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Our goals
Exploit parallelism of commodity hardware easily:

‣ Performance is important, but…

‣ …productivity is more important.

Semi-automatic parallelism

‣ Programmer supplies a parallel algorithm

‣ No explicit concurrency (no concurrency control, 
no races, no deadlocks)



Graphics [Haskell 2012a]
Ray tracing



Computer Vision [Haskell 2011]
Edge detection
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Figure 15. Sobel and Canny runtimes, 100 iterations

yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. With SSE, the OpenCV version is
able to perform loads, stores, additions and multiplications on four
packed 32bit floats at a time. However, in all cases we are able
to match OpenCV, with the larger image sizes only needing two
threads to break even.

6.3 Edge Detection
Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with SobelX ,Y ; 4) compute magnitude and orientation of the
vector gradient; 5) classify local maxima of the gradient into strong
and weak edges using the thresholds; 6) select points marked as
strong edges; 7) link weak edges that are attached to strong edges.
The output consists of all points marked as strong edges, as well as
any weak edges that are attached to strong edges. A breakdown of
runtimes for each of these stages applied to a 1024x1024 image is
shown in Figure 17, while other sizes are also in Figure 15.

When all is said and done our single threaded implementation
is about 4 times slower than OpenCV. With 8 threads it’s about
50% slower with a 512x512 image, 10% slower for 768x768, and
on par for 1024x1024. We feel this is a good result considering
that the blur and differentiation stages for the OpenCV version
use SIMD operations that we cannot access from Haskell. The

Figure 16. Application of Canny edge detector to an image

GCC 4.4.3 GHC 7.0.2 + Repa with # threads
OpenCV 1 2 4 8

Grey scale 10.59 12.05 6.19 3.25 2.08
Gaussian blur 3.53 17.42 9.70 5.92 5.15
Detect 18.95 68.73 43.81 31.21 28.49
Differentiate fused 11.90 7.41 5.38 5.22
Mag / Orient fused 27.09 16.11 10.45 7.85
Maxima fused 12.87 7.84 4.83 3.32
Select strong fused 10.01 5.68 3.60 5.16
Link edges fused 6.86 6.77 6.95 6.94

TOTAL (ms) 33.05 98.25 59.70 40.38 35.72

Figure 17. Canny edge detection, 1024x1024 image

OpenCV implementation also uses different data formats for the
various stages, converting between 8-bit unsigned and 16-bit signed
integers during the application of SobelX ,Y . The other stages are
performed in a mixture of 8 and 16 bit integer formats. In our own
code we also perform the greyscale conversion and edge linking
with 8 bit integers. However, using integer operations for the other
stages does not help us due to the lack of registers and the aliasing
issues mentioned in §5.3.

The OpenCV implementation also hand-fuses the “local max-
ima” and “select strong” stages, recording an array of indices for
strong edges pixels while computing the local maxima. To dupli-
cate this behaviour we would need to provide a joint mapFilter
operation, with a corresponding version of fillCursoredBlock2.
The delayed array approach cannot recover this form of fusion au-
tomatically as it cannot be expressed by simple function composi-
tion.

On the positive side, the performance of our Haskell code is
more than adequate for real-time edge detection of a video stream.
We have an OSX demo available from the Repa homepage [24].

7. Challenges of Array Fusion
In this section we summarise the main challenges we have encoun-
tered with this work, and suggest avenues for future research.

7.1 Lack of Support for SIMD Operations
At face value, using 4-way SIMD instructions such as available in
the SSE or MMX set has the potential to improve the performance
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Runtimes for Canny edge detection (100 iterations)
OpenCV uses SIMD-instructions, but only one thread



Canny edge detection: CPU versus GPU parallelism
GPU version performs post-processing on the CPU
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Physical Simulation [Haskell 2012a]
Fluid flow



to our existing framework, as the evaluation method for each ar-
ray representation is given by the corresponding instance of the
Load class. Given some inner representation r, the Load instance
for S r simply redirects applications of both loadP and loadS to
the loadS method for r.

We force the borders of a partitioned array to be evaluated se-
quentially by modifying the definition of mapStencil2 from §4.2.
All that is needed is to wrap the existing border definition in the
HintSmall constructor. The effect on the type of mapStencil2 is
also shown in Figure 11.

The ThreadScope plot in the right of Figure 10 is for the same
benchmark, now using smallness hints for the border partitions.
Now only the main thread is active between each high-activity
burst, yet the period of low activity is shorter.

There is a design choice about whether to preserve smallness
hints in the result of an smap operation §4.3. Although computa-
tion of a particular region in a delayed array may correspond to a
small amount of work, after we map a function across every ele-
ment, computation of the same region in the result may be more
expensive. For now we arrange cmap to preserve the smallness hint
in the result array, though we will return to this in §5.2.2.

5.1.2 Gauss-Seidel vs Jacobi relaxation
The reference C implementation of Jos Stam’s fluid flow algorithm
was supplied with [18]. The linear solver in this version uses Gauss-
Seidel matrix relaxation while we use Jacobi relaxation. Relative
to the equation in §5.1, Gauss-Seidel relaxation replaces the u0i�1, j
and u0i, j�1 terms with u00i�1, j and u00i, j�1 respectively. In the reference
version these array elements are read from the array currently being
written to. Jacobi relaxation uses the equation as written.

Although the “fast forwarding” of array elements in Gauss-
Seidel reduces the number of iterations needed to achieve conver-
gence, its use of destructive update makes it difficult to parallelise.
Destructive update also causes problems for optimising compilers
such as LLVM, as they must worry about potential aliasing between
the source and result arrays. In contrast, Jacobi relaxation is kinder
to optimising compilers, and easier to parallelise, but requires more
iterations than Gauss-Seidel as it does not converge as fast.

For Stam’s algorithm, the penalty for using an insufficient num-
ber of iterations is an unattractive image with too much numerical
dissipation [18]. Figure 9 shows the result of simulating 100 time
steps from identical initial conditions, using 4, 10 and 100 Jacobi
iterations in the linear solver. For low iteration counts, the swirls
present in the right-most image do not appear in the output.

To ensure a fair comparison, our Repa implementation using Ja-
cobi relaxation must use more iterations than the reference imple-
mentation. We determined an appropriate number by first simulat-
ing the initial conditions used in Figure 9 using 1000 Gauss-Seidel
iterations, treating this as the ideal output. We then measured the
mean-square error between the ideal output, and the output using
20 Gauss-Seidel iterations, which is what Stam’s reference imple-
mentation uses. Finally, we increased the number of Jacobi itera-
tions until the error in the output was reduced to the same level as
the reference version. Using 38 Jacobi iterations achieves the same
error figure, which we round up to 40 for good measure.

5.1.3 Comparison
Figure 12 shows the relative runtimes between Stam’s C imple-
mentation using Gauss-Seidel relaxation (with 20 iterations), and
the same program modified to use Jacobi relaxation (with 40 iter-
ations). We also show relative runtime for the Repa version using
Jacobi relaxation with 1, 2 and 8 threads.

The overall shape of this plot is as we would expect. At small
array sizes the C versions are faster due to the better locality. This
is because it preallocates buffers for the source and result arrays
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Figure 12. Runtimes for Fluid Flow Solver

at the start of the program, then swaps these buffers after every
relaxation iteration. Doing this improves memory locality, reducing
the data cache-miss rate. In contrast, the Repa version allocates
a fresh result buffer for every iteration, leaving old buffers to be
reclaimed by the garbage collector.

At large array sizes, the working set no longer fits in cache and
the single threaded Repa version is faster. This is because cursored
arrays allows the Repa version to share intermediate computations,
which reduces overall instruction count and memory bandwidth.
For large array sizes the benchmark is memory bound, so perfor-
mance does not scale linearly with an increased number of threads.

The C reference implementation could be improved by hand-
applying the unroll-and-jam transformation that is baked into the
Repa library. We tried various permutations of -funroll-loops
when compiling with GCC 4.2.1, but inspection of the assembly
output revealed it was not recovering the same amount of inter-
stencil sharing as the Repa version due to aliasing problems —
even though the loops were indeed unrolled. Compiling with Clang
3.0 (which uses LLVM in the backend) did not significantly im-
prove matters. On the other hand, we could also improve the Repa
version by preallocating the source and result arrays and using the
ForeignPtr support to swap and reuse the same buffers between
iterations.

5.2 Unbalanced Workloads
Figure 13 shows three example applications with unbalanced work-
loads, all written with Repa. The first is a Mandelbrot set visualisa-
tion computed with the escape-time algorithm. In the output image,
the pixels in the (approximate) Mandelbrot set are rendered black
and take about 10 times longer to compute than the others.

The second is output from a real-time ray tracer, where parts
of the image showing many reflections take longer to compute
than the others. Although ray tracing is known in the folklore
as “embarassingly parallel” as every pixel in the output can be
computed independently, it is not embarrassingly data parallel due
to the unbalanced workload.

The final example is an interpolator for volumetric data, which
implements the algorithm described in [17]. This example was writ-
ten by Michael Orlitzky using Repa 2, and then modified to work
with Repa 3 by the first author. The left-most image at the bottom
of Figure 13 shows one slice though a 256⇥256⇥109⇥16-bit data
volume from a Magnetic Resonance Imaging (MRI) machine. The
bottom-center image is from the source data, and shows a scaled
region of the top-right portion of the brain. The bottom-right im-
age shows the same region after interpolation. In a straightforward

9 2012/6/3

Runtimes for Jos Stam's Fluid Flow Solver
We can beat C!



Jos Stam's Fluid Flow Solver: CPU versus GPU Performance
GPU beats the CPU (includes all transfer times)
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Medical Imaging [Haskell 2012a]
Interpolation of a slice though a 256 × 256 × 109 × 16-bit data volume of an MRI image
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Purity and parallelism

 processList :: [Int] -> ([Int], Int)
 processList list = (sort list, maximum list)

function argument
function body

argument type result type

Purity: function result depends only on arguments

Parallelism: execution order only constrained by 
explicit data dependencies
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 do
   data <- readFile fn1
   writeFile fn2 data
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By default pure :=

Types track purity

Pure = no effects Impure = may have effects

Int IO Int

processList ::
  [Int] -> ([Int], Int)

readFile ::
  FilePath -> IO String

(sort list, maximum list)

copyFile fn1 fn2 =
 do
   data <- readFile fn1
   writeFile fn2 data
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Datatypes for parallelism

For bulk-parallel, aggregate operations, we 
introduce a new datatype:

Array r sh e 

Representation Shape Element type
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Representation: determined by a type index; e.g.,

‣ D — delayed array (represented as a function)

‣ U — unboxed array (manifest C-style array)

Array r sh e 

Shape: dimensionality of the array

‣ DIM0, DIM1, DIM2, and so on

Element type: stored in the array

‣ Primitive types (Int, Float, etc.) and tuples

e
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zipWith :: (Shape sh, Source r1 a, Source r2 b) 
        => (a -> b -> c)
        -> Array r1 sh a 
        -> Array r2 sh b 
        -> Array D sh c

Pure function to be 
used in parallel

Pocessed arraysDelayed result

type PC5 
   = P C (P (S D)(P (S D)(P (S D)(P (S D) X))))
mapStencil2 :: Source r a
            => Boundary a
            -> Stencil DIM2 a
            -> Array r DIM2 a
            -> Array PC5 DIM2 a



zipWith :: (Shape sh, Source r1 a, Source r2 b) 
        => (a -> b -> c)
        -> Array r1 sh a 
        -> Array r2 sh b 
        -> Array D sh c

Pure function to be 
used in parallel

Pocessed arraysDelayed result

type PC5 
   = P C (P (S D)(P (S D)(P (S D)(P (S D) X))))
mapStencil2 :: Source r a
            => Boundary a
            -> Stencil DIM2 a
            -> Array r DIM2 a
            -> Array PC5 DIM2 a

Partitioned result
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A simple example —
dot product

 dotp v w = sumAll (zipWith (*) v w)

 type Vector r e = Array r DIM1 e

 dotp :: (Num e, Source r1 e, Source r2 e) 
      => Vector r1 e -> Vector r2 e -> e

Elements are any 
type of numbers…

…suitable to be 
read from an array 
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Parallelism

Data
Parallelism

ABSTRACTION

Parallelism is safe for 
pure functions (i.e., 
functions without 
external effects)

Collective operations have 
got a single conceptual 

thread of control
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Core i7 970
CPU

NVIDIA GF100 
GPU

12 THREADS
24,576 THREADS

✴Latency hiding: optimised for 
regular memory access 
patterns

✴Optimise memory access

✴SIMD: groups of threads 
executing in lock step (warps)

✴Need to be careful about 
control flow
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Code generation for 
embedded code
Embedded DSL

‣ Restricted control flow

‣ First-order GPU code

Generative approach based on combinator 
templates

✓  limited control structures

✓  hand-tuned access patterns

[DAMP 2011]
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Dot product

dotp :: Vector Float -> Vector Float 
-> Acc (Scalar Float)

dotp xs ys 
  = let
      xs' = use xs
      ys' = use ys
    in
    fold (+) 0 (zipWith (*) xs' ys')

Haskell 
array

Embedded array =
desc. of array comps

Lift Haskell arrays into EDSL 
— may trigger host➙device 

transfer
Embedded array 
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Modularity

Standard (Fortran, CUDA, etc.) is flat, regular 
parallelism

Same for our libraries for functional data 
parallelism for multicore CPUs (Repa) and GPUs 
(Accelerate)

But we want more…
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smvm :: SparseMatrix -> Vector -> Vector
smvm sm v = [: sumP (dotp sv v) | sv <- sm :]

Parallel array 
comprehension

Parallel reduction/fold

Nested 

parallelism!

Defined in a libray: 
Internally parallel?

Nested 

parallelism?

Regular, flat data parallelism is not sufficient!



Nested
parallelism
Modular

Irregular, nested data structures

‣ Sparse structures, tree structures

‣ Hierachrchical decomposition

Nesting to arbitrary, dynamic depth: divide & conquer

Lots of compiler work: still very experimental! [FSTTCS 
2008, ICFP 2012, Haskell 2012b]
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Types are at the centre of 
everything we are doing
Types separate pure from effectful code

Types guide operational behaviour (data 
representation, use of parallelism, etc.)

Types identify restricted code for specialised 
hardware, such as GPUs

Types guide parallelising program transformations



Summary
Core ingredients

‣ Control purity, not concurrency

‣ Types guide representations and behaviours

‣ Bulk-parallel operations

Get it

‣ Latest Glasgow Haskell Compiler (GHC)

‣ Repa, Accelerate & DPH packages from Hackage 
(Haskell library repository)

Blog: http://justtesting.org/
Twitter: @TacticalGrace

http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org
http://justtesting.org


Thank you!

This research has in part been funded by the Australian 
Research Council and by Microsoft Corporation.
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