Microsoft’

Research

Faculty Summit
2012




v,

Operating System Architec

Parallel And Di

Burton Smith
Mlicrosoft Technical

July 17, 2012

ure For

stributed Co

Fellow

mputing




Most of it dates back to the 60's and 70's

CTSS (1961), VM/CMS (1968), UNIX (1969), VMS (1977)

[t locks us in to old ways of doing things

Using a few identical processor cores

Using the OS kernel to assign cores to threads (“kernel threads”)

Using OS kernel operations to synchronize threads (typically by locking)
Using interrupts to synchronize threads with devices

Using traps to let threads invoke operating system services

Using a variety of heuristics to allocate and schedule resources

These approaches don't cut it any more...



o

Available battery lite limits user experiences

There isn’t enough energy to run all of the hardware all of the time.
How can the state of battery charge be taken into account?

Processor cores are increasingly heterogeneous

Application software developers are trying to exploit them.
Can every core type access the OS services it needs?

New sensors and interface devices are emerging

Some of these require substantial or timely resource allocation.
How are these resource allocations decided and implemented by the OS?



Parallelism varies in both form and quantity

Even different phases of a single application can exhibit such diversity.
How can the OS adapt to varying application parallelism?

Media and games require responsiveness

Different platforms need different resource allocations even for the same function.
How can appropriate allocation be done, even given multiple simultaneous instances?

Applications are built from distributed services

These services provide search, data access, connectivity, computation, and the like.
How well does application performance compose from the services it comprises?



e

Attacks frequently target drivers and system services

These are increasingly large and complex software subsystems.
Must the OS share most of its resources with its device drivers and system services?

Distributed applications often connect via the internet

Messages among application components need authentication and privacy.
How do we ensure trust for both ends of these internet connections?

Internet security is an ongoing multi-player contest

The forces of good must keep on improving to keep on winning.
How can we defend against complete OS takeovers by the opposition?



Microkernels: KeyKOS (1992), L4 (1995), EROS (1999)

Remove drivers from the kernel, kernel threads, manage resources with capabilities

Exokernels: Xok (1997)

Unprivileged application use of hardware, kernel threads, capability-based memory sharing

Microsoft: Singularity (2007), Barrelfish (2009)

Message oriented; S: safe pointers and kernel threads, B: capabilities and user threads.

My own work: TeraQS (1992)

Reduced driver privilege, user threads, no interrupts



Application
1

Application
2

Application
3

Application
4

Shared

Shared

Memor Shared Memor Shared
Shared @ Shared @ Shared S Shared LY Memory
Memor Memor Memor Shared Memory B Memor Shared
Memor ‘ Memor
e -
Network | [] i Storgage |
Services Resource Services
| Allocation |




Continuously
minimize the total
penalty of the system

(subject to the total
resources available)

S. L. Bird and B. J. Smith, “PACORA: Performance
Aware Convex Optimization for Resource
Allocation”, Proc. HotParll, Berkeley, April 2011

\

>

Penalty,

Penalty,

>

Penalty,

Runtime;

Runtime,

A 4

Runtime,

Runtime, (rqg ) -

Runtwne UmD,"

M(n-1,2))

r(n 1 D)




A

Penalty,

System Power System Power(r gy ... [(n.10) )

reat the battery as a competitor for resources

The battery is associated with a distinct process, Process, _

All slack resources are assigned to Process, which tries to power the.m down

As resources power down the system power diminishes in a convex manner

System power thus acts as the “Runtime” for Process,

Penalty, lets the system or user describe the relative importance of rema|n|ng battery life




Dynamic Root of Trust Measurement (DRTM)

Measured from a small and secure Trusted Platform Module (TPM)

Asynchronous interfaces in Microsoft software

Asynchronous patterns in C#/F#/VB; reactive framework; more coming soon

C++ AMP for programming GPUs or CPUs

More work to do to make the two work together smoothly



Operating Systems are changing (at long last).
Opinions above are mine but maybe not Microsoft’s.

Your gquestions and comments are welcome.



© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.



