

1. THE ISSUES

3

An open question

• Widespread interest in expanding the coverage of
parallel programming in the CS core.

• We have not reached a steady state

• There is no clear consensus on

– whether this should be done,

– what topics to cover, and

– when and how to cover them.

2. WHETHER

5

Should we ?

• Parallelism is ubiquitous in computing and has always
been.

• In recognition of this, is common place to teach about
processes, synchronization, deadlock.

• However, that was ok when parallelism came mostly from
overlapping I/O and CPU

• More is needed in our times. Three examples next.

3. WHAT
TOPIC 1: PERFORMANCE

• Parallel programming for expressiveness:

– Simulations (real word is parallel)

– Reactive codes – “dining philosophers”

• These can be represented in sequential form,
but less clearly.

8

Today’s emphasis is in expressiveness and
correctness

Figure by Benjamin D. Esham /
 Wikimedia Commons

9

• However, another equally
important dimension is the not-
so-much-in-fashion
performance.

– Physical limitations slowed
performance improvements and
led to the advent of multicores

– Parallelism needed for continued
gains in execution speed.

– Fixing speed, parallelism can
reduce power (energy)
consumption

Performance

Education in performance

• Concepts in parallel programming are not that difficult.

• Understanding and attaining performance improvements
(speedup) and high efficiency can be challenging.

• Need understanding of machine organization, compilers,
runtime systems, algorithms and the interactions between
these.

• Need to understand and develop skills to measure
program behavior

3. WHAT
TOPIC 2: RACES AND NON
DETERMINACY

Easy concepts difficult praxis

• The notion of race condition and non-determinacy are
relatively easy.

• Finding sources of these errors can be difficult.

• Need tools.

• Need much experience.

3. WHAT
TOPIC 3: ABSTRACTIONS

Programming at the high level

• Using thread spawning and synchronization is low level
programming.

• Use of abstractions is the way of the future:

– Array/collective operations

• e.g. Map reduce/MPI reduce

– Parallel loops

• Numerous languages/notations widely available for
teaching.

4. IN WHAT COURSES TO TEACH
PARALLEL PROGRAMMING

Courses

• Specialized courses
– Parallel programming

– Parallel algorithms

– Program optimization techniques

– Compiling for parallelism

– Heterogeneous parallel programming (now a coursera MOOC)

• An effective strategy
– Spread parallelism throughout the CS core curriculum.

– Machine organization, algorithms, data structures.

Experience indicates that it is feasible and
effective

• Spring 2012. CS 225 Data structures and Programming Principles.

• Three lab sessions (out of 14) devoted to parallel programming
– Replaced sessions devoted to exams questions review.

– Session 1: First encounter with parallel programming – fully parallel
OpenMP loops.

– Session 2: Races and non-determinacy

– Session 3: Reductions

– Session 4 (planned for future semesters) tasking, recursive parallelism
(e.g. quicksort)

• TAs did all of the teaching.
– Intel colleagues trained TAs in the use of tools.

– Instructors prepared material for the TAs.

Useful material on topics that can be covered
for undergraduates and in which courses

• Developed by NSF/TCPP Curriculum Standards
Initiative in Parallel and Distributed Computing –
Core Topics for Undergraduates.

http://www.cs.gsu.edu/~tcpp/curriculum/index.php

http://www.cs.gsu.edu/~tcpp/curriculum/index.php

5. CONCLUSION

19

• For most computer scientists programming is at the
center of their profession.

• Parallelism will be an increasingly important part of
programming.

• CS core curricula must evolve accordingly

