

SQL Server Parallel Data Warehouse Architecture

José A. Blakeley Partner Architect

May 24, 2012

Agenda

- PDW Fundamentals
 - Scale-out system architecture (HW and SW)
- Core functionality
 - · Shell Database and Distributed Query Processing
 - · Data Movement
 - · Bulk Loading
- Futures

PDW Fundamentals

What is Parallel Data Warehouse?

SQL Server Data Warehousing in Appliance Model

- A SQL Server appliance for DW that is:
- Scalable
 - · Shared-nothing, MPP DBMS system
 - · Scales from 10s to 100s of TB of data
 - Scales from $\frac{1}{2}$ rack (4-6 nodes) to 4x rack (~60 nodes)
- Standards based
 - · Leverages commodity hardware
 - Speaks SQL Server language (T-SQL)
- Flexible
 - · Offers hardware of choice (HP/Dell)
 - · Supports multiple h/w architectures
- Cost effective
 - · Low price/TB ratio

EDW Architecture

PDW Hardware Components

PDW Software Components

Shell Database and Statement Processing

Distributed DBMS Layering

PDW Schema Design

```
CREATE TABLE customer
 (c_custkey
              bigint,
              varchar(25),
  c name
  c address
              varchar(40),
  c_nationkey
              int,
  c_phone
              char(15),
  c acctbal
              decimal(15,2),
  c_mktsegment char(10),
                varchar(117))
  c comment
WITH (distribution=hash(c custkey));
```

```
Compute node

cust1 cust5

cust2 cust6

cust3 cust7

cust4 cust8 nation
```

```
CREATE TABLE nation

( n_nationkey int,
  n_name varchar(25),
  n_regionkey int,
  n_comment varchar(117))

WITH (distribution=replicate);
```


DDL Data Flow

- 1. User issues DDL statement
- 2. Statement runs on the Shell first
 - SQL Server (shell) performs the parsing, binding, authorization
 - · The shell schema gets updated
 - PDW-specific info stored in extended properties
 - PDW resource manager manages life cycle of statement execution (e.g., Tx scope, locks)
- 3. Statement issued against the compute nodes
- 4. Results returned back
 - PDW rollback manager manages failures and clean-up

Quick Look at Query Execution

SQL Server PDW Appliance

Client

The user **connects to** 'the appliance' **like** he would to **a 'normal' SQL Server**, and sends his request

Control Node

The control node handles global query execution, and generates a distributed execution plan

The actual user data resides on control nodes, and **steps** of the global execution plan **are executed on each compute node**

Compute Node 1

Compute Node 2

Compute Node N sql Server PDW is a shared nothing MPP system, meaning user data is distributed across the nodes*. Data
Movement Service is responsible for moving data around so that individual nodes can satisfy queries that need data from other nodes.

Query Optimization

- 1. SQL Server parsing, access validation, query simplification and exploration
 - Query simplification (e.g. column reduction, predicates push-down, subquery unnesting)
 - · Logical space exploration (e.g. join re-ordering, local/global aggregation)
 - · Serializing MEMO into binary XML (logical plans)
 - De-serializing binary XML into PDW Memo
- 2. Optimization for distributed plan (PDW)
 - · Removing unnecessary plans
 - · Identifying interesting properties
 - · Injecting data move operations
 - Costing different alternatives
 - Pruning and selecting lowest cost distributed plan
- 3. SQL Generation
 - · Generating SQL Statements to be executed

Statistics

- Local statistics (compute nodes)
 - Standard auto-stats for user-data tables
 - · Auto-stats also on temp tables created by DMS at each step

- Global statistics (Shell DB in control node)
 - Basis for distributed execution plan
 - No auto-stats (scoped out of AU3)
 - · Manual stats: compute on each distribution, then merge to reflect global table

TPCH – AU3 Performance Results

Data Movement

Data Movement Primitives

For distributed tables

- SHUFFLE_MOVE (N:N)
- BROADCAST_MOVE (N:N)
- PARTITION_MOVE (N:1)
- SHUFFLE_LOAD

For replicated tables

- MASTER_MOVE (1:N)
- TRIM_MOVE (1:1)
- REPLICATE_MOVE (1:N)
- REPLICATE_LOAD

DMS Core Reader

DMS Core Writer

Bulk Loading

DWLoader Data Flow

- DWLoader = bulk loading utility
 - Transactional, multi-step
 - · Runs on Landing Zone Node
 - · One input file per destination table
- Load is performed in 3 steps:
 - · Create a staging table
 - · DMS movement
 - · Replicated Load & Distributed Load
 - · Insert-select
- SSIS uses Adapter to load directly into DMS
- Load speed:
 - · 1.2 TB/hr, 10x compute nodes
 - · Target is Heap table

User

Other important functionality

- Backup/restore
- Fault tolerance
 - All HW components have redundancy
 - · Windows Failover Cluster (WFC) for failover
 - Control, compute and management nodes have A/P
- Systems substrate
 - End-to-End setup, servicing, upgrade, replace node
 - Appliance health, monitoring, PDW SCOM Management Pack
 - PDW appliance validator

- Integration with Microsoft and 3rd party BI tools
 - SS Integration Services (ETL) has PDW as a destination
 - SS Analysis Services (OLAP) has PDW as a source
 - SS Reporting Services, Excel PowerPivot
 - SAS, Business Objects, Informatica, Microstrategy
 - Hadoop connectors (ETL)

Futures

Futures

- Column-store storage and processing
- Single-node-query optimizations
- Broader support of SQL SMP features
- Increased data load parallelism
- Hadoop integration

Summary

- PDW Fundamentals
 - Scale-out system architecture (HW and SW)
- Core functionality
 - · Shell Database and Distributed Query Processing
 - · Data Movement
 - Bulk Loading
- Futures

Thank you!