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Par Lab Inception: Needed a

Electrical Engineering and

. Freash Approach to Parallelism

O Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism

[0 Krste Asanovic, Eric Brewer, Ras Bodik, Jim Demmel, Kurt Keutzer,
John Kubiatowicz, Dave Patterson, Koushik Sen, Kathy Yelick, ...

[0 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

[0 Tried to learn from successes in high-performance computing
(LBNL) and parallel embedded (BWRC)

O Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

Goal: To enable most programmers to be productive
writing efficient, correct, portable SW for 100+ cores
& scale as cores increase every 2 years (!)



Traditional Parallel Research Project

< Past parallel projects often dominated by hardware
architecture:

= This is the one true way to build computers,
software must adapt to this breakthrough!

= E.g., ILLIAC IV, Thinking Machines CM-2, Transputer,
Kendall Square KSR-1, Silicon Graphics Origin 2000 ...

< Or sometimes by programming language:

= This is the one true way to write programs,
hardware must adapt to this breakthrough!

= E.g., Id, Backus Functional Language FP, Occam,
Linda, HPF, Chapel, X10, Fortress ...

< Applications usually an afterthought



Par Lab’s original “"bets”

<+ Let compelling applications drive research
agenda

+Software platform: data center + mobile client

<+ Identify common programming patterns

<+ Productivity versus efficiency programmers

<+ Autotuning and software synthesis

<+Build-in correctness + power/performance diagnostics

<+0S/Architecture support applications, provide flexible
primitives not pre-packaged solutions

+FPGA simulation of new parallel architectures: RAMP
<+ Co-located integrated collaborative center

Above all, no preconceived big idea - see what works
driven by application needs.




Co-located Collaborative

Center Approach
1 < 60+ students, 8+ faculty In
one shared space
< Faculty in open space, not
In offices

< Off-site retreat every 6

visitors (industry sponsors,
and other invited experts)
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Big Ideas from Par Lab

< Patterns for parallel programming

< Communication-avoiding algorithms

< Specializers: Pattern-specific compilers
< Effective composition of parallel modules



Dominant Application
Platforms

—

» Laptop/Handheld (“Mobjlecl
= Par Lab focuses on X

< Data Center or Cloud (“Cloud’
= RAD Lab/AMPLab focus:

+ Both together (“Client+Cloud”) ~
= ParLab-AMPLab collaborations




Content-Based Image Retrieval

(Kurt Keutzer)

Relevance

Query by example

Feedback

SN

1000’s of
Images

< Built around Key Characteristics of personal
databases
= Very large number of pictures (>5K)
= Non-labeled images
= Many pictures of few people
= Complex pictures including people, events, places,
and objects
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Health Application: Stroke Treatment
(Tony Keaveny, ME@QUCB)

-
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» Stroke treatment time-critical, need
supercomputer performance in hospital

DB file [

» Goal: 1.5D Fluid-Solid Interaction H H Prometheus E\;ﬂs
analysis of Circle of Willis (3D vessel  (Visit FEEE by
geometry + 1D blood flow). PEIsy (e

» Based on existing codes for distributed
clusters .



Parallel Browser

Electrical Engineering and =
Computer Sciences ( Ras BOd I k)
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! elleise Con

< Original goal: Desktop-quality
browsing on handhelds (Enabled by

4G networks, better output devices)

<+ Now: Better development

environment for new mobile-client

applications, merging

characteristics of browsers and

frameworks (Silverlight, Qt, Android)




Browser Development Stack

multicore parser

v

style

tree template

layout engine

multicore
fast tree
library

layout
visitor

multicore selector
matcher

multicore cascade

v

tree decorated with
style constraints

scene
graph

OpenGL Qt Renderer

grammar
specification

ALE synthesizer

incrementalizer




Music Application
IR (David Wessel, CNMAT@UCB)

New user interfaces
with pressure-sensitive
multi-touch gestural
Interfaces

L
120-channel
speaker array

Programmable virtual instrument
and audio processing




Music Software Structure

=S

BERKELEY PAR LAB

Audio Processing
Ingut é‘z§ Output

Pressure-sensitive multitouch array
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Oscillator
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Speech: Meeting Diarist %

Nelson Morgan, Gerald Frledland ICSI/UCB

faNo Applet Viewer: jokeomat.Jokeomat
Video

D06 Filter

Filter by Keywords: l:ﬁ

cache

( OK ) Clear /‘

Filter by Person:

¥ clus_1

W clus_2

Applet started.

= Laptops/ Handhelds at meeting coordinate to create speaker

identified, partially transcribed text diary of meeting ‘e



Meeting Diarist Software
e Sty Architecture

Winner ACM Multimedia Grand Challenge 2009
- find best punchlines in Seinfeld episodes

Speedup progress in Par Lab:

2006 0.3x realtime, original code

2008 1.5x realtime, optimized serial code

2010 14.3x realtime, multicore CPU+GPU

2011 250x realtime, pure GPU, from Python

code, changed the field!

';;?‘ -_' % Interactive GUI




Types of Programming

(or “types of programmer”)
Example Lanquages Example Activities
Max/MSP, SQL, Builds app W|th DSL

Domain-Level CSS/Flash/Silverlight, izing
(No formal CS) Matlab, Excel

appllcatlon
frameworks (or apps)

Uses hardware/QOS

LT primitives, builds

(MS | in CS) C/C++/FORTRAN  programming
assembler frameworks (or apps)

Provides hardware
Hardware/OS primitives and OS services



~....How to make parallelism visible?

< In a new general-purpose parallel language?
= An oxymoron?
= Won't get adopted
= Most big applications written in >1 language

< Par Lab is betting on Computational and
Structural Patterns at all levels of
programming (Domain thru Efficiency)
= Patterns provide a good vocabulary for domain experts

= Also comprehensible to efficiency-level experts or
hardware architects

= [ingua franca between the different levels in Par Lab
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-~ MOtIfTS common across applications

Berkeley View

@fp lggpp 2 (pp 3 D
(Dense | [Sparse | [Graph Trav. | (“g"vf,’;':%,,)
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Motif (nee "Dwarf”) Popularity

\ Blue Cool
How do compelling apps relate to 13 motifs?

o ) N G

Health Image Speech Music Browse

]

Games
M
CAD
HP

1 Finite State Mach.
2 Circuits

3 Graph Algorithms
4 Structured Grid

5 Dense Matrix

b Sparse Matrix

i Spectral (FFT)

6 Dynamic Prog

9 Particle Methods
10 Backtrack’ B&B
11 Graphical Models
12 Unstructured Grid

13 Monte Carlo

21



“Our’ Pattern Language (OPL-2010)

oo (Kurt Keutzer, Tim Mattson

n

~lications
S
2 e atter™> —

Structural Patterns Computational a\
ipe-and-"" \ Grar* ‘\‘ 0

-otate-Machines
ch-and-

'3
=
P 7\

y
T _cuse-Linear A — M X V S
Event-Based/Impli ph Sparse-Linea
Invocation Unstructured- s
Puppeteer Structured-Grids Monte-Carlo
Concurrent Algorithm Stratec " siscrete-Event
Task-Parallelism Refl ne Owar d S seometric-Decomposition
ouide and conuer Implementation #**"
Implementation Strategy Fe.
SPMD Fork/Join . ';:zue Distributed-Array
-Parli - o o =mr Shared-Data
Data-Par/index-space  Actors Ta et G
Program structure Data structure
Parallel Execution Patterns
MIMD Thread-Pool Transactions
SIMD Task-Graph
Concurrency Foundation constructs (not expressed as patterns)
Thread creation/destruction Message-Passing Point-To-Point-Sync. (mutual exclusion)

Process creation/destruction Collective-Comm. collective sync. (barrier)



e Mapping Patterns to Hardware

@fp lg]gpp %(PP 3 D

(Dense | [Sparse |

| Graph Trav. |

Only a few types of hardware platform

Multicore

GPU

“Cloud”
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High-level pattern constrains space

Electrical Enginegming and

—-of reasonable low-level mappings

Applications |

Architectural patterns [f/ el el PR Graphicarjnodels

‘ Graph Algorithms Finite state machines

Pipe-and-filter Model-view controller

. . . Dvpassisel Backtrack Branch and
Agent and Repository Bulk iterative Bound
Process Control Map reduce N-Body methods
Event based, implicit Layered systems Circuits
invocation Arbitrary Static Task Graph nstructured mesh o VI
Structured mesh P
Monte Carlo
Parallel algorithm strategy pa
Task Parallelism Data Parallelism Geometric Decomposition Digital Circuits
Discrete Event Graph Partitioning

Recursive splitting

Implementation strategy patterns

SPMD ) _—
. - o Distributed Array
Strict-data-par Loop Parallelis SHEGEC B=ms
ForkiJoin o Proa struc Shared Hash Table ~ Shared Data Data struc
Actors 9
Concurrentgfecution patterns
Thread Pool Advancing Msg pass Pt-2-ptsync | coordination
Speculation prog counters coll comm coll sync
data flow mutual exclusion Trans. Mem

igure 1: overall structure of OPL showing the five layer model. Implementation strategy patterns are
divided into 2 sets; one describing a program’s structure and the other data structures. The concurrent
execution patterns are broken down into a set of patterns that “advance a program counter’ and a set that
coordinates the execution of parallel threads.




Specializers: Pattern-specific anc

slatform-specific compilers
aka. “Stovepipes”

@fp lggpp %(PP 3 D
[Densc?\Sparse |Graph Trav.
R / ]\

Allow maximum efficiency and expressibility in
specializers by avoiding mandatory intermediary layers

O

Multicore “Cloud”
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Algorithm Costs

1. Arithmetic (FLOPS)

2. Communication: moving data between
* |levels of a memory hierarchy (sequential case)
» processors over a network (parallel case).

CPU DRAM DRAM
Cache

DRAM

CPU CPU

DRAM h DRAM

26



Communication-Avoiding Algorithms

Electric

e (Jim Demmel & BEBOP Group)

< Cost of communication >> cost of arithmetic
* True for cost = time, or cost = energy per operation
= Cost gap growing over time

<+ Goals

» |dentify lower bounds on communication required by
widely used algorithms

« Many widely used libraries (eg Sca/LAPACK)
communicate asymptotically more than necessary

*= Design new algorithms that attain lower bounds
» Possible for dense and sparse linear algebra, n-body,

* Big speedups and energy savings possible



e PA few examples of speedups

Computer Sciences

< Matrix multiplication
= Upto 12x on IBM BG/P for n=8K on 64K cores; 95% less communication
» QR decomposition (used in least squares, data mining, ...)
= Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10
» Up to 6.7x on 16-proc. Pentium Il cluster, for 100K x 200
= Upto 13x on Tesla C2050 / Fermi, for 110k x 100
= Up to 4x on Grid of 4 cities (Dongarra, Langou et al)
» “infinite speedup” for out-of-core on PowerPC laptop
« LAPACK thrashed virtual memory, didn’t finish
Eigenvalues of band symmetric matrices
= Upto 17x on Intel Gainestown, 8 core, vs MKL 10.0 (up to 1.9x sequential)
< Iterative sparse linear equations solvers (GMRES)
= Up to 4.3x on Intel Clovertown, 8 core
N-body (direct particle interactions with cutoff distance)
= Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs.

%

*

*
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Recent Prizes for CA Work

<+ SIAM Linear Algebra Prize 2012, for best paper
In previous 3 years, deriving lower bounds

<+ SPAA’11 Best Paper Award, for Strassen lower
bounds

< EuroPar’11 Distinguished Paper Award, for
asymptotically faster “2.5D” matmul and LU

< Citation in 2012 DOE Budget Request ...



President Obama cites Communication-Avoiding

Algorithms in the FY 2012 Department of Energy Budget
Reguest to Congress:

“‘New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures,
communication between processors takes longer than the
performance of a floating point arithmetic operation by a given
processor. ASCR researchers have developed a new method,
derived from commonly used linear algebra methods, to minimize
communications between processors and the memory
hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been
Implemented in the TRILINOS framework, a highly-regarded suite of
software, which pfovides functionality for researchers around the
world to solve large scale, complex multi-physics problems.”

FY 2010 Congressiorjal Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific
Computing Research (ASCR), pages 65-67.

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, Demmel)
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, Demmel)




Graph Algorithms

(Scott Beamer)

< New algorithm for Breadth-First Search

< Highest single-node performance in November

2011, Graph500, using Intel Xeon E7-8870

(Mirasol)
<+ #15: BlueGene 2048 cores
<+ #16: Jaguar 1024 cores
< #17:. Mirasol 40 cores
< #18: Blacklight 512 cores
< #19: Todi 176 TESLA GPUs
<+ #20: Convey 4 FPGAs

6.93 GTEPS
6.260 GTEPS

5.12 GTE

4.45 G
3.0 G

E
E

PS
PS
PS

1.76 G

E

PS
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Autotuning for Code Generation

BERKELEY PAR LAB

Problem: generating optimized code is like searching for
needle in haystack; use computers rather than humans

Auto-tuners approach: program -
generates optimized code and Nehalem
data structures for a “motif” 10}
(~kernel) mapped to some
instance of a family of "
architectures (e.g., x86 multicore) S|

L

o

Use empirical measurement to
select best performing.

ParLab autotuners for stencils !
(e.g., images), sparse matrices,
particle/mesh, collectives (e.q., 1
“reduce”), ...

OpenMP

12 Comparisor

Auto-tuning

Auto-NUMA

Auto-
parallelization

serial
reference

2 4 8 16
Threads
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SEJITS: “Selective, Embedded,

Electrical Engineer rin

—-Just-In Time Specialization” (Fox

< SEJITS bridges productivity and efficiency layers through
specializers embedded in modern high-level productivity
language (Python, Ruby, ...)

* Embedded “specializers” use language facilities to map
high-level pattern to efficient low-level code (at run time,
Install time, or development time)

= Specializers can incorporate/package autotuners

Two ParLab SEJITS projects:

< Copperhead: Data-parallel subset of Python, development
continuing at NVIDA

<+ Asp: “Asp is SEJITS in Python” general specializer
framework

* Provide functionality common across different specializers

33



SEJITS Overview

Selective

-PY

Embedded "y

| ccCcilliTo |

OS/HW

PLL Interp



Asp: Who Does What?

App author Specializer author Asp 3'd party
(PLL) (ELL) team libraries
Application Specializer Asp core

Python

Kernel / AST

Domain-Specific e—> Utilities

Transforms

Target Asp - Compiled
Ang »  Module libraries
Kernel
call &

Input data



Composition

< All applications built as a hierarchy of modules,
not just one kernel

‘ Application
Module 3

Structural patterns describe the common forms

of composing sub-computations:
E.qg., task graph, pipelines, agent&repository

36



..o Effective Parallel Composition

Computer Sciences

<+ Data format/layout: Must translate between data
formats or layouts expected by different components

+Synchronization: Must correctly synchronize data
passing between or shared by multiple components

+Resource management: Must share hardware
resources to execute components in parallel

37



Efficient Parallel Composition of
Libraries is Hard

OpenMP-Scheduler’TBB

| Sched
,%

. XY

..........
*e .,. 0o ®

............

..........
. e T e T e et T T et et e
.........................................

......................
: NI erre

..............
. -, .
..'°. S 1'.--""‘.. .."-.. .® ..0"'... ..."'c"’.o"”.. teeitangy .0t

Libraries compete unproductively for resources!
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“Harts”: Hardware Threads

A Better Resource Abstraction

App 2 Hardware Partitions

OS

App 1

§§§§§ Virtualized
Threads »

OS

Harts
(HW Thread Contexts)

0O 1 2 3
Hardware

0O 1 2 3
Hardware

e More accurate
resource abstraction.

e Let apps provide own
computation abstractions

e Merged resource and
computation abstraction.
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Lithe: “Liquid Thread

Environment”

<+Lithe Is an ABI to allow application components to
co-operatively share hardware threads.

<+Each component is free to ma
hardware threads in any way t

= No mandatory thread or tas

0 computational to
ney see fit

K abstractions

<+ Components request but cannot demand harts, and

must yield harts when blocked

or finished with task

40



Tessellation OS: Space-Time Partitioning

+ 2-Level Scheduling (Kubiatowicz)

Q
©
Q.

)]

( Address Space Address Space\

=2=22)(==d

nd-level
\ Scheduling )

~~~_ Tessellation Kernel
{Rartition Support)

~
~

CPU CPU CPU | CPU CPU CPU

!ll“-

4 ¢ ¢ 4 4
L1 Intefeonnect 3 |

L’Z L2
Bank Bank
$ $ I

15t level: OS determines
coarse-grain allocation of
resources to jobs over space
and time

2nd level: Application schedules
component tasks onto
available “harts” (hardware
thread contexts) using Lithe )

1



Resource Management using Convex

Optimization (Sarah Bird, Burton Smith

< Each process receives a vector of basic resources dedicated to it
= e.g., fractions of cores, cache slices, memory pages, bandwidth
< Allocate minimum for QoS requirements

< Allocate remaining to meet some system-level objective
= e.g., best performance, lowest energy, best user experience

Penalty Function Resource Utility Function

Continuously Reflects the app’s  Performance as function of
~Minimize importance resources
(subject to restrictions r \ 1

on the total amount of P.(L)
resources)

L, L, = RUa(r(O,a)’ F1a) - r(n-l,a))
~ QoS Req.

Pp(Lp)

L, > Ly =RUy(ropy fapy - Mn-1p)
q )

Convex Surface ! !
Performance Metric (L), e.g., latency




Par Lab Stack Summary

< Organize software around parallel patterns

= Maximize reuse since patterns common across
domains

< Each pattern implemented with efficient algorithms
packaged as SEJITS specializers using autotuners

< Programmer composes functionality at high-level
using productivity language

< System composes resource usage at low-level using
2-level scheduling

» Tessellation OS at coarse-grain
» Lithe user-level scheduler ABI at fine-grain
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Par Lab Stack Overview

Electrical Engineering and

Computer Sciences

Application 1

/\
.

3

Module 3

Application 2

e
)
N
8
3)
]
Q
/)

Efficrency
Level Code TBB Code | Legacy OpenMP
TBB OpenMP
Scheduler

Module 1
Scheduler

Scheduler
Lithe User-Level Scheduling ABI

Tessellation OS
Hardware Resources (Cores, Cache/Local Store, Bandwidth)




Future Architectures?

< What about GPUs versus CPUs?

< These architectures are closely related, and
converging.

< Both have multiple multithreaded cores each with
many SIMD lanes

= original vision was “manycore” — more accurate
to say future is “manylane”.

< Most of our techniques can be applied to both

45



s Par Lab Architecture Research

Computer Sciences

< Focus on supporting application and OS needs:
= Hardware partitioning support
» Performance counters
» High-performance FPGA-based simulators
< New architecture ideas:
= New data-parallel execution engines
» Hardware+software managed memory hierarchy
» Specialized accelerators (e.g., graph machines)

<+ Extensive development of VLSI flow to allow real
layout of various data-parallel accelerators

= Accurate cycle time, area, energy
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RAMP Gold

" "3
P N ., -
L3

+Rapid accurate simulation of (&=

manycore architectural ideas
using FPGAs

«Initial version models 64 cores "§&§
of SPARC v8 with shared
memory system on $750 board } GRE Rt~ ff

+Hardware FPU, MMU, boots our = e
OS and Par Lab stack!

!
L

Performance Time per 64 core
Cost . .
(MIPS) simulation

Software $2,000 01-1 250 hours
Simulator
RAMP Gold S2,000 + S750 50 - 100 1 hour
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Par Lab Funding

<+ Research supported by Microsoft (Award
#024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery
(Award #DIG07-10227).

< Additional support comes from Par Lab affiliates
National Instruments, NEC, Nokia, NVIDIA,
Samsung, and Oracle/Sun.
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Questions?
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