
O Static

O High friction

Recap: the problem...

Existing techniques have majo

problems
O Over-reliance on code-
eneration
O Do not scale
O No tooling I N
O No strong types i

bytes

O Lowest-common-denominator s

Time for a paradigm shift?

Definition #1

Information-rich programming is where external schematized information
sources are integral to the operation of the programs being constructed.

These may be as simple as textual DSLs embedded as strings in the program itself, as familiar as SQL
databases, as massive as a service exposing Wikipedia data, or the world-wide-web of HTML
documents itself

Definition #2

A (strongly-typed) information-rich programming language integrates
external information sources, where the schema and content of these
sources are presented in a (strongly-typed) idiomatic form

Theme #1

Big Data > Big Metadata

Strongly typed languages and tooling must have a role here, surely!

Theme #2

Huge Information Spaces can and should be
viewed as Software Components

example:
schema change <-> component versioning <->
source compatibility <-> binary compatibility

Theme #3

Multiple Data Standards with One Simple
Mechanism

Rich type systems, importing rich metadata where it exists

Theme #4

Measure languages by their effectiveness at
working with rich external information spaces

Example: queries, JSON, XML, type providers, async...

Theme #5

Programming Type Systems v.
Information Space Metadata
Synergy or Conflict?

Examples: Types, Schema, Constraints, Units of Measure, Security Information, Documentation,
Definition Locations, Help , Provenance, Privacy, Ratings, Rankings, Search...

Some Sample Research Questions

Can provided probabilistic

C design type systems '
an we design type sy metadata be useful for tooling?

which incorporate schema

e
change policies: Can we automatically find bugs

Can we automatically provide all in provider components?

the data in the enterprise?
Can we plug and play more

Can we provide and verify richer language logic?
constraints?

Can security, privacy and Can we usefully provide massive
provenance annotations be guantities of geo data + geo
provided? metadata?

Thank you!

Questions?

dsyme(@microsoft.com www.fsharp.net
(@dsyme #fsharp

SDI experiment:
The plan

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1935

SDI experiment:
The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1935

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 10 no 3/ Jul 1985 page 10

Attention All Units, Especially Miles and Feet!

Much to the surprise of Mission Control, the space shuttle Discovery flew upside-down over Maui on
19 June 1985 during an attempted test of a Star-Wars-type laser-beam missile defense experiment.
The astronauts reported seeing the bright-blue low-power laser beam emanating from the top of Mona
Kea, but the experiment failed because the shuttle's reflecting mirror was oriented upward! A
statement issued by NASA said that the shuttle was to be repositioned so that the mirror was
pointing (downward) at a spot 10,023 feet above sea level on Mona Kea; that number was supplied to
the crew in units of feet, and was correctly fed into the onboard guidance system -- which
unfortunately was expecting units in nautical miles, not feet. Thus the mirror wound up being
pointed (upward) to a spot 10,023 nautical miles above sea level. The San Francisco Chronicle article
noted that “‘the laser experiment was designed to see if a low-energy laser could be used to track a
high-speed target about 200 miles above the earth. By its failure yesterday, NASA unwittingly proved
what the Air Force already knew -- that the laser would work only on a ‘cooperative target' -- and is
not likely to be useful as a tracking device for enemy missiles.” [This statement appeared in the S.F.
Chronicle on 20 June, excerpted from the L.A. Times; the NY Times article on that date provided
some controversy on the interpretation of the significance of the problem.] The experiment was then
repeated successfully on 21 June (using nautical miles). The important point is not whether this
experiment proves or disproves the viability of Star Wars, but rather that here is just one more
example of an unanticipated problem in a human-computer interface that had not been detected prior
to its first attempted actual use,

Units of Measure

let EarthMass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthMass / (EarthRadius * EarthRadius)

let EarthMass = 5.9736e24<Ma: ’
Tet EarthRadius = 6371.0e3<M:
let g = Math.PhysicalConstan

lTet va@nat{: m/s 9

R S

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

